Skip to main content

A Study on Urban Private Capital and the Transfer of Labor in the Modern Agricultural Sector

  • Chapter
  • First Online:
  • 415 Accesses

Part of the book series: New Frontiers in Regional Science: Asian Perspectives ((NFRSASIPER,volume 12))

Abstract

As urban private capital enters the modern agriculture industry, it divides the agricultural sector into the modern sector and the traditional sector. This chapter establishes a general equilibrium model to study the economic impact of governmental policies aimed at promoting modern agriculture. The main conclusions of this chapter are that interest subsidies implemented by the government to promote modern agriculture can reduce the transfer of labor from the rural areas to the cities, but encourage the movement of rural labor to the modern agricultural sector. Conversely, wage rate subsidies for the modern agricultural sector will lead to rises in the urban unemployment rate and a decrease in the quantity of labor in the traditional agricultural sector.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    There are precedents in China; see Zheng et al. (2009) and Wang (2011).

References

  • Brecher, R. A., & Diaz Alejandro, C. F. (1977). Tariffs, foreign capital and immiserizing growth. Journal of International Economics, 7(4), 317–322.

    Article  Google Scholar 

  • Chandra, V., & Ali Khan, M. (1993). Foreign investment in the presence of an informal sector. Economica, 60(237), 79–103.

    Article  Google Scholar 

  • Chaudhuri, S. (2006). Labour market reform, welfare and unemployment in a small open economy. Keio Economics Studies, 43(2), 1–17.

    Google Scholar 

  • Chaudhuri, S. (2007). Foreign capital, welfare and urban unemployment in the presence of agricultural dualism. Japan and the World Economy, 19, 149–165.

    Article  Google Scholar 

  • Din, M. (1996). International capital mobility and development policy in a dual economy. Review of International Economics, 6, 185–201.

    Article  Google Scholar 

  • Grinols, E. L. (1991). Unemployment and foreign capital: the relative opportunity costs of domestic labor and welfare. Economica, 58(229), 107–121.

    Article  Google Scholar 

  • Gupta, M. (1993). Rural-urban migration, informal sector and development policies: A theoretical analysis. Journal of Development Economics, 41, 137–151.

    Article  Google Scholar 

  • Gupta, M. (1997a). Informal sector and informal capital market in a small open less-developed economy. Journal of Development Economics, 52(2), 409–428.

    Article  Google Scholar 

  • Gupta, M. (1997b). Foreign capital and the informal sector: comments on Chandra and Khan. Economica, 64(254), 353–363.

    Article  Google Scholar 

  • Harris, J., & Todaro, M. (1970). Migration, unemployment and development: A two-sector analysis. American Economic Review, 60, 126–142.

    Google Scholar 

  • Ju, J. M. (2011). The problems and solutions in the development of modern agriculture. Modern Agricultural Technology, 7, 377–380.

    Google Scholar 

  • Tiwari, P., Kawakami, T., & Doi, M. (2002). Dual labor markets and trade reform in China. The Journal of Policy Reform, 5(2), 101–113.

    Article  Google Scholar 

  • Wang, J. H. (2011). Analysis on the impact of capital subsidies on the large-scale assignment of rural land. Jiangsu Rural Economics, 3, 51–52.

    Google Scholar 

  • Wang, Z., & Han, X. F. (2010). A selective study on the development of modern agriculture in China. Rural Economy, 12, 63–64.

    Google Scholar 

  • Zheng, J. C., Liu, H. Z., Zhou, J. T., Zhen, R. H., & Li, N. (2009). Study on the goals and models of modern agricultural development in Jiangsu province. Jiangsu Agricultural Academic Journal, 25(1), 1–5.

    Google Scholar 

  • Zhong, C. P., Turvey, C., Zhang, J., & Xu, C. S. (2011). Does taxation have real effects on agricultural output? Theory and empirical evidence from China. Journal of Economic Policy Reform, 14(3), 227–242.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Li .

Editor information

Editors and Affiliations

Appendices

Appendix A

By total differentiation of the capital system Eqs. (10.5), (10.6), (10.7), (10.10), and (10.11′) and making s 1 =0 at the initiation of the subsidy policy, we get the following linear equation system (total differentiation):

$$ \left[\begin{array}{cccc}\hfill 0\hfill & \hfill 1\hfill & \hfill 1\hfill & \hfill 0\hfill \\ {}\hfill {F}_{L L}^1\hfill & \hfill {F}_{L K}^1\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill {p}_1{F}_{KL}^1\hfill & \hfill {p}_1{F}_{KK}^1\hfill & \hfill 0\hfill & \hfill -1\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill -{p}_2\left({g}^{{\prime\prime} }{F}^2+{g}^{\prime }{F}_L^2{f}^{\prime}\right)\hfill & \hfill 1\hfill \end{array}\right]\left[\begin{array}{c}\hfill {dL}_1\hfill \\ {}\hfill {dK}_1\hfill \\ {}\hfill {dK}_2\hfill \\ {}\hfill dr\hfill \end{array}\right]=\left[\begin{array}{c}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill {rds}_1\hfill \end{array}\right] $$
(10.A1)

Let Δ be the determinant of the coefficient matrix, and we have

$$ \Delta ={p}_1\left({F}_{L L}^1{F}_{KK}^1-{F}_{KL}^1{F}_{L K}^1\right)+{p}_2{F}_{L L}^1\left({g}^{{\prime\prime} }{F}^2+{g}^{\prime }{f}^{\prime }{F}_L^2\right). $$

The total differentiation of Eqs. (10.4), (10.8), (10.9), and (10.12) in the labor system can be reorganized as

$$ \left[\begin{array}{ccc}\hfill {L}_1\hfill & \hfill 1\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 1\hfill \\ {}\hfill {L}_1{w}_3\hfill & \hfill \left[\left(1+\lambda \right){L}_1+{L}_2\right]{F}_{L L}^3\hfill & \hfill -{L}_2\hfill \end{array}\right]\left[\begin{array}{c}\hfill d\lambda \hfill \\ {}\hfill {dL}_3\hfill \\ {}\hfill {dw}_2\hfill \end{array}\right]=\left[\begin{array}{c}\hfill -\left(1+\lambda \right){dL}_1-{f}^{\prime }{dK}_2\hfill \\ {}\hfill {p}_2\left({g}^{{\prime\prime} }{F}^2+{g}^{\prime }{f}^{\prime }{F}_L^2\right){dK}_2\hfill \\ {}\hfill \left[{\overline{w}}_1-\left(1+\lambda \right){w}_3\right]{dL}_1+\left({w}_2-{w}_3\right){dL}_2\hfill \end{array}\right] $$
(10.A2)

Let Ω be the determinant of the coefficient matrix of Eq. (10.A2), and we have

$$ \Omega =-{L}_1\left\{\left[\left(1+\lambda \right){L}_1+{L}_2\right]{F}_{L L}^3-{w}_3\right\}>0 $$

Solving Eq. (10.A1) by Cramer’s Rule, we get

$$ {dK}_1/{ds}_1={rF}_{LL}^1/\Delta <0,\kern0.36em {dL}_1/{ds}_1=-{rF}_{LK}^1/\Delta <0,\kern0.36em d{K}_2/{ds}_1=-{rF}_{LL}^1/\Delta >0 $$
$$ {dL}_2/{ds}_1={f}^{\prime }{dK}_2/{ds}_1>0,\kern0.6em dr/{ds}_1={rp}_1\left({F}_{LL}^1{F}_{KK}^1-{F}_{KL}^1{F}_{LK}^1\right)/\Delta =0 $$

Solving Eq. (10.A2) by Crammer’s Rule, we get

$$ {dw}_2/{ds}_1={p}_2\left({g}^{\prime }{F}_L^2+ g{f}^{\prime }{F}_{L L}^2\right){dK}_2/{ds}_1>0 $$
$$ {dL}_3/{ds}_1=\frac{p_2{L}_1{L}_2\left({g}^{\prime }{F}_L^2+ g{f}^{\prime }{F}_{L L}^2\right){dK}_2/{ds}_1+{L}_1\left({\overline{w}}_1{dL}_1/{ds}_1+{w}_2{dL}_2/{ds}_1\right)}{\Omega} $$
$$ {dw}_3/{ds}_1={F}_{LL}^3{dL}_3/{ds}_1>0 $$
$$ d\lambda /{ds}_1=\begin{array}{l}-\left\{\right[\left[{\overline{w}}_1-\left(1+\lambda \right){w}_3\right]{dL}_1/{ds}_1+{F}_{L L}^3\left[\left(1+\lambda \right){L}_1+{L}_2\right]\Big[\left(1+\lambda \right){dL}_1/{ds}_1\\ {}+{dL}_2/{ds}_1\Big]{p}_2\left({g}^{\prime }{F}_L^2+{ g F}_{L L}^2{f}^{\prime}\right){dK}_2/{ds}_1-\left({w}_2-{w}_3\right){dL}_2/{ds}_1\Big\}\end{array}/\Omega $$

Appendix B

Let s 2 = 0 at the initiation of the subsidizing policy, and then the total differentiation of Eqs. (10.4′), (10.5), (10.6), (10.7), (10.8′), (10.9), (10.10), (10.11), and (10.12) could be reorganized into the following linear equation system:

$$ \begin{array}{ll}\hfill & \left[\begin{array}{cccccc}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 1\hfill & \hfill 1\hfill & \hfill 0\hfill \\ {}\hfill {F}_{LL}^1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {F}_{LK}^1\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill -{p}_1{F}_{KL}^1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -{p}_1{F}_{KK}^1\hfill & \hfill {p}_2\left[{g}^{\prime}\left({K}_2\right){F}_L^2{f}^{\prime }+{g}^{{\prime\prime}}\left({K}_2\right){F}^2\right]\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {p}_2\left[g\left({K}_2\right){F}_{LL}^2{f}^{\prime }+{g}^{\prime}\left({K}_2\right){F}_L^2\right]\hfill & \hfill -1\hfill \\ {}\hfill 1+\lambda \hfill & \hfill 1\hfill & \hfill {L}_1\hfill & \hfill 0\hfill & \hfill {f}^{\prime}\hfill & \hfill 0\hfill \\ {}\hfill {\overline{w}}_1\hfill & \hfill {w}_3-\left(L-{L}_3\right){F}_{LL}^3\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {w}_2{f}^{\prime}\hfill & \hfill {L}_2\hfill \end{array}\right]\\ {}& \times \left[\begin{array}{c}\hfill {dL}_1\hfill \\ {}\hfill {dL}_3\hfill \\ {}\hfill d\lambda \hfill \\ {}\hfill {dK}_1\hfill \\ {}\hfill {dK}_2\hfill \\ {}\hfill {dw}_2\hfill \end{array}\right]\kern1.5em =\left[\begin{array}{c}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill -{w}_2\hfill \\ {}\hfill 0\hfill \\ {}\hfill 0\hfill \end{array}\right]{ds}_2\hfill \end{array} $$
(10.B1)

Let Δ2 be the determinant of coefficient matrix, and we have

$$ {\Delta}_2={L}_1\left[{w}_3-\left( L-{L}_3\right){F}_{L L}^3\right]\Delta >0 $$

From Eq. (10.B1), we have

$$ {dK}_1/{ds}_2={dL}_1/{ds}_2={dK}_2/{ds}_2={dL}_2/{ds}_2={f}^{\prime }{dK}_2/{ds}_2= dr/{ds}_2=0 $$
$$ \begin{array}{l}{dw}_2/{ds}_2={w}_2>0,\kern0.36em d\lambda /{ds}_2=\frac{w_2{L}_2}{L_1\left[{w}_3-\left( L-{L}_3\right){F}_{L L}^3\right]}>0,\\ {}{dw}_3/{ds}_2={F}_{L L}^3{dL}_3/{ds}_2>0\end{array} $$

Appendix C

By total differentiation of the capital system Eqs. (10.4′), (10.5), (10.6), (10.7), (10.8), (10.9), (10.10), (10.11), and (10.12), we get the following linear equation set:

$$ \begin{array}{ll}\hfill & \left[\begin{array}{cccccc}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 1\hfill & \hfill 1\hfill & \hfill 0\hfill \\ {}\hfill {F}_{LL}^1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {F}_{LK}^1\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill -{p}_1{F}_{KL}^1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -{p}_1{F}_{KK}^1\hfill & \hfill {p}_2\left[{g}^{\prime}\left({K}_2\right){F}_L^2{f}^{\prime }+{g}^{{\prime\prime}}\left({K}_2\right){F}^2\right]\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {p}_2\left[g\left({K}_2\right){F}_{LL}^2{f}^{\prime }+{g}^{\prime}\left({K}_2\right){F}_L^2\right]\hfill & \hfill -1\hfill \\ {}\hfill 1+\lambda \hfill & \hfill 1\hfill & \hfill {L}_1\hfill & \hfill 0\hfill & \hfill {f}^{\prime}\hfill & \hfill 0\hfill \\ {}\hfill {\overline{w}}_1\hfill & \hfill {w}_3-\left(L-{L}_3\right){F}_{LL}^3\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {w}_2{f}^{\prime}\hfill & \hfill {L}_2\hfill \end{array}\right]\\ {}& \times \left[\begin{array}{c}\hfill {dL}_1\hfill \\ {}\hfill {dL}_3\hfill \\ {}\hfill d\lambda \hfill \\ {}\hfill {dK}_1\hfill \\ {}\hfill {dK}_2\hfill \\ {}\hfill {dw}_2\hfill \end{array}\right]\kern1.5em =\left[\begin{array}{c}\hfill d K\hfill \\ {}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill 0\hfill \end{array}\right]+\left[\begin{array}{c}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill d L\hfill \\ {}\hfill {w}_3 dL\hfill \end{array}\right]\hfill \end{array} $$

Let Δ3be the determinant of the coefficient matrix, and we have

$$ {\Delta}_3={\Delta}_2={L}_1\left[{w}_3-\left( L-{L}_3\right){F}_{L L}^3\right]\Delta >0 $$

By calculating, we get

$$ \begin{array}{l}{dK}_1/ dK=1,\kern0.36em {dL}_1/ dK=-\frac{F_{LK}^1}{F_{LL}^1}>0,\kern0.36em {dw}_3/ dK={F}_{LL}^3{dL}_3/ dK>0,\\ {}{dK}_1/ dL=1,\kern0.36em {dw}_3/ dL={F}_{LL}^3{dL}_3/ dL<0\end{array} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Li, X., Shen, Q. (2017). A Study on Urban Private Capital and the Transfer of Labor in the Modern Agricultural Sector. In: Li, X. (eds) Labor Transfer in Emerging Economies. New Frontiers in Regional Science: Asian Perspectives, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-10-3569-2_10

Download citation

Publish with us

Policies and ethics