Skip to main content

Finite Element Modeling and Computer Design of Anisotropic Elastic Porous Composites with Surface Stresses

  • Chapter
  • First Online:
Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 59))

Abstract

The chapter presents mathematical modelling and computer design of effective properties of anisotropic porous elastic materials with a nanoscale random structure of porosity. This integrated approach includes the effective moduli method of composite mechanics, the simulation of representative volumes with stochastic porosity and the finite element method. In order to take into account nanoscale sizes of pores, the Gurtin-Murdoch model of surface stresses is used at the borders between material and pores. The general methodology for determination of effective mechanical properties of porous composites is produced for a two-phase bulk (mixture) composite with special conditions for stresses discontinuities at the phase interfaces. The mathematical statements of boundary value problems and the resulting formulas to determine the complete set of effective stiffness moduli of the two-phase composites with arbitrary anisotropy and with surface stresses are described; the generalized problem definitions are formulated and the finite element approximations are given. It is used, that the homogenization procedures for porous composites with surface effects can be considered as special cases of the corresponding procedures for the two-phase composites with interphase stresses if the moduli material of the second phase (nanoinclusions) are negligibly small. These approaches have been implemented in the finite element package ANSYS for a model of nanoporous silicon with cubic crystal system for various values of surface moduli, porosity and number of pores. Model of representative volume was built in the form of a cube, evenly divided into cubic solid finite elements, some of which had been declared as pores. Surface stresses on the boundaries between material and pores were modeled by shell finite elements with the options of membrane stresses. It has been noted that the magnitude of the area of the interphase boundaries has influence on the effective moduli of the porous materials with nanosized stochastic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brisard, S., Dormieux, L., Kondo, D.: Hashin-Shtrikman bounds on the bulk modulus of a nanocomposite with spherical inclusions and interface effects. Comput. Mater. Sci. 48, 589–596 (2010)

    Article  Google Scholar 

  2. Brisard, S., Dormieux, L., Kondo, D.: Hashin-Shtrikman bounds on the shear modulus of a nanocomposite with spherical inclusions and interface effects. Comput. Mater. Sci. 50, 403–410 (2010)

    Article  Google Scholar 

  3. Chen, T., Dvorak, G.J., Yu, C.C.: Solids containing spherical nano-inclusions with interface stresses: effective properties and thermal-mechanical connections. Int. J. Solids Struct. 44, 941–955 (2007)

    Article  MATH  Google Scholar 

  4. Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Eshelby formalism for nano-inhomogeneities. Proc. R. Soc. A. 461, 3335–3353 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids. 53, 1574–1596 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duan, H.L., Wang, J., Karihaloo, B.L., Huang, Z.P.: Nanoporous materials can be made stiffer than non-porous counterparts by surface modification. Acta Mater. 54, 2983–2990 (2006)

    Article  Google Scholar 

  7. Eremeev, V.A., Nasedkin, A.V.: Natural vibrations of nanodimensional piezoelectric bodies with contact-type boundary conditions. Mech. Solids. 50(5), 495–507 (2015)

    Article  Google Scholar 

  8. Eremeyev, V.A.: On effective properties of materials at the nano- and microscales considering surface effects. Acta Mech. 227, 29–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eremeyev, V., Morozov, N.: The effective stiffness of a nanoporous rod. Doklady Phys. 55(6), 279–282 (2010)

    Article  MATH  Google Scholar 

  10. Gao, W., Yu, S.W., Huang, G.Y.: Finite element characterization of the size-dependent mechanical behaviour in nanosystem. Nanotechnology 17, 1118–1122 (2006)

    Article  Google Scholar 

  11. Goudarzi, T., Avazmohammadi, R., Naghdabadi, R.: Surface energy effects on the yield strength of nanoporous materials containing nanoscale cylindrical voids. Mech. Mater. 42, 852–862 (2010)

    Article  Google Scholar 

  12. Gu, S.-T., Liu, J.-T., He, Q.-C.: Piezoelectric composites: imperfect interface models, weak formulations and benchmark problems. Comput. Mater. Sci. 94, 182–190 (2014)

    Article  Google Scholar 

  13. Gu, S.-T., Liu, J.-T., He, Q.-C.: The strong and weak forms of a general imperfect interface model for linear coupled multifield phenomena. Int. J. Eng. Sci. 85, 31–46 (2014)

    Article  MathSciNet  Google Scholar 

  14. Gu, S.-T., Qin, L.: Variational principles and size-dependent bounds for piezoelectric inhomogeneous materials with piezoelectric coherent imperfect interfaces. Int. J. Eng. Sci. 78, 89–102 (2014)

    Article  MathSciNet  Google Scholar 

  15. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Rat. Mech. Anal. 57(4), 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hamilton, J.C., Wolfer, W.G.: Theories of surface elasticity for nanoscale objects. Surface Sci. 603, 1284–1291 (2009)

    Article  Google Scholar 

  17. Hull, R. (ed.): Properties of Crystalline Silicon. INSPEC, London (1999)

    Google Scholar 

  18. Javili, A., Steinmann, P.: A finite element framework for continua with boundary energies. Part I: the two-dimensional case. Comput. Methods Appl. Mech. Eng. 198, 2198–2208 (2009)

    Article  MATH  Google Scholar 

  19. Javili, A., Steinmann, P.: A finite element framework for continua with boundary energies. Part II: the three-dimensional case. Comput. Methods Appl. Mech. Eng. 199, 755–765 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jeong, J., Cho, M., Choi, J.: Effective mechanical properties of micro/nano-scale porous materials considering surface effects. Interact. Multiscale Mech. 4(2), 107–122 (2011)

    Article  Google Scholar 

  21. Kushch, V.I., Mogilevskaya, S.G., Stolarski, H.K., Crouch, S.L.: Elastic fields and effective moduli of particulate nanocomposites with the Gurtin-Murdoch model of interfaces. Int. J. Solids Struct. 50, 1141–1153 (2013)

    Article  Google Scholar 

  22. Nasedkin, A.V., Eremeyev, V.A.: Some models for nanosized agnetoelectric bodies with surface effects. In: Parinov, I.A., Chang, S.-H., Topolov, V.Y. (eds.) Advanced Materials—Manufacturing, Physics, Mechanics and Applications. Springer Proceedings in Physics, vol. 175, pp. 373–391. Springer (2016)

    Google Scholar 

  23. Nasedkin, A.V., Nasedkina, A.A., Remizov, V.V.: Finite element modeling of porous thermoelastic composites with account for their microstructure. Vycisl. meh. splos. sred—Comput. Continuum Mech. 7(1), 100–109 (2014)

    Google Scholar 

  24. Nasedkin, A.V., Nasedkina, A.A.: Finite element modeling and computer design of porous composites. In: Hellmich, C., Pichler, B., Adam, D. (eds.) Poromechanics V: Proceedings of the Fifth Biot Conference on Poromechanics, July 10–12, 2013, Vienna, Austria, pp. 608–617. ASCE (2013)

    Google Scholar 

  25. Nasedkin, A.V., Eremeyev, V.A.: Harmonic vibrations of nanosized piezoelectric bodies with surface effects. ZAMM 94(10), 878–892 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nazarenko, L., Bargmann, S., Stolarski, H.: Influence of interfaces on effective properties of nanomaterials with stochastically distributed spherical inclusions. Int. J. Solids Struct. 51, 954–966 (2014)

    Article  Google Scholar 

  27. Nazarenko, L., Bargmann, S., Stolarski, H.: Energy-equivalent inhomogeneity approach to analysis of effective properties of nanomaterials with stochastic structure. Int. J. Solids Struct. 59, 183–197 (2015)

    Article  Google Scholar 

  28. Povstenko, Y.Z.: Theoretical investigation of phenomena caused by heterogeneous surface-tension in solids. J. Mech. Phys. Solids. 41, 1499–1514 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Riaz, U., Ashraf, S.M.: Application of finite element method for the design of nanocomposites. In: Musa, S.M. (ed.) Computational Finite Element Methods in Nanotechnology, pp. 241–290. CRC Press (2012)

    Google Scholar 

  30. Shuttleworth, R.: The surface tension of solid. Proc. Phys. Soc. A. 63, 444–457 (1950)

    Article  Google Scholar 

  31. Tian, L., Rajapakse, R.K.N.D.: Finite element modelling of nanoscale inhomogeneities in an elastic matrix. Comput. Mater. Sci. 41, 44–53 (2007)

    Article  Google Scholar 

  32. Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24(1), 52–82 (2011)

    Article  Google Scholar 

  33. Wang, Z., Zhu, J., Jin, X.Y., Chen, W.Q., Zhang, C.: Effective moduli of ellipsoidal particle reinforced piezoelectric composites with imperfect interfaces. J. Mech. Phys. Solids. 65, 138–156 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xiao, J.H., Xu, Y.L., Zhang, F.C.: Size-dependent effective electroelastic moduli of piezoelectric nanocomposites with interface effect. Acta Mech. 222(1–2), 59–67 (2011)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (grant number 15-19-10008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nasedkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Nasedkin, A.V., Kornievsky, A.S. (2017). Finite Element Modeling and Computer Design of Anisotropic Elastic Porous Composites with Surface Stresses. In: Sumbatyan, M. (eds) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials . Advanced Structured Materials, vol 59. Springer, Singapore. https://doi.org/10.1007/978-981-10-3797-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3797-9_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3796-2

  • Online ISBN: 978-981-10-3797-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics