Skip to main content

Environment and Economy in the Modern Agricultural Development

  • Chapter
  • First Online:
Labor Transfer in Emerging Economies

Part of the book series: New Frontiers in Regional Science: Asian Perspectives ((NFRSASIPER,volume 12))

  • 427 Accesses

Abstract

This chapter establishes a three-sector general equilibrium model to investigate the environmental and economic effects of policies intended to promote modern agriculture. In the model, two situations are considered: in the first situation, the perfect mobility of capital between the capital-consuming sectors is assumed, and in the second situation, there is perfect mobility of land between the land-using sectors, keeping perfect mobility of capital assumption unchanged. The main conclusion is that the environmental effect of interest subsidization for modern agricultural sector is superior to other subsiding policies of factor prices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The long-existing institutional obstacles in developing countries have resulted in the stagnation of capital flows between the urban and rural sectors (Li and Shen 2012). However, certain developing countries have promoted the “modern agriculture” business, leading urban capital to flow to rural sector.

  2. 2.

    It is implicitly assumed that unemployed labor is supported by employed labor, such as other members of the family, or alternatively that the job is allocated daily (or monthly and so on) to all applicants by lottery.

References

  • Beladi, H., & Frasca, R. (1999). Pollution control under an urban binding minimum wage. The Annals of Regional Science, 33, 523–533.

    Article  Google Scholar 

  • Beladi, H., & Rapp, J. (1993). Urban unemployment and the backward incidence of pollution control. The Annals of Regional Science, 27, 153–163.

    Article  Google Scholar 

  • Chaudhuri, S. (2006). Labour market reform, welfare and unemployment in a small open economy. Keio Economics Studies, 43, 1–17.

    Google Scholar 

  • Chaudhuri, S. (2007). Foreign capital, welfare and urban unemployment in the presence of agricultural dualism. Japan and the World Economy, 19, 149–165.

    Article  Google Scholar 

  • Copeland, B., & Taylor, M. (1999). Trade, spatial separation, and the environment. Journal of International Economics, 47, 137–168.

    Article  Google Scholar 

  • Grossman, G., & Krueger, B. (1995). Economic growth and the environment. Quarterly Journal of Economics, 110, 353–377.

    Article  Google Scholar 

  • Gupta, M. (1994). Foreign capital, income inequality and welfare in a Harris-Todaro model. Journal of Development Economics, 45, 407–414.

    Article  Google Scholar 

  • Gupta, M. (1997a). Informal sector and informal capital market in a small open lessdeveloped economy. Journal of Development Economics, 52, 409–428.

    Article  Google Scholar 

  • Gupta, M. (1997b). Foreign capital and the informal sector: Comments on Chandra and Khan. Economica, 64, 353–363.

    Article  Google Scholar 

  • Li, X., & Shen, Q. (2012). A study on urban private capital and the transfer of labor in the modern agriculture sector. Journal of Economic Policy Reform, 15, 135–152.

    Article  Google Scholar 

  • Li, X., Shen, Q., Gu, C., & Ni, M. (2013). Analyzing the effect of advanced agriculture development policy. Journal of Economic Policy Reform, 16, 349–367.

    Article  Google Scholar 

  • World Bank. (2014). World development indicators: Energy dependency, efficiency and carbon dioxide emissions. http://data.worldbank.org.cn/indicator/EN.ATM.CO2E.PC/countries/A5-CN?display=graph

  • Xin, L., & Jiang, H. (2010). Setting up evaluation index system and calculation development level of China agricultural modernization. Research of Agricultural Modernization, 31, 646–650.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Li .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix A

Substituting dK 1ds 1=0, dw 2ds 1=w 2>0 into Eqs. (13.1), (13.2), (13.3), (13.4), (13.5), (13.6), (13.7), (13.8), (13.9), (13.10), (13.11), (13.12), and (13.13), we get

\( \frac{dL_1}{ds_1}=\frac{dE}{ds_1}=\frac{dK_2}{ds_1}=\frac{dL_2}{ds_1}=\frac{dr}{ds_1}=\frac{dX_2}{ds_1}=\frac{dX_1}{ds_1}=\frac{dw_3}{ds_1}=0 \), \( \frac{d\mu}{{d s}_1}>0 \), \( \frac{dL_3}{ds_1}<0 \), \( \frac{dX_3}{ds_1}<0 \).

1.2 Appendix B

Substituting dK 1ds 2=1 ∕ Ψ<0 into Eqs. (13.1), (13.2), (13.3), (13.4), (13.5), (13.6), (13.7), (13.8), (13.9), (13.10), (13.11), (13.12), and (13.13), we get

\( \frac{dL_1}{ds_2}<0 \), \( \frac{dE}{ds_2}>0 \), \( \frac{dK_2}{ds_2}>0 \), \( \frac{dL_2}{ds_2}>0 \), \( \frac{dr}{ds_2}=0 \), \( \frac{dX_1}{ds_2}<0 \), \( \frac{dX_2}{ds_2}>0 \), \( \frac{dw_2}{ds_2}>0 \), \( \frac{dw_3}{ds_2}>0 \). When\( {\varepsilon}_2{w}_2{L}_2>{\varepsilon}_3{w}_3\left(\overline{L}-{L}_3\right) \), ds 2>0; when \( {\varepsilon}_2{w}_2{L}_2>{\varepsilon}_3{w}_3\left(\overline{L}-{L}_3\right) \) and \( {k}_1/{k}_2>{\overline{w}}_1/\left(\alpha {w}_2\right) \), dL 3ds 2<0; when \( {\varepsilon}_2{w}_2{L}_2>{\varepsilon}_3{w}_3\overline{L} \), dX 3/ds 1 < 0.

1.3 Appendix C

Differentiating Eqs. (13.4), (13.5), (13.6′*), (13.7′), (13.8), (13.9′), (13.10′), (13.12), (13.13′), (13.18), (13.19), and (13.20) and writing in a matrix notation, we can obtain the following equation:

$$ \left[\begin{array}{ccccc}\hfill A\hfill & \hfill M\hfill & \hfill {\left({w}_2\right)}^{-1}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill B\hfill & \hfill N\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill C\hfill & \hfill P\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill S\hfill \\ {}\hfill D\hfill & \hfill Q\hfill & \hfill 0\hfill & \hfill {\left({w}_3\right)}^{-1}\hfill & \hfill T\hfill \\ {}\hfill G\hfill & \hfill R\hfill & \hfill {L}_2\hfill & \hfill -\left(\overline{L}-{L}_3\right)\hfill & \hfill {w}_3\hfill \end{array}\right]\left[\begin{array}{c}\hfill {dK}_1\hfill \\ {}\hfill {dT}_2\hfill \\ {}\hfill {dw}_2\hfill \\ {}\hfill {dw}_3\hfill \\ {}\hfill {dL}_3\hfill \end{array}\right]=\left[\begin{array}{c}\hfill 1\hfill \\ {}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill 0\hfill \end{array}\right]{ds}_1, $$
(13.21)

where

$$ \begin{array}{l}A=\frac{\varepsilon_2\lambda {X}_1}{EK_1}+\frac{\beta {L}_2{F}_{LL}^2+{K}_2{F}_{LK}^2}{F_L^2{K}_2},\kern0.5em B=\frac{\varepsilon_2\lambda {X}_1}{EK_1}+\frac{\beta {L}_2{F}_{KL}^2+{K}_2{F}_{KK}^2}{F_K^2{K}_2},C=\frac{\left({\varepsilon}_2-{\varepsilon}_3\right)\lambda {X}_1}{EK_1}\hfill \\ {}+\frac{\beta {L}_2{F}_{TL}^2+{K}_2{F}_{TK}^2}{F_T^2{K}_2},\kern0.5em D=\frac{\varepsilon_3\lambda {X}_1}{EK_1}>0,\kern0.5em G=\frac{{\overline{w}}_1{L}_1}{K_1}\hfill \\ {}-\frac{w_2\beta {L}_2}{K_2},M=-\frac{\gamma {L}_2{F}_{LL}^2+{T}_2{F}_{LT}^2}{F_L^2{T}_2},\kern0.5em N=-\frac{\gamma {L}_2{F}_{KL}^2+{T}_2{F}_{KT}^2}{F_K^2{T}_2}<0,\hfill \\ {}\kern0.1em P=-\left(\frac{\gamma {L}_2{F}_{TL}^2+{T}_2{F}_{TT}^2}{F_T^2{T}_2}+\frac{F_{TT}^3}{F_T^3}\right)>0,Q=\frac{F_{LT}^3}{F_L^3}>0,\hfill \\ {}\kern0.1em R=\frac{w_2\beta {L}_2}{T_2}>0,\kern0.5em S=\frac{F_{TL}^3}{F_T^3}>0,\kern0.5em T=-\frac{F_{LL}^3}{F_L^3}>0.\hfill \end{array} $$

The determinant of square matrix in Eq. (13.21) is

\( \Delta =-\left\{S\left[{w}_2{L}_2\left(\mathit{\mathrm{AN}}- BM\right)+\left( BR- GN\right)+\left(\overline{L}-{L}_3\right){w}_3\left( BQ- DN\right)\right]\right\}/{w}_2{w}_3+\left[1+\left(\overline{L}-{L}_3\right)T\right]\left( BP- CN\right)/{w}_2 \). Since the sign of Δ cannot be directly determined, we will use dynamic adjustment to decide its sign.

Let

$$ {\dot{L}}_1={d}_1\left({P}_1{F}_L^1\left({L}_1,{K}_1\right)-{\overline{w}}_1\right), $$
(13.C1)
$$ {\dot{L}}_2={d}_2\left({P}_2{E}^{\varepsilon_2}{F}_L^2\left({L}_2,{K}_2,{T}_2\right)-{w}_2\right), $$
(13.C2)
$$ {\dot{L}}_3={d}_3\left({E}^{\varepsilon_3}{F}_L^3\left({L}_3,{T}_3\right)-{w}_3\right), $$
(13.C3)
$$ {\dot{K}}_1={d}_4\left({P}_1{F}_K^1\left({L}_1,{K}_1\right)- r\right), $$
(13.C4)
$$ {\dot{K}}_2={d}_5\left({P}_2{E}^{\varepsilon_2}{F}_K^2\left({L}_2,{K}_2,{T}_2\right)- r\right), $$
(13.C5)
$$ {\dot{T}}_2={d}_6\left({P}_2{E}^{\varepsilon_2}{F}_T^2\left({L}_2,{K}_2,{T}_2\right)-\tau \right), $$
(13.C6)
$$ {\dot{T}}_3={d}_7\left({E}^{\varepsilon_3}{F}_T^3\left({L}_3,{T}_3\right)-\tau \right), $$
(13.C7)
$$ {\dot{w}}_2={d}_8\left({L}_2-{A}_2{K_2}^{\beta}{T}_2^{\gamma}\right), $$
(13.C8)
$$ {\dot{w}}_3={d}_9\left({\overline{w}}_1{L}_1+{w}_2{L}_2-{w}_3\left(\overline{L}-{L}_3\right)\right), $$
(13.C9)
$$ \dot{r}={d}_{10}\left({K}_1+{K}_2-\overline{K}\right), $$
(13.C10)
$$ \dot{\tau}={d}_{11}\left({T}_2+{T}_3-\overline{T}\right), $$
(13.C11)
$$ \dot{E}={d}_{12}\left( E-\overline{E}+\lambda {F}^1\right), $$
(13.C12)

where “.” represents differentiation with respect to time and d j (j=1,2…,12) is the positive coefficient measuring the speed of adjustment and d j >0.

The determinant of the Jacobian matrix of Eqs. (13.C1), (13.C2), (13.C3), (13.C4), (13.C5), (13.C6), (13.C7), (13.C8), (13.C9), (13.C10), (13.C11), and (13.C12) is

$$ \begin{array}{ll}\hfill & \left|J\right|\\ {}& =\left|\begin{array}{cccccccccccc}\hfill {d}_1{P}_1{F}_{LL}^1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {d}_1{P}_1{F}_{LK}^1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill {d}_2{P}_2{E}^{\varepsilon_2}{F}_{LL}^2\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {d}_2{P}_2{E}^{\varepsilon_2}{F}_{LK}^2\hfill & \hfill {d}_2{P}_2{E}^{\varepsilon_2}{F}_{LT}^2\hfill & \hfill 0\hfill & \hfill -{d}_2\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {d}_2{P}_2{\varepsilon}_2{E}^{\varepsilon_2-1}{F}_L^2\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill {d}_3{E}^{\varepsilon_3}{F}_{LL}^3\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {d}_3{E}^{\varepsilon_3}{F}_{LT}^3\hfill & \hfill 0\hfill & \hfill -{d}_3\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {d}_3{\varepsilon}_3{E}^{\varepsilon_3-1}{F}_L^3\hfill \\ {}\hfill {d}_4{P}_1{F}_{KL}^1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {d}_4{P}_1{F}_{KK}^1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -{d}_4\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill {d}_5{P}_2{E}^{\varepsilon_2}{F}_{KL}^2\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {d}_5{P}_2{E}^{\varepsilon_2}{F}_{KK}^2\hfill & \hfill {d}_5{P}_2{E}^{\varepsilon_2}{F}_{KT}^2\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -{d}_5\hfill & \hfill 0\hfill & \hfill {d}_5{P}_2{\varepsilon}_2{E}^{\varepsilon_2-1}{F}_K^2\hfill \\ {}\hfill 0\hfill & \hfill {d}_6{P}_2{E}^{\varepsilon_2}{F}_{TL}^2\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {d}_6{P}_2{E}^{\varepsilon_2}{F}_{TK}^2\hfill & \hfill {d}_6{P}_2{E}^{\varepsilon_2}{F}_{TT}^2\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -{d}_6\hfill & \hfill {d}_6{P}_2{\varepsilon}_2{E}^{\varepsilon_2-1}{F}_T^2\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill {d}_7{E}^{\varepsilon_3}{F}_{TL}^3\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {d}_7{E}^{\varepsilon_3}{F}_{TT}^3\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -{d}_7\hfill & \hfill {d}_7{\varepsilon}_3{E}^{\varepsilon_3-1}{F}_T^3\hfill \\ {}\hfill 0\hfill & \hfill {d}_8\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -{d}_8\beta \frac{L_2}{K_2}\hfill & \hfill -{d}_8\gamma \frac{L_2}{T_2}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill {d}_9{\overline{w}}_1\hfill & \hfill {d}_9{w}_2\hfill & \hfill {d}_9{w}_3\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {d}_9{L}_2\hfill & \hfill -{d}_9\left(\overline{L}-{L}_3\right)\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {d}_{10}\hfill & \hfill {d}_{10}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {d}_{11}\hfill & \hfill {d}_{11}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill {d}_{12}\lambda {F}_L^1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {d}_{12}\lambda {F}_K^1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {d}_{12}\hfill \end{array}\right|.\hfill \end{array} $$

It can also be written as follows: \( \left| J\right|=-{P}_1{F}_{LL}^1 r\tau {w}_2{w}_3{d}_1{d}_2\dots {d}_{12}\Delta \). Under the condition of a stable system, there must be |J| > 0, and thus Δ >0.

1.4 Appendix D

Using Cramer’s rule to solve Eq. (13.21), we get dK 1/ds 1 =  − L 2 SNw 3 > 0, dT 2/ds 1 = L 2 BSw 3. Note that \( {\varGamma}_{K K}={F}_{K K}^2{K}_2/{F}_K^2 \), which denotes the capital elasticity of its marginal product (or interest rate) in the modern agricultural sector; \( {\varGamma}_{K L}={F}_{K L}^2{L}_2/{F}_K^2 \), which denotes the labor elasticity of the marginal product of capital (or interest rate) in the modern agricultural sector. We assume that |βΓ KL +Γ KK |< e, where βΓ KL +Γ KK is the resultant capital elasticity of interest rate in the modern agricultural sector,e = ε 2 λK 2 X 1/EK 1. Because we separate land factor from capital, it makes the interest rate less sensitive to capital factor’ s change. Hence, B > 0 and dT 2ds 1>0.

Substituting the above results into Eqs. (13.1′), (13.2′), (13.4), (13.8), (13.10′), (13.12), (13.18), and (13.20), we can obtain the following:

$$ \begin{array}{l}\frac{dK_2}{ds_1}<0,\kern0.5em \frac{dT_3}{ds_1}<0,\kern0.5em \frac{dr}{ds_1}=0,\kern0.5em \frac{dE}{ds_1}<0,\kern0.5em \frac{dX_1}{ds_1}>0,\\ {}\frac{dL_2}{ds_1}=-\frac{L_2{SL}_2}{\Delta {w}_3}\left[\frac{\gamma {K}_2{F}_{KK}^2-\beta {T}_2{F}_{KT}^2}{F_K^2{K}_2{T}_2}+\frac{{\gamma \varepsilon}_2\lambda {X}_1}{T_2{EK}_1}\right],\\ {}\frac{dX_2}{ds_1}=\frac{L_2S}{\Delta {w}_3}\left[\frac{\varepsilon_2\lambda {X}_1{X}_2N}{EK_1}+ rN-{w}_2{L}_2\left(\frac{\gamma {K}_2{F}_{KK}^2-\beta {T}_2{F}_{KT}^2}{F_K^2{K}_2{T}_2}+\frac{{\gamma \varepsilon}_2\lambda {X}_1}{T_2{EK}_1}\right)\right].\end{array} $$

1.5 Appendix E

Using Cramer’s rule to solve Eq. (13.22), we get

\( \frac{dK_1}{ds_3}=\frac{- N\left[\left(\overline{L}-{L}_3\right) T+1\right]}{\Delta {w}_2}>0, \) \( \frac{dT_2}{ds_3}=\frac{B\left[\left(\overline{L}-{L}_3\right) T+1\right]}{\Delta {w}_2}>0. \)

Substituting the results of Eq. (13.22) into Eqs. (13.1′), (13.2′), (13.4), (13.8), (13.10′), (13.12), (13.18), and (13.20), we obtain the following:

$$ \begin{array}{l}\frac{{d K}_2}{{d s}_3}<0,\frac{{d T}_3}{{d s}_3}<0,\kern0.5em \frac{d r}{{d s}_3}=0,\kern0.5em \frac{d E}{{d s}_3}<0,\kern0.5em \frac{{d X}_1}{{d s}_3}>0,\kern0.5em \frac{d\tau}{{d s}_3}<0,\\ {}\frac{{d L}_2}{{d s}_3}=\left(\frac{\beta N}{K_2}+\frac{\gamma B}{T_2}\right)\frac{L_2\left[\left(\overline{L}-{L}_3\right)T+1\right]}{\Delta {w}_2},\\ {}\frac{{d X}_2}{{d s}_3}=\left[\frac{\varepsilon_2\lambda {X}_1{X}_2N}{EK_1}+ rN+{w}_2{L}_2\left(\frac{\beta N}{K_2}+\frac{\gamma B}{T_2}\right)\right]\frac{\left[\left(\overline{L}-{L}_3\right)T+1\right]}{\Delta {w}_2}\end{array} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Li, X., Wu, Y. (2017). Environment and Economy in the Modern Agricultural Development. In: Li, X. (eds) Labor Transfer in Emerging Economies. New Frontiers in Regional Science: Asian Perspectives, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-10-3569-2_13

Download citation

Publish with us

Policies and ethics