Skip to main content

Tropical Cyclone Eye Morphology and Extratropical-Cyclone-Forced Mountain Lee Waves on SAR Imagery

  • Chapter
  • First Online:
Book cover Hurricane Monitoring With Spaceborne Synthetic Aperture Radar

Part of the book series: Springer Natural Hazards ((SPRINGERNAT))

  • 783 Accesses

Abstract

This chapter introduces an objective method for determining the center of the tropical cyclone (TC) from spaceborne synthetic aperture radar (SAR) data based on the structures of the well-defined TC eyes in the SAR images. A series of Radarsat-1 SAR images are used, which capture the TCs over the world ocean basins during the years from 2001 to 2007. Also, a case study of the atmospheric gravity waves over the Kuril Islands observed in a Sentinel-1A SAR image during the passage of an extratropical cyclone will be presented together with the use of the state-of-the-art atmospheric numerical model. The objective is to obtain a more complete understanding of the generation mechanism and the dynamics governing the gravity waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Du, Y., and P.W. Vachon. 2003. Characterization of hurricane eyes in RADARSAT-1 images with wavelets analysis. Canadian Journal of Remote Sensing 29 (4): 491–498.

    Article  Google Scholar 

  2. Friedman, K., and X. Li. 2000. Storm patterns over the ocean with wide swath SAR. Johns Hopkins University Applied Physics Lab Technical Digest 21 (1): 80–85.

    Google Scholar 

  3. Li, X. 2015. The first Sentinel-1 SAR image of a typhoon. Acta Oceanologica Sinica 34 (1): 1–2.

    Article  Google Scholar 

  4. Li, X., W. Pichel, M. He, S. Wu, K. Friedman, P. Clemente-Colon, and C. Zhao. 2002. Observation of hurricane-generated ocean swell refraction at the Gulf Stream North Wall with the RADARSAT-1 synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing 40 (10): 2131–2142.

    Article  Google Scholar 

  5. Wimmers, A.J., and C.S. Velden. 2010. Objectively determining the rotational center of tropical cyclones in passive microwave satellite imagery. Journal of Applied Meteorology and Climatology 49 (9): 2013–2034.

    Article  Google Scholar 

  6. Cheng, Y.H., S.J. Huang, A.K. Liu, C.R. Ho, and N.J. Kuo. 2012. Observation of typhoon eyes on the sea surface using multi-sensors. Remote Sensing of Environment 123: 434–442.

    Article  Google Scholar 

  7. Jin, S., S. Wang, and X. Li. 2014. Typhoon eye extraction with an automatic SAR image segmentation method. International Journal of Remote Sensing 35: 3978–3993.

    Article  Google Scholar 

  8. Li, X., J. Zhang, X. Yang, W. Pichel, M. deMaria, D. Long, and Z. Li. 2013. Tropical cyclone morphology from spaceborne synthetic aperture radar. Bulletin of the American Meteorological Society 94 (2): 215–230.

    Article  Google Scholar 

  9. Xu, Q., G. Zhang, Y. Cheng, and L. Ju. 2006. Satellite SAR detection of Hurricane Helene. In The Twenty-third International Offshore and Polar Engineering Conference, 2013, 865–868. International Society of Offshore and Polar Engineers.

    Google Scholar 

  10. Zheng, G., J. Yang, A.K. Liu, X. Li, W.G. Pichel, and S. He. 2016. Ku band backscatter from the Cowlitz river: Bragg scattering with and without rain. IEEE Transactions on Geoscience and Remote Sensing 54 (2): 1000–1012.

    Article  Google Scholar 

  11. Lee, I., A. Shamsoddini, X. Li, and J.C. Trinder. 2016. Extracting hurricane eye morphology from spaceborne SAR images using morphological analysis. ISPRS Journal of Photogrammetry and Remote Sensing 7: 115–125.

    Article  Google Scholar 

  12. Xu, Q., X. Li, S. Bao, and L.J. Pietrafes. 2016. SAR observation and numerical simulation of mountain lee waves forced by an extratropical cyclone. IEEE Transactions on Geoscience and Remote Sensing 54 (12): 7157–7165.

    Article  Google Scholar 

  13. Chunchuzov, I., P.W. Vachon, and X. Li. 2000. Analysis and modeling of atmospheric gravity waves observed in RADARSAT SAR images. Remote Sensing of Environment 74 (3): 343–361.

    Article  Google Scholar 

  14. de Villiers, M.P., and J. Heerden. 2001. Clear air turbulence over South Africa. Meteorological Applications 8 (1): 119–126.

    Article  Google Scholar 

  15. Ralph, F.M., P.J. Neiman, and D. Levinson. 1997. Lidar observations of a breaking mountain wave associated with extreme turbulence. Geophysical Research Letters 24 (6): 663–666.

    Article  Google Scholar 

  16. Valenzuela, R.G. 1978. Theories for the interaction of electromagnetic and ocean waves - A review. Boundary-Layer Meteorology 13 (1): 61–65.

    Article  Google Scholar 

  17. Gan, X., et al. 2008. Coastally trapped atmospheric gravity waves on SAR, AVHRR and MODIS images. International Journal of Remote Sensing 29 (6): 1621–1634.

    Article  Google Scholar 

  18. Li, X., C. Dong, P. Clemente-Colon, W.G. Pichel, and K.S. Friedman. 2004. Synthetic aperture radar observation of the sea surface imprints of upstream atmospheric solitons generated by flow impeded by an island. Journal of Geophysical Research: Oceans 109 (2).

    Google Scholar 

  19. Li, X., W. Zheng, X. Yang, Z. Li, and W.G. Pichel. 2011. Sea surface imprints of coastal mountain lee waves imaged by synthetic aperture radar. Journal of Geophysical Research: Oceans 116 (2).

    Google Scholar 

  20. Li, X., et al. 2013. Coexistence of atmospheric gravity waves and boundary layer rolls observed by SAR. Journal of the Atmospheric Sciences 70 (11): 3448–3459.

    Article  Google Scholar 

  21. Vachon, P.W., O.M. Johannessen, and J.A. Johannessen. 1994. An ERS 1 synthetic aperture radar image of atmospheric Lee waves. Journal of Geophysical Research: Oceans 99 (1115): 22483–22490.

    Article  Google Scholar 

  22. Zheng, Q., et al. 1998. Coastal lee waves on ERS-1 SAR images. Journal of Geophysical Research: Oceans 103 (415): 7979–7993.

    Article  Google Scholar 

  23. Iris, S., and G. Burger. 2004. RADARSAT-1: Canadian space agency hurricane watch program. 2004 IEEE International Geoscience and Remote Sensing Symposium, 2004, vol. 4, 2742–2745, IGARSS’04 Proceedings.

    Google Scholar 

  24. Song, J.J., Y. Wang, and L. Wu. 2010. Trend discrepancies among three best track data sets of western North Pacific tropical cyclones. Journal of Geophysical Research: Atmospheres 115 (D12): 12128.

    Article  Google Scholar 

  25. Rozhnoi, A., M. Solovieva, B. Levin, M. Hayakawa, and V. Fedun. 2014. Meteorological effects in the lower ionosphere as based on VLF/LF signal observations. Natural Hazards and Earth System Sciences 14: 2671–2679.

    Article  Google Scholar 

  26. Alpers, W., and W. Huang. 2011. On the discrimination of radar signatures of atmospheric gravity waves and oceanic internal waves on synthetic aperture radar images of the sea surface. IEEE Transactions on Geoscience and Remote Sensing 49 (3): 1114–1126.

    Article  Google Scholar 

  27. Lin, H., Q. Xu, and Q. Zheng. 2008. An overview on SAR measurements of sea surface wind. Progress in Natural Science 18 (8): 913–919.

    Article  Google Scholar 

  28. Xu, Q., et al. 2010. Assessment of an analytical model for sea surface wind speed retrieval from spaceborne SAR. International Journal of Remote Sensing 31 (4): 993–1008.

    Article  Google Scholar 

  29. Yang, X., et al. 2010. Comparison of ocean surface winds retrieved from QuikSCAT scatterometer and Radarsat-1 SAR in offshore waters of the U.S. West Coast. IEEE Geoscience and Remote Sensing Letters 8 (1): 163–167.

    Article  Google Scholar 

  30. Yang, X., X. Li, W.G. Pichel, and Z. Li. 2011. Comparison of ocean surface winds from ENVISAT ASAR, MetOp ASCAT scatterometer, buoy measurements, and NOGAPS model. IEEE Transactions on Geoscience and Remote Sensing 49 (12): 4743–4750.

    Article  Google Scholar 

  31. Stoffelen, A., and D. Anderson. 1997. Scatterometer data interpretation: estimation and validation of the transfer function CMOD4. Journal of Geophysical Research: Oceans 102 (315): 5767–5780.

    Article  Google Scholar 

  32. Monaldo, F.M., C.R. Jackson, X. Li, and W.G. Pichel. 2015. Preliminary evaluation of Sentinel-1A wind speed retrievals. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9 (6): 2638–2642.

    Article  Google Scholar 

  33. Skamarock, W.C., et al. 2008. A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-4751STR, Boulder, Colorado, USA, 1–113.

    Google Scholar 

  34. Li, X., W. Zheng, W.G. Pichel, C.Z. Zou, and P. Clemente-Colon. 2007. Coastal katabatic winds imaged by SAR. Geophysical Research Letters 34 (3).

    Google Scholar 

  35. Kim, S.H., H.Y. Chun, and W. Jang. 2014. Horizontal divergence of typhoon-generated gravity waves in the upper troposphere and lower stratosphere (UTLS) and its influence on typhoon evolution. Atmospheric Chemistry and Physics 14: 3175–3182.

    Article  Google Scholar 

  36. Kuester, M.A., M.J. Alexander, and E.A. Ray. 2008. A model study of gravity waves over Hurricane Humberto (2001). Journal of the Atmospheric Sciences 65: 3231–3246.

    Article  Google Scholar 

  37. Fritts, D.C., and M.J. Alexander. 2003. Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics 41 (1).

    Google Scholar 

  38. Doyle, J.D., and Q. Jiang. 2006. Observations and numerical simulations of mountain waves in the presence of directional wind shear. Quarterly Journal of the Royal Meteorological Society 132 (619): 1877–1905.

    Article  Google Scholar 

  39. Scorer, R.S. 1954. Theory of airflow over mountains: Part III: Airstream characteristics. Quarterly Journal of the Royal Meteorological Society 480 (345): 417–428.

    Article  Google Scholar 

  40. Crook, N.A. 1988. Trapping of low-level internal gravity waves. Journal of the Atmospheric Sciences 45 (10): 1533–1541.

    Article  Google Scholar 

  41. da Silva, J.C.B., and J.M. Magalhes. 2009. Satellite observations of large atmospheric gravity waves in the Mozambique Channel. International Journal of Remote Sensing 30 (5): 1161–1182.

    Article  Google Scholar 

  42. Smolarkiewicz, P.K., and R. Rotunno. 1989. Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. Journal of the Atmospheric Sciences 46 (8): 1154–1164.

    Article  Google Scholar 

  43. Gao, S., and H. Chen. 2000. The studies of lee waved over a big topography through the rotating tank experiments (in Chinese). Advances in Atmospheric Sciences 58 (6): 653–665.

    Google Scholar 

  44. Rabaud, M., and F. Moisy. 2014. Narrow ship wakes and wave drag for planning hulls. Ocean Engineering 90: 34–38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Xu, Q., Li, X., Bao, S., Zhang, G. (2017). Tropical Cyclone Eye Morphology and Extratropical-Cyclone-Forced Mountain Lee Waves on SAR Imagery. In: Li, X. (eds) Hurricane Monitoring With Spaceborne Synthetic Aperture Radar. Springer Natural Hazards. Springer, Singapore. https://doi.org/10.1007/978-981-10-2893-9_16

Download citation

Publish with us

Policies and ethics