Skip to main content

Weight Optimization of Classifiers for Pathological Brain Detection

  • Chapter
  • First Online:
Pathological Brain Detection

Part of the book series: Brain Informatics and Health ((BIH))

  • 507 Accesses

Abstract

This chapter gives the latest training methods for training the weights and biases of feed-forward neural networks (FNNs). Note that the training is not pure optimization; hence, the training should be over the validation set. The traditional back propagation scheme, performed by the gradient descent method, and its variants, are reviewed. Later, 10 global optimization methods are compared, including the genetic algorithm, simulate annealing, the tabu search, the artificial immune system, particle swarm optimization, artificial bee colony, the firefly algorithm, ant colony optimization, biogeography-based optimization, and the Jaya algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tan JZ, Kerr WL (2017) Determination of glass transitions in boiled candies by capacitance based thermal analysis (CTA) and genetic algorithm (GA). J Food Eng 193:68–75. https://doi.org/10.1016/j.jfoodeng.2016.08.010

    Article  Google Scholar 

  2. Nguyen P, Kim JM (2016) Adaptive ECG denoising using genetic algorithm-based thresholding and ensemble empirical mode decomposition. Inf Sci 373:499–511. https://doi.org/10.1016/j.ins.2016.09.033

    Article  Google Scholar 

  3. Jun Y, Wei G (2010) Find multi-objective paths in stochastic networks via chaotic immune PSO. Expert Syst Appl 37(3):1911–1919

    Article  Google Scholar 

  4. Laffitte A, Neiers F, Brockhoff A, Meyerhof W, Briand L (2016) Interaction of the human T1R2 taste receptor ligand-binding domain with sweeteners and sweet-tasting proteins. Chem Senses 41(9):E124–E124

    Google Scholar 

  5. Guevara CB, Santos M, Lopez V (2016) Negative selection and Knuth Morris Pratt Algorithm for anomaly detection. IEEE Latin Am Trans 14(3):1473–1479

    Article  Google Scholar 

  6. Abo-Zahhad M, Sabor N, Sasaki S, Ahmed SM (2016) A centralized immune-Voronoi deployment algorithm for coverage maximization and energy conservation in mobile wireless sensor networks. Inf Fusion 30:36–51. https://doi.org/10.1016/j.inffus.2015.11.005

    Article  Google Scholar 

  7. Chelly Z, Elouedi Z (2016) A survey of the dendritic cell algorithm. Knowl Inf Syst 48(3):505–535. https://doi.org/10.1007/s10115-015-0891-y

    Article  Google Scholar 

  8. Millonas M (1994) Swarms, phase transitions and collective intelligence. In: Langton C (ed) Artificial life III. Addison-Wesley, Reading, MA, pp 417–445

    Google Scholar 

  9. Ji G (2015) A comprehensive survey on particle swarm optimization algorithm and its applications. Math Probl Eng, Article ID: 931256

    Google Scholar 

  10. Lahmiri S (2017) Glioma detection based on multi-fractal features of segmented brain MRI by particle swarm optimization techniques. Biomed Signal Process Control 31:148–155. https://doi.org/10.1016/j.bspc.2016.07.008

    Article  Google Scholar 

  11. Yang JF, Sun P (2016) Magnetic resonance brain classification by a novel binary particle swarm optimization with mutation and time-varying acceleration coefficients. Biomed Eng-Biomed Tech 61(4):431–441. https://doi.org/10.1515/bmt-2015-0152

  12. Tawhid MA, Ali AF (2016) Simplex particle swarm optimization with arithmetical crossover for solving global optimization problems. Opsearch 53(4):705–740. https://doi.org/10.1007/s12597-016-0256-7

    Article  MathSciNet  MATH  Google Scholar 

  13. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73. https://doi.org/10.1109/4235.985692

    Article  Google Scholar 

  14. Narjess D, Sadok B (2016) A new hybrid GPU-PSO approach for solving Max-CSPs. In: Proceedings of the 2016 genetic and evolutionary computation conference, Denver, CO. ACM, pp 119–120. https://doi.org/10.1145/2908961.2908973

  15. Alkhashai HM, Omara FA (2016) BF-PSO-TS: hybrid heuristic algorithms for optimizing task schedulingon cloud computing environment. Int J Adv Comput Sci Appl 7(6):207–212

    Google Scholar 

  16. Scaria A, George K, Sebastian J (2016) An artificial bee colony approach for multi-objective job shop scheduling. Proc Technol 25:1030–1037. https://doi.org/10.1016/j.protcy.2016.08.203

    Article  Google Scholar 

  17. Wu L (2011) Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach. Entropy 13(4):841–859

    Article  Google Scholar 

  18. Lozano M, Garcia-Martinez C, Rodriguez FJ, Trujillo HM (2017) Optimizing network attacks by artificial bee colony. Inf Sci 377:30–50. https://doi.org/10.1016/j.ins.2016.10.014

    Article  Google Scholar 

  19. Wu L (2013) Solving two-dimensional HP model by firefly algorithm and simplified energy function. Math Probl Eng, Article ID: 398141. https://doi.org/10.1155/2013/398141

  20. Kaushik A, Tayal DK, Yadav K, Kaur A (2016) Integrating firefly algorithm in artificial neural network models for accurate software cost predictions. J Softw-Evol Process 28(8):665–688. https://doi.org/10.1002/smr.1792

    Article  Google Scholar 

  21. Brasileiro I, Santos I, Soares A, Rabelo R, Mazullo F (2015) Ant colony optimization applied to the problem of choosing the best combination among M combinations of shortest paths in transparent optical networks. In: IEEE congress on evolutionary computation (CEC), Sendai, Japan. IEEE, pp 259–266

    Google Scholar 

  22. Horng M-H (2012) Vector quantization using the firefly algorithm for image compression. Expert Syst Appl 39(1):1078–1091. https://doi.org/10.1016/j.eswa.2011.07.108

    Article  Google Scholar 

  23. Taghizadeh-Mehrjardi R, Toomanian N, Khavaninzadeh AR, Jafari A, Triantafilis J (2016) Predicting and mapping of soil particle-size fractions with adaptive neuro-fuzzy inference and ant colony optimization in central Iran. Eur J Soil Sci 67(6):707–725. https://doi.org/10.1111/ejss.12382

    Article  Google Scholar 

  24. Saraswathi K, Tamilarasi A (2016) Ant colony optimization based feature selection for opinion mining classification. J Med Imaging Health Inform 6(7):1594–1599. https://doi.org/10.1166/jmihi.2016.1856

    Article  Google Scholar 

  25. Goudos SK (2016) A novel generalized oppositional biogeography-based optimization algorithm: application to peak to average power ratio reduction in OFDM systems. Open Math 14:705–722. https://doi.org/10.1515/math-2016-0066

    Article  MathSciNet  MATH  Google Scholar 

  26. Wei L (2015) Fruit classification by wavelet-entropy and feedforward neural network trained by fitness-scaled chaotic ABC and biogeography-based optimization. Entropy 17(8):5711–5728. https://doi.org/10.3390/e17085711

    Article  Google Scholar 

  27. Crawford B, Soto R, Riquelme L, Olguin E (2016) Biogeography-based optimization algorithm for solving the set covering problem. In: Silhavy R, Senkerik R, Oplatkova ZK, Silhavy P, Prokopova Z (eds) 5th Computer science on-line conference (CSOC), prague advances in intelligent systems and computing. Springer, Berlin, pp 273–283. https://doi.org/10.1007/978-3-319-33625-1_25

  28. Wu J (2016) Fruit classification by biogeography-based optimization and feedforward neural network. Expert Syst 33(3):239–253. https://doi.org/10.1111/exsy.12146

    Article  Google Scholar 

  29. Rao RV (2016) Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng Comput 7:19–34. https://doi.org/10.5267/j.ijiec.2015.8.004

    Article  Google Scholar 

  30. Chu SC, Tsai PW, Pan JS (2006) Cat swarm optimization. In: Yang Q, Webb G (eds) 9th Pacific Rim international conference on artificial intelligence (PRICAI), Guilin, P.R. China. Lecture notes in artificial intelligence. Springer, Berlin, pp 854–858

    Google Scholar 

  31. Feng C (2015) Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection. Int J Imaging Syst Technol 25(2):153–164. https://doi.org/10.1002/ima.22132

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, SH., Zhang, YD., Dong, Z., Phillips, P. (2018). Weight Optimization of Classifiers for Pathological Brain Detection. In: Pathological Brain Detection. Brain Informatics and Health. Springer, Singapore. https://doi.org/10.1007/978-981-10-4026-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4026-9_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4025-2

  • Online ISBN: 978-981-10-4026-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics