Skip to main content

Extracting Hurricane Eye Morphology from Spaceborne SAR Images Using Morphological Analysis

  • Chapter
  • First Online:
Hurricane Monitoring With Spaceborne Synthetic Aperture Radar

Part of the book series: Springer Natural Hazards ((SPRINGERNAT))

Abstract

Hurricanes are among the most destructive global natural disasters. Thus recognizing and extracting their morphology is important for understanding their dynamics. Conventional optical sensors, due to cloud cover associated with hurricanes, cannot reveal the intense air-sea interaction occurring at the sea surface. In contrast, the unique capabilities of spaceborne synthetic aperture radar (SAR) data for cloud penetration, and its backscattering signal characteristics enable the extraction of the sea surface roughness. Therefore, SAR images enable the measurement of the size and shape of hurricane eyes, which reveal their evolution and strength. In this study, using six SAR hurricane images, we have developed a mathematical morphology method for automatically extracting the hurricane eyes from C-band SAR data. Skeleton pruning based on discrete skeleton evolution (DSE) was used to ensure global and local preservation of the hurricane eye shape. This distance weighted algorithm applied in a hierarchical structure for extraction of the edges of the hurricane eyes, can effectively avoid segmentation errors by reducing redundant skeletons attributed to speckle noise along the edges of the hurricane eye. As a consequence, the skeleton pruning has been accomplished without deficiencies in the key hurricane eye skeletons. The subsequent reconstructed of the hurricane eyes thereby proves the morphology-based analyses results in a high degree of agreement with the hurricane eye areas derived from reference data based on NOAA manual work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klotzbach, P.J., W.M. Gray, and E. Wilmsen. 2012. Extended range forecast of Atlantic seasonal hurricane activity and landfall strike probability for 2012. Department of Atmospheric Science: Colorado State University.

    Google Scholar 

  2. Katsaros, K.B., P.W. Vachon, W.T. Liu, and P.G. Black. 2002. Microwave remote sensing of tropical cyclones from space. Journal of Oceanography 58 (1): 137–151.

    Article  Google Scholar 

  3. Pielke, R.A. 2013. The hurricane. London: Routledge.

    Google Scholar 

  4. Turk, F.J., J. Hawkins, K. Richardson, and M. Surratt. 2011. A tropical cyclone application for virtual globes. Computers & Geosciences 37 (1): 13–24.

    Article  Google Scholar 

  5. Perez, E., and P. Thompson. 1995. Natural hazards: Causes and effects: Lesson 5tropical cyclones (hurricanes, typhoons, baguios, cordonazos, tainos). Prehospital and Disaster Medicine 10 (03): 202–217.

    Article  Google Scholar 

  6. Zhang, B., and W. Perrie. 2012. Cross-polarized synthetic aperture radar: a new potential technique for hurricanes. Bulletin of the American Meteorological Society 93 (4): 531–541.

    Article  Google Scholar 

  7. Li, X., J.A. Zhang, X. Yang, W.G. Pichel, M. DeMaria, D. Long, and Z. Li. 2013. Tropical cyclone morphology from spaceborne synthetic aperture radar. Bulletin of the American Meteorological Society 94 (2): 215–230.

    Article  Google Scholar 

  8. Zehr, R. 2004. Satellite products and imagery with Hurricane Isabel. In Proceedings 13th Conference Satellite Meteorology and Oceanography, pp 30–37. Norfolk, VA.

    Google Scholar 

  9. Arnesen, A.S., T.S. Silva, L.L. Hess, E.M. Novo, C.M. Rudorff, B.D. Chapman, and K.C. Mcdonald. 2013. Monitoring flood extent in the lower Amazon River floodplain using ALOS/PALSAR ScanSAR images. Remote Sensing of Environment 130: 51–61.

    Article  Google Scholar 

  10. Ramsey, E., A. Rangoonwala, and T. Bannister. 2013. Coastal flood inundation monitoring with satellite C-band and L-band synthetic aperture radar data. JAWRA Journal of the American Water Resources Association 49 (6): 1239–1260.

    Article  Google Scholar 

  11. Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson. 1998. The tropical rainfall measuring mission (TRMM) sensor packag. Journal of Atmospheric and Oceanic Technology 15 (3): 809–817.

    Article  Google Scholar 

  12. Xu, Q., Y. Cheng, X. Li, C. Fang, and W.G. Pichel. 2011. Ocean surface wind speed of Hurricane Helene observed by SAR. Procedia Environmental Sciences 10: 2097–2101.

    Article  Google Scholar 

  13. Marzano, F., S. Mori, M. Chini, L. Pulvirenti, N. Pierdicca, M. Montopli, and J. Weinman. 2011. Potential of high-resolution detection and retrieval of precipitation fields from X-band spaceborne synthetic aperture radar over land. Hydrology and Earth System Science 15: 859–875.

    Article  Google Scholar 

  14. Bringi, V., and V. Chandrasekar. 2001. Polarimetric Doppler weather radar: principles and applications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  15. Weinman, J., F. Marzano, W. Plant, A. Mugnai, and N. Pierdicca. 2009. Rainfall observation from X-band, space-borne, synthetic aperture radar. Computers & Geosciences 9 (1): 77–84.

    Google Scholar 

  16. Murali, P., P.N. Raja, I. L V, Vasavi, and K. Yacham. 2014. Real time detection of hurricanes from satellite cloud imagery using haar wavelet. In World Congress on Engineering and Computer Science, 1.

    Google Scholar 

  17. NOAA. 2013. Coastal Remote Sensing. US: NOAA Coastal Services Center.

    Google Scholar 

  18. Horstmann, J., D. Thompson, F. Monaldo, S. Iris, and H. Graber. 2005. Can synthetic aperture radars be used to estimate hurricane force winds? Geophysical Research Letters 32 (22): L22801.

    Article  Google Scholar 

  19. Liu, K., and J.C. Chan. 1999. Size of tropical cyclones as inferred from ERS-1 and ERS-2 data. Monthly Weather Review 127 (12): 2992–3001.

    Article  Google Scholar 

  20. Powell, M.D. 1990. Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Prehospital and Disaster Medicine 118 (4): 918–938.

    Google Scholar 

  21. Bell, M.M. 2006. Observed structure, evolution and potential intensity of category five Hurricane Isabel (2003) from 1214 September. Ph.D. thesis, Colorado State University, 2006.

    Google Scholar 

  22. Houze, R.A., S.S. Chen, B.F. Smull, W.C. Lee, and M.M. Bell. 2007. Hurricane intensity and eyewall replacement. Science 315 (5816): 1235–1239.

    Article  Google Scholar 

  23. Dvorak, V.F. 1984. Tropical cyclone intensity analysis using satellite data. US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service.

    Google Scholar 

  24. Goodman, S.J., J. Gurka, M. Demaria, T.J. Schmit, A. Mostek, G. Jedlovec, C. Siewert, W. Feltz, J. Gerth, and R. Brummer. 2012. The GOES-R proving ground: accelerating user readiness for the next-generation geostationary environmental satellite system. Bulletin of the American Meteorological Society 93 (7): 1029–1040.

    Article  Google Scholar 

  25. Rogers, R., S. Aberson, A. Aksoy, B. Annane, M. Black, J. Cione, N. Dorst, J. Dunion, J. Gamache, and S. Goldenberg. 2013. NOAA’s hurricane intensity forecasting experiment: A progress report. Bulletin of the American Meteorological Society 94 (6): 859–882.

    Article  Google Scholar 

  26. Serra, J. 1982. Image analysis and mathematical morphology. London: Academic Press.

    Google Scholar 

  27. Calabi, L. 1965. A study of the skeleton of plane figures. Parke Mathematical Laboratories.

    Google Scholar 

  28. Bai, X., and L.J. Latecki. 2007. Discrete skeleton evolution. Energy minimization methods in computer vision and pattern recognition. Berlin: Springer.

    Google Scholar 

  29. Du, Y., and P.W. Vachon. 2003. Characterization of hurricane eyes in RADARSAT-1 images with wavelet analysis. Canadian Journal of Remote Sensing 29 (4): 491–498.

    Article  Google Scholar 

  30. Bamler, R. 2000. Principles of synthetic aperture radar. Surveys in Geophysics 21 (2–3): 147–157.

    Google Scholar 

  31. Shamsoddini, A., and J.C. Trinder. 2012. Edge-detection-based filter for SAR speckle noise reduction. International Journal of Remote Sensing 33 (7): 2296–2320.

    Article  Google Scholar 

  32. Kuan, D.T., A.A. Sawchuk, T.C. Strand, and P. Chavel. 1987. Adaptive restoration of images with speckle. IEEE Transactions on Acoustics Speech and Signal Processing 35 (3): 373–383.

    Article  Google Scholar 

  33. Lee, J.S. 1981. Speckle analysis and smoothing of synthetic aperture radar images. Computer Graphics and Image Processing 17 (1): 24–32.

    Article  Google Scholar 

  34. Frost, V.S., J.A. Stiles, K.S. Shanmugan, and J.C. Holtzman. 1982. A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Transactions on Pattern Analysis and Machine Intelligence 2: 157–166.

    Article  Google Scholar 

  35. Lopes, A., E. Nezry, R. Touzi, and H. Laur. 1990a. Maximum a posteriori speckle filtering and 1st order texture models in SAR images. Remote Sensing Science for the Nineties 1–3: 2409–2412.

    Google Scholar 

  36. Lopes, A., R. Touzi, and E. Nezry. 1990b. Adaptive speckle filters and scene heterogeneity. Remote Sensing Science for the Nineties 28 (6): 992–1000.

    Google Scholar 

  37. Marques, R.C.P., F.N. Medeiros, and J.S. Nobre. 2012. Sar image segmentation based on level set approach and \({\cal{G}}_{A}^{0}\) model. IEEE Transactions on Pattern Analysis and Machine Intelligence 34 (10): 2046–2057.

    Article  Google Scholar 

  38. Solilie, P. 2003. Morphological image analysis: principles and applications. New York: Springer.

    Google Scholar 

  39. Jin, S., S. Wang, and X. Li. 2014. Typhoon eye extraction with an automatic SAR image segmentation method. International Journal of Remote Sensing 35 (11–12): 3978–3993.

    Article  Google Scholar 

  40. Otsu, N. 1975. A threshold selection method from gray-level histograms. Automatica 11 (285–296): 23–27.

    Google Scholar 

  41. Fukunaga, K. 1990. Introduction to statistical pattern recognition. New York: Academic Press.

    Google Scholar 

  42. Blum, H. 1967. A transformation for extracting new descriptors of shape. Models for the Perception of Speech and Visual Form 19: 362–380.

    Google Scholar 

  43. Blum, H. 1973. Biological shape and visual science (Part I). Journal of theoretical Biology 38 (2): 205–287.

    Article  Google Scholar 

  44. Shin, F.Y., and O.R. Mitchell. 1989. Threshold decomposition of gray-scale morphology into binary morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence 11 (1): 31–42.

    Article  Google Scholar 

  45. Maragos, P.A., and R.W. Schafer. 1986. Morphological skeleton representation and coding of binary images. IEEE Transactions on Acoustics Speech and Signal Processing 34 (5): 1228–1244.

    Google Scholar 

  46. Lantuejoul, C. 1978. La squelettisation et son application aux mesures topologiques des mosaiques polycristallines. Ph.D. thesis, Ing. Ecole des Mines de Paris.

    Google Scholar 

  47. Bai, X., L.J. Latecki, and W.Y. Liu. 2007. Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Transactions on Pattern Analysis and Machine Intelligence 29 (3): 449–462.

    Google Scholar 

  48. Montero, A.S., and J. Lang. 2012. Skeleton pruning by contour approximation and the integer medial axis transform. Computers & Graphics 36 (5): 477–487.

    Article  Google Scholar 

  49. Latecki, L.J., and R. Lakmper. 1999. Polygon evolution by vertex deletion. Scale-Space Theories in Computer Vision. Berlin: Springer.

    Google Scholar 

  50. Siegel, F.R. 2015. Global perils that reduce the earths capacity to sustain and safeguard growing populations tactics to mitigate or suppress them. In Countering 21st Century Social-Environmental Threats to Growing Global Populations. Berlin: Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Lee, I.K., Shamsoddini, A., Li, X., Trinder, J.C., Li, Z. (2017). Extracting Hurricane Eye Morphology from Spaceborne SAR Images Using Morphological Analysis. In: Li, X. (eds) Hurricane Monitoring With Spaceborne Synthetic Aperture Radar. Springer Natural Hazards. Springer, Singapore. https://doi.org/10.1007/978-981-10-2893-9_7

Download citation

Publish with us

Policies and ethics