Skip to main content

Parallel Coevolution of Quantum-Behaved Particle Swarm Optimization for High-Dimensional Problems

  • Conference paper
  • First Online:
Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems (AsiaSim 2016, SCS AutumnSim 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 643))

Included in the following conference series:

  • 1681 Accesses

Abstract

Quantum-behaved particle swarm optimization (QPSO) has successfully been applied to unimodal and multimodal optimization problems. However, with the emergence and popularity of big data and deep machine learning, QPSO encounters limitations with high dimensional problems. In this paper, a parallel coevolution framework of QPSO (PC_QPSO) is designed, in which an improved differential grouping method is used to decompose the high dimensional problems into several sub-problems. These sub-problems are optimized independently with occasional communication. Each sub-population is evaluated with context vector, which is constituted by the global best solutions in each sub-problem. The numerical experimental results show that PC_QPSO with differential grouping strategy is able to improve the solution quality without breaking the relationship between interacted variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Zhou, Z.-H., Chawla, N.V., Jin, Y., Williams, G.J.: Big data opportunities and challenges: discussions from data analytics perspectives. IEEE Comput. Intell. Mag. 9(4), 62–74 (2014)

    Article  Google Scholar 

  2. Cheng, R., Jin, Y.: A competitive swarm optimizer for large scale optimization. IEEE Trans. Cybern. 45(2), 191–204 (2015)

    Article  Google Scholar 

  3. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.). LNCS, vol. 866, pp. 249–257Springer, Heidelberg (1994). doi:10.1007/3-540-58484-6_269

    Chapter  Google Scholar 

  4. van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)

    Article  Google Scholar 

  5. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178(15), 2986–2999 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Omidvar, M.: Cooperative co-evolution for large scale optimization through more frequent random grouping. In: 2010 IEEE CEC, pp. 1754–1761. IEEE Xplore (2010)

    Google Scholar 

  7. Omidvar, M.N., Li, X.D., Yao, X.: Cooperative co-evolution with delta grouping for large scale non-separable function optimization. In: 2010 IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE Xplore (2010)

    Google Scholar 

  8. Li, X.D., Yao, X.: Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans. Evol. Comput. 16(2), 210–214 (2012)

    Article  MathSciNet  Google Scholar 

  9. Omidvar, M.N., Li, X.D., Mei, Y., Yao, X.: Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans. Evol. Comput. 18(3), 378–393 (2014)

    Article  Google Scholar 

  10. Olorunda, O., Engelbrecht, A.: Measuring exploration/exploitation in particle swarms using swarm diversity. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1128–1134 (2008)

    Google Scholar 

  11. Ismail, A., Engelbrecht, A.P.: Measuring diversity in the cooperative particle swarm optimizer. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 97–108. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32650-9_9

    Chapter  Google Scholar 

  12. Sun, J., Feng, B., Xu, W.B.: Particle swarm optimization with particles having quantum behavior. In: IEEE Congress Evolutionary Computation, vol. 70(3), pp. 1571–1580. IEEE Xplore (2004)

    Google Scholar 

  13. Sun, J.: Quantum-behaved particle swarm optimization: analysis of individual particle behavior and parameter selection. Evol. Comput. 20(3), 349–393 (2012)

    Article  Google Scholar 

  14. Sun, J.: Convergence analysis and improvements of quantum-behaved particle swarm optimization. Inf. Sci. 193, 81–103 (2012)

    Article  MathSciNet  Google Scholar 

  15. Tang, K., Yao, X., Suganthan, P.: Benchmark functions for the CEC 2008 special session and competition on large scale global optimization. Nature Inspired Computation and Applications Laboratory, USTC, China (2007). http://nical.ustc.edu.cn/cec08ss.php

  16. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, Perth, Australia (1995)

    Google Scholar 

  17. Eberhart, R.C., Shi, Y.: Comparison between genetic algorithms and particle swarm optimization. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds.) EP 1998. LNCS, vol. 1447, pp. 611–616. Springer, Heidelberg (1998). doi:10.1007/BFb0040812

    Chapter  Google Scholar 

  18. F. Van den Bergh, An analysis of particle swarm optimizers, Ph.D. dissertation. University of Pretoria, South Africa (2001)

    Google Scholar 

  19. Clerc, M., Kennedy, J.: The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by National Hi-tech Research and Development Program of China (2014AA041505), National Science Foundation of China (61572238), the Provincial Outstanding Youth Foundation of Jiangsu Province (BK20160001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Tian, N., Wang, Y., Ji, Z. (2016). Parallel Coevolution of Quantum-Behaved Particle Swarm Optimization for High-Dimensional Problems. In: Zhang, L., Song, X., Wu, Y. (eds) Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems. AsiaSim SCS AutumnSim 2016 2016. Communications in Computer and Information Science, vol 643. Springer, Singapore. https://doi.org/10.1007/978-981-10-2663-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2663-8_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2662-1

  • Online ISBN: 978-981-10-2663-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics