Skip to main content

Synthetic Aperture Radar Observations of Extreme Hurricane Wind and Rain

  • Chapter
  • First Online:
Book cover Hurricane Monitoring With Spaceborne Synthetic Aperture Radar

Part of the book series: Springer Natural Hazards ((SPRINGERNAT))

  • 795 Accesses

Abstract

Over the last decades, data from spaceborne Synthetic Aperture Radar (SAR) have been used in hurricane research. However, some issues remain: (1) many SAR images capture incomplete hurricane core structures; (2) the radar signal is attenuated by the heavy precipitation associated with hurricane; (3) wind directions retrievals are not available from the cross-polarized SAR measurements. When wind is at hurricane strength, the wind speed retrievals from co-polarized SAR may have errors because the backscatter signal may experience saturation and become double-valued. By comparison, wind direction retrievals from cross-polarization SAR are not possible until now. In this study, we develop a two-dimensional model, the Symmetric Hurricane Estimates for Wind (SHEW) model based on the mean wind profile in all radial directions, and combine it with the modified inflow angle model to detect hurricane morphology and estimate the wind vector field imaged by cross-polarization SAR. By fitting SHEW to the SAR derived hurricane wind speed, we find the initial closest elliptical-symmetrical wind speed field, hurricane center location, major and minor axes, the azimuthal (orientation) angle relative to the reference ellipse, and maximum wind speed. This set of hurricane morphology parameters, along with the speed of hurricane motion, are input to the inflow angle model modified with an ellipse-shaped eye, to derive the hurricane wind direction. A one-half modified Rankine vortex (OHMRV) model is proposed to describe the hurricane wind profile, particularly for those wind profiles with a wind speed maximum and an inflection point possibly associated with the degeneration of the inner wind maximum in the hurricane reintensification phase. The proposed method works well in area with significant radar attenuation by precipitation. Moreover, five possible mechanisms for the rain effects on the spaceborne C-band SAR observations are investigated: (1) attenuation and (2) volume backscattering for the microwave transfer in atmosphere; as well as (3) diffraction on the sharp edges of rain products, and (4) rain-induced damping to the wind waves and (5) rain-generated ring waves on the ocean surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, R. 1980. Tropical cyclone eye dynamics. Journal of the Atmospheric Sciences 37 (6): 1227–1232.

    Article  Google Scholar 

  2. Shapiro, L.J., and H.E. Willoughby. 1982. The response of balanced hurricanes to local sources of heat and momentum. Journal of the Atmospheric Sciences 39 (2): 378–394.

    Article  Google Scholar 

  3. Willoughby, H. 1990. Temporal changes of the primary circulation in tropical cyclones. Journal of the Atmospheric Sciences 47 (2): 242–264.

    Article  Google Scholar 

  4. Sitkowski, M., J.P. Kossin, and C.M. Rozoff. 2011. Intensity and structure changes during hurricane eyewall replacement cycles. Monthly Weather Review 139 (12): 3829–3847.

    Article  Google Scholar 

  5. Zhu, Z., and P. Zhu. 2015. Sensitivities of eyewall replacement cycle to model physics, vortex structure, and background winds in numerical simulations of tropical cyclones. Journal of Geophysical Research: Atmospheres 120 (2): 590–622.

    Google Scholar 

  6. Sanabia, E.R., B.S. Barrett, N.P. Celone, and Z.D. Cornelius. 2015. Satellite and aircraft observations of the eyewall replacement cycle in Typhoon Sinlaku (2008). Monthly Weather Review 143 (9): 3406–3420.

    Article  Google Scholar 

  7. Kossin, J.P., and M.D. Eastin. 2001. Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. Journal of the Atmospheric Sciences 58 (9): 1079–1090.

    Article  Google Scholar 

  8. Franklin, J.L., M.L. Black, and K. Valde. 2003. GPS dropwindsonde wind profiles in hurricanes and their operational implications. Weather and Forecasting 18 (1): 32–44.

    Article  Google Scholar 

  9. Kossin, J.P. 2015. Hurricane wind-pressure relationship and eyewall replacement cycles. Weather and Forecasting 30 (1): 177–181.

    Article  Google Scholar 

  10. Fu, L.L., and B. Holt. 1982. Seasat views oceans and sea ice with synthetic aperture radar, 81–120. Pasadena: JPL Publication.

    Google Scholar 

  11. Li, X. 2015. The first Sentinel-1 SAR image of a typhoon. Acta Oceanologica Sinica 34 (1): 1–2.

    Article  Google Scholar 

  12. Li, X., J.A. Zhang, X. Yang, W.G. Pichel, M. DeMaria, D. Long, and Z. Li. 2013. Tropical cyclone morphology from spaceborne synthetic aperture radar. Bulletin of the American Meteorological Society 94 (2): 215–230.

    Article  Google Scholar 

  13. Zhang, G., B. Zhang, W. Perrie, Q. Xu, and Y. He. 2014. A hurricane tangential wind profile estimation method for C-band cross-polarization SAR. IEEE Transactions on Geoscience and Remote Sensing 52 (11): 7186–7194.

    Article  Google Scholar 

  14. Hock, T.F., and J.L. Franklin. 1999. The NCAR GPS dropwindsonde. Bulletin of the American Meteorological Society 80 (3): 407–420.

    Article  Google Scholar 

  15. Mallen, K.J., M.T. Montgomery, and B. Wang. 2005. Reexamining the near-core radial structure of the tropical cyclone primary circulation: Implications for vortex resiliency. Journal of the Atmospheric Sciences 62 (2): 408–425.

    Article  Google Scholar 

  16. Uhlhorn, E.W., B.W. Klotz, T. Vukicevic, P.D. Reasor, and R.F. Rogers. 2014. Observed hurricane wind speed asymmetries and relationships to motion and environmental shear. Monthly Weather Review 142 (3): 1290–1311.

    Article  Google Scholar 

  17. Holland, G. 2008. A revised hurricane pressure-wind model. Monthly Weather Review 136 (9): 3432–3445.

    Article  Google Scholar 

  18. Holland, G.J., J.I. Belanger, and A. Fritz. 2010. A revised model for radial profiles of hurricane winds. Monthly Weather Review 138 (12): 4393–4401.

    Article  Google Scholar 

  19. Reasor, P.D., M.T. Montgomery, F.D. Marks Jr., and J.F. Gamache. 2000. Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-doppler radar. Monthly Weather Review 128 (6): 1653–1680.

    Article  Google Scholar 

  20. A. Worthington. A study of splashes: Including his 1894 lecture: The splash of a drop and allied phenomena. Macmillan, 1963. URL https://books.google.com/books?id=JxJRAAAAMAAJ.

  21. Tsimplis, M. 1992. The effect of rain in calming the sea. Journal of Physical Oceanography 22 (4): 404–412.

    Article  Google Scholar 

  22. Reppucci, A., S. Lehner, J. Schulz-Stellenfleth, and S. Brusch. 2010. Tropical cyclone intensity estimated from wide-swath SAR images. IEEE Transactions on Geoscience and Remote Sensing 48 (4): 1639–1649.

    Article  Google Scholar 

  23. Du, Y., and P.W. Vachon. 2003. Characterization of hurricane eyes in RADARSAT-1 images with wavelet analysis. Canadian Journal of Remote Sensing 29 (4): 491–498.

    Article  Google Scholar 

  24. Zhang, B., and W. Perrie. 2012. Cross-polarized synthetic aperture radar: A new potential measurement technique for hurricanes. Bulletin of the American Meteorological Society 93 (4): 531–541.

    Article  Google Scholar 

  25. Zhang, J.A., and E.W. Uhlhorn. 2012. Hurricane sea surface inflow angle and an observation-based parametric model. Monthly Weather Review 140 (11): 3587–3605.

    Article  Google Scholar 

  26. Wood, V.T., L.W. White, H.E. Willoughby, and D.P. Jorgensen. 2013. A new parametric tropical cyclone tangential wind profile model. Monthly Weather Review 141 (6): 1884–1909.

    Article  Google Scholar 

  27. Stiles, B.W., R.E. Danielson, W.L. Poulsen, M.J. Brennan, S. Hristova-Veleva, T.P. Shen, and A.G. Fore. 2014. Optimized tropical cyclone winds from QuikSCAT: A neural network approach. IEEE Transactions on Geoscience and Remote Sensing 52 (11): 7418–7434.

    Article  Google Scholar 

  28. Mai, M., B. Zhang, X. Li, P.A. Hwang, and J.A. Zhang. 2016. Application of AMSR-E and AMSR2 Low-Frequency Channel Brightness Temperature Data for Hurricane Wind Retrievals. IEEE Transactions on Geoscience and Remote Sensing 54 (8): 4501–4512.

    Article  Google Scholar 

  29. Zhang, G., X. Li, W. Perrie, B. Zhang, and L. Wang. 2016. Rain effects on the hurricane observations over the ocean by C-band Synthetic Aperture Radar. Journal of Geophysical Research: Oceans 121 (1): 14–26.

    Google Scholar 

  30. Kudryavtsev, V., D. Hauser, G. Caudal, and B. Chapron. 2003. A semiempirical model of the normalized radar cross-section of the sea surface 1. Background model. Journal of Geophysical Research: Oceans 108 (C3): 8055.

    Article  Google Scholar 

  31. Kalmykov, A., and V. Pustovoytenko. 1976. On polarization features of radio signals scattered from the sea surface at small grazing angles. Journal of Geophysical Research 81 (12): 1960–1964.

    Article  Google Scholar 

  32. Liu, X., Q. Zheng, R. Liu, M.A. Sletten, and J.H. Duncan. 2017. A Model of Radar Backscatter of Rain-Generated Stalks on the Ocean Surface. IEEE Transactions on Geoscience and Remote Sensing 55 (2): 767–776.

    Article  Google Scholar 

  33. Hersbach, H., A. Stoffelen, and S. De Haan. 2007. An improved C-band scatterometer ocean geophysical model function: CMOD5. Journal of Geophysical Research: Oceans 112 (C3).

    Google Scholar 

  34. Hersbach, H. 2010. Comparison of C-band scatterometer CMOD5.N equivalent neutral winds with ECMWF. Journal of Atmospheric and Oceanic Technology 27 (4): 721–736.

    Article  Google Scholar 

  35. Zhang, B., W. Perrie, and Y. He. 2011. Wind speed retrieval from RADARSAT-2 quad-polarization images using a new polarization ratio model. Journal of Geophysical Research: Oceans 116 (C8).

    Google Scholar 

  36. Nunziata, F., M. Migliaccio, X. Li, and X. Ding. 2014. Coastline extraction using dual-polarimetric COSMO-SkyMed PingPong mode SAR data. IEEE Geoscience and Remote Sensing Letters 11 (1): 104–108.

    Article  Google Scholar 

  37. Contreras, R.F., and W.J. Plant. 2006. Surface effect of rain on microwave backscatter from the ocean: Measurements and modeling. Journal of Geophysical Research: Oceans 111 (C8).

    Google Scholar 

  38. Valenzuela, G. 1968. Scattering of electromagnetic waves from a tilted slightly rough surface. Radio Science 3 (11): 1057–1066.

    Article  Google Scholar 

  39. Valenzuela, G.R. 1978. Theories for the interaction of electromagnetic and oceanic wavesła review. Boundary-Layer Meteorology 13 (1–4): 61–85.

    Article  Google Scholar 

  40. Bass, F., I. Fuks, A. Kalmykov, I. Ostrovsky, and A. Rosenberg. 1968. Very high frequency radiowave scattering by a disturbed sea surface Part II: Scattering from an actual sea surface. IEEE Transactions on Antennas and Propagation 16 (5): 560–568.

    Article  Google Scholar 

  41. Plant, W.J. 1990. Bragg scattering of electromagnetic waves from the air/sea interface. In Surface waves and fluxes, 41–108. Springer.

    Google Scholar 

  42. Kudryavtsev, V., I. Kozlov, B. Chapron, and J. Johannessen. 2014. Quad-polarization SAR features of ocean currents. Journal of Geophysical Research: Oceans 119 (9): 6046–6065.

    Google Scholar 

  43. Nie, C., and D.G. Long. 2007. A C-band wind/rain backscatter model. IEEE Transactions on Geoscience and Remote Sensing 45 (3): 621–631.

    Article  Google Scholar 

  44. Xu, F., X. Li, P. Wang, J. Yang, W.G. Pichel, and Y.Q. Jin. 2015. A backscattering model of rainfall over rough sea surface for synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing 53 (6): 3042–3054.

    Article  Google Scholar 

  45. Le Méhauté, B. 1988. Gravity-capillary rings generated by water drops. Journal of Fluid Mechanics 197: 415–427.

    Article  Google Scholar 

  46. Hwang, P.A., and W.J. Plant. 2010. An analysis of the effects of swell and surface roughness spectra on microwave backscatter from the ocean. Journal of Geophysical Research: Oceans 115 (C4).

    Google Scholar 

  47. Elfouhaily, T., B. Chapron, K. Katsaros, and D. Vandemark. 1997. A unified directional spectrum for long and short wind-driven waves. Journal of Geophysical Research: Oceans 102 (C7): 15781–15796.

    Article  Google Scholar 

  48. Wright, J. 1966. Backscattering from capillary waves with application to sea clutter. IEEE Transactions on Antennas and Propagation 14 (6): 749–754.

    Article  Google Scholar 

  49. Hwang, P.A., B. Zhang, J.V. Toporkov, and W. Perrie. 2010. Comparison of composite Bragg theory and quad-polarization radar backscatter from RADARSAT-2: With applications to wave breaking and high wind retrieval. Journal of Geophysical Research: Oceans 115 (C8).

    Google Scholar 

  50. Cox, C., and W. Munk. 1954. Statistics of the sea surface derived from sun glitter. Journal of Marine Research 13 (2): 198–227.

    Google Scholar 

  51. Nystuen, J.A. 1990. A note on the attenuation of surface gravity waves by rainfall. Journal of Geophysical Research: Oceans 95 (C10): 18353–18355.

    Article  Google Scholar 

  52. Marshall, J.S., and W.M.K. Palmer. 1948. The distribution of raindrops with size. Journal of Meteorology 5 (4): 165–166.

    Article  Google Scholar 

  53. Uhlhorn, E.W., and P.G. Black. 2003. Verification of remotely sensed sea surface winds in hurricanes. Journal of Atmospheric and Oceanic Technology 20 (1): 99–116.

    Article  Google Scholar 

  54. Uhlhorn, E.W., P.G. Black, J.L. Franklin, M. Goodberlet, J. Carswell, and A.S. Goldstein. 2007. Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Monthly Weather Review 135 (9): 3070–3085.

    Article  Google Scholar 

  55. Jiang, H., P.G. Black, E.J. Zipser, F.D. Marks Jr., and E.W. Uhlhorn. 2006. Validation of rain-rate estimation in hurricanes from the stepped frequency microwave radiometer: Algorithm correction and error analysis. Journal of the Atmospheric Sciences 63 (1): 252–267.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guosheng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhang, G., Li, X., Perrie, W. (2017). Synthetic Aperture Radar Observations of Extreme Hurricane Wind and Rain. In: Li, X. (eds) Hurricane Monitoring With Spaceborne Synthetic Aperture Radar. Springer Natural Hazards. Springer, Singapore. https://doi.org/10.1007/978-981-10-2893-9_14

Download citation

Publish with us

Policies and ethics