Skip to main content

Abstract

Gene transfer is the process by which a gene from any source can be introduced into plant cells or tissues. Gene transfer technologies are used to manipulate plant cells for scientific research as well as for commercial purposes like production of transgenics. Transgenic plants generated using these technologies are used either for field deployment or for identifying and evaluating gene and promoter function. In the last few decades, significant developments have been made in gene transfer technology since the discovery of Agrobacterium tumefaciens as a natural tool for plant transformation, and there is a long list of transgenic crop varieties that have now been released for commercial production. These advances are related to major improvements in Agrobacterium-mediated and direct DNA delivery techniques, along with modifications in tissue culture techniques for regenerating transgenic plants from transformed cells or tissues. Bananas are not lagging too far behind in this race, with many laboratories engaged in field trials of transgenic bananas carrying genes of interest. With efficient gene transfer technologies available for banana, banana transformation research is now more focussed on the problems associated with generating cell suspensions of recalcitrant cultivars, identifying useful gene/trait associations, promoters and problems associated with stable integration and reliable expression of the DNA once it has been integrated. This chapter focuses on the gene transfer technologies currently available for generating transgenic banana cultivars and summarises the various traits of interest for which genes have been transformed into bananas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguado-Santacruz GA, Rascón-Cruz Q, Cabrera-Ponce JL, Martínez-Hernández A, Olalde-Portugal V et al (2002) Transgenic plants of blue grama grass, Bouteloua gracilis (H.B.K.) Lag. ex. Steud. from microprojectile bombardment of highly chlorophyllous embryogenic cells. Theor Appl Genet 104:763–771

    Article  CAS  PubMed  Google Scholar 

  • Alves AC, Quecini VM, Vieira MLC (1999) Plant transformation: advances and perspectives. Sci Agric 56:1–8

    Article  CAS  Google Scholar 

  • Atkinson HJ, Grimwood S, Johnston K, Green J (2004) Prototype demonstration of transgenic resistance to the nematode Radopholus similis conferred on banana by a cystatin. Transgenic Res 13:135–142

    Article  CAS  PubMed  Google Scholar 

  • Bakry F (1984) Application des techniques de culture In vitro pour l’amélioration du bananier (Musa sp.). Thesis Paris-Sud University

    Google Scholar 

  • Bakry F, Haïcour R, Horry JP et al (1992) Applications of biotechnologies to banana breeding: haplogenesis, plant regeneration from protoplasts and transformation. Applications of Biotechnologies to Banana Breeding. pp 52–62

    Google Scholar 

  • Bakry F, Carreel F, Jenny C et al (2009) Genetic improvement of banana. In: Breeding plantation tree crops: tropical species. Jain, S.M. and P.M. Priyadarshan (Eds.). Springer, New York, pp 3–50

    Google Scholar 

  • Becker DK, Dugdale B, Smith MK et al (2000) Genetic transformation of Cavendish banana (Musa spp. AAA group) cv. “Grand Nain” via microprojectile bombardment. Plant Cell Rep 19:229–234

    Article  CAS  Google Scholar 

  • Bhalla PL, Singh MB (2008) Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nat Protoc 3:181–189

    Article  CAS  PubMed  Google Scholar 

  • Carvalho CHS, Zehr UB, Gunaratna N et al (2004) Agrobacterium-mediated transformation of sorghum: factors that affect transformation efficiency. Genet Mol Biol 27:259–269

    Article  CAS  Google Scholar 

  • Cary JW, Rajasekaran K, Jaynes JM et al (2000) Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Sci 154:171–181

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti A, Ganapathi TR, Mukherjee PK et al (2003) MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216:587–596

    CAS  PubMed  Google Scholar 

  • Chakrabarty R, Viswakarma N, Bhat SR et al (2002) Agrobacterium-mediated transformation of cauliflower: optimization of protocol and development of Bt-transgenic cauliflower. J Biosci 27:495–502

    Article  CAS  PubMed  Google Scholar 

  • Clapham D, Manders G, Yibrah HS et al (1995) Enhancement of short and medium term expression of transgenes in embryogenic suspensions of Picea abies (L.) Karst. J Exp Bot 46:655–662

    Article  CAS  Google Scholar 

  • Cote FX, Domergue R, Monmarson S et al (1996) Embryogenic cell suspensions from the male flower of Musa AAA cv. Grand Nain. Physiol Plant 97:285–290

    Article  CAS  Google Scholar 

  • Cote FX, Legavre T, Grapin A et al (1997) Genetic transformation of embryogenic cell suspension in plantain (Musa AAB) using particle bombardment. In: Proceedings of the international symposium on biotechnology of tropical and subtropical species: part 1. Acta Horticult 460:126–129

    Google Scholar 

  • Cronauer SS, Krikorian AD (1986) Banana (Musa spp.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 1. Trees 1. Springer, Berlin Heidelberg New York pp 233–252

    Google Scholar 

  • Da Silva Conceicao (1989) Isolement et culture de protoplastes de bananiers (Musa sp.). Etude de divers facteurs. DEA génétique et sélection Animale et Végétale, Université Paris Sud Orsay

    Google Scholar 

  • Dale J, Harding R, Tushemeirwe W et al (2013) Use of transgene expression to elevate micronutrients in banana. Paper presented at plant and animal genome, Asia. 17–19 March

    Google Scholar 

  • De Block M, Herrera-Estrella L, van Montagu M et al (1984) Expression of foreign genes in regenerated plants and their progeny. EMBO J 3:1681–1689

    PubMed  PubMed Central  Google Scholar 

  • Deo PC, Tyagi AP, Taylor M et al (2010) Factors affecting somatic embryogenesis and transformation in modern plant breeding. South Pac J Nat Appl Sci 28:27–40

    Article  Google Scholar 

  • Deroles S, Smith MAL, Lee C (2002) Factors affecting transformation of cell cultures from three dicotyledonous pigment-producing species using microprojectile bombardment. Plant Cell Tissue Org Cult 70:69–76

    Article  CAS  Google Scholar 

  • Dickman MB, Park YK, Oltersdorf T et al (2001) Abrogation of disease development in plants expressing animal antiapoptotic genes. Proc Natl Acad Sci U S A 98:6957–6962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dugdale B, Becker D, Harding RM et al (2001) Intron-mediated enhancement of the banana bunchy top virus DNA-6 promoter in banana (Musa spp) embryogenic cells and plants. Plant Cell Rep 20(3):220–226

    Article  CAS  Google Scholar 

  • Elayabalan S, Kalaiponmani K, Subramaniam S et al (2013) Development of Agrobacterium-mediated transformation of highly valued hill banana cultivar Virupakshi (AAB) for resistance to BBTV disease. World J Microbiol Biotechnol 29:589–596

    Article  CAS  PubMed  Google Scholar 

  • Finer JJ, Vain P, Jones MW et al (1992) Development of a particle inflow gun for DNA delivery into plant cells. Plant Cell Rep 11:323–328

    Article  CAS  PubMed  Google Scholar 

  • Ghag SB, Shekhawat UKS, Hadapad AB et al (2015) Stacking of host-induced gene silencing mediated resistance to banana bunchy top virus and fusarium wilt disease in transgenic banana plants. Curr Trends Biotechnol Pharm 9(3):212–221

    Google Scholar 

  • Gheysen G, Angenon G, Montague MV (1998) Agrobacterium mediated plant transformation: a scientifically intriguing story with significant application. In: Lindsey k (ed) Transgenic plant research. Harwood Academic Press, Amsterdam, pp 1–33

    Google Scholar 

  • Häggman H, Aronen T (1998) Transgene expression in regenerating cotyledons and embryogenic cultures of Scots pine. J Exp Bot 49:1147–1156

    Article  Google Scholar 

  • Hagio T (1998) Optimizing the particle bombardment method for efficient genetic transformation. Japan Agric Res Q 32:239–247

    CAS  Google Scholar 

  • Hansen G, Martha SW (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–231

    Article  PubMed  Google Scholar 

  • Helliot B, Panis B, Frison E et al (2003) The acyclic nucleoside phosphonate analogues, adefovir, tenofovir and PMEDAP, efficiently eliminate banana streak virus from banana (Musa sp.). Antivir Res 59:121–126

    Article  CAS  PubMed  Google Scholar 

  • Horsch RB, Fraley RT, Rogers SG et al (1984) Inheritance of functional foreign genes in plants. Science 223(4635):496–498

    Article  CAS  PubMed  Google Scholar 

  • Janna OA, Maziah M, Ahmad PGKA et al (2006) Factors affecting delivery and transient expression of β-glucuronidase gene in Dendrobium sonia protocorm-like-body. Afr J Biotechnol 5:88–94

    CAS  Google Scholar 

  • Jones HD (2005) Wheat transformation: current technology and applications to grain development and composition. J Cereal Sci 41:137–147

    Article  CAS  Google Scholar 

  • Khanna H, Becker D, Kleidon J et al (2004) Centrifugation assisted Agrobacterium tumefaciens-mediated transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady finger AAB). Mol Breed 14:239–252

    Article  CAS  Google Scholar 

  • Khanna HK, Paul J-Y, Harding RM et al (2007) Inhibition of Agrobacterium-induced cell death by antiapoptotic gene expression leads to very high transformation efficiency of banana. Mol Plant-Microbe Interact 20:1048–1054

    Article  CAS  PubMed  Google Scholar 

  • Khanna H, Becker D, Whitelaw E et al (2008) Biofortification of Bananas. In: Proceedings of the tropical fruits in human nutrition and health conference, Couran Cove Island Resort, Gold Coast, Australia. 08–11 November 2008. pp 9–18

    Google Scholar 

  • Khanna H, Harding R, Becker D et al (2011) Metabolic engineering for provitamin A biofortified bananas: a sustainable strategy to combat vitamin A deficiency. Gordon conference on plant metabolic engineering Waterville Valley, New Hampshire. 24–29 July 2011

    Google Scholar 

  • Kiggundu A, Kunert K, Viljoen A et al (2002) Designing proteinase inhibitors for banana weevil control. In: 3rd international symposium on molecular and cellular biology of bananas, Luven

    Google Scholar 

  • Klein TM, Fromm M, Weissinger A (1988) Transfer of foreign genes into intact maize cells with high-velocity microprojectiles. Proc Natl Acad Sci U S A 85:4305–4309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koichi T, Bae C-H, Seo MS et al (2002) Overcoming of barriers to transformation in monocot plants. J Plant Biotechnol 4:135–141

    Google Scholar 

  • Lee S-H, Lee D-G, Woo H-S et al (2006) Production of transgenic orchardgrass via Agrobacterium-mediated transformation of seed derived callus tissues. Plant Sci 171:408–414

    Article  CAS  PubMed  Google Scholar 

  • Magambo B (2012) Generating transgenic banana (cv. Sukali Ndizi) resistant to Fusarium wilt. Master’s thesis, Queensland University of Technology, Brisbane. eprints.qut.edu.au/61024/1/Betty_Magambo_Thesis.pdf

    Google Scholar 

  • Mahn A, Matzk A, Sautter C et al (1995) Transient gene expressions in shoot apical meristems of sugarbeet seedlings after particle bombardment. J Exp Bot 46:1625–1628

    Article  CAS  Google Scholar 

  • Marchant R, Power J-B, Lucas JA (1998) Biolistic transformation of rose (Rosa hybrida L.). Ann Bot 81:109–114

    Article  Google Scholar 

  • May GD, Afza R, Mason HS et al (1995) Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Biotechnology 13:486–492

    Article  CAS  Google Scholar 

  • Megia RR, Haicour S, Tizroutine V et al (1993) Plant regeneration from cultured protoplasts of the cooking banana cv. Bluggoe (Musa ssp., ABB group). Plant Cell Rep 13:41–44

    Article  CAS  PubMed  Google Scholar 

  • Mohandas S, Sowmya HD, Saxena AK et al (2013) Transgenic banana cv. Rasthali (AAB, Silk gp) harboring Ace-AMP1 gene imparts enhanced resistance to Fusarium oxysporum f.sp. cubense race 1. Sci Hortic 164:392–399

    Article  CAS  Google Scholar 

  • Namuddu A, Kiggundu A, Mukasa SB et al (2013) Agrobacterium-mediated transformation of banana (Musa sp.) cv. Sukali Ndiizi (AAB) with a modified Carica papaya cystatin (CpCYS) gene. Afr J Biotechnol 12:1811–1819

    Article  CAS  Google Scholar 

  • Namukwaya B, Tripathi L, Tripathi JN, Arinaitwe G, Mukasa SB, Tushemereirwe WK (2012) Transgenic banana expressing Pflp gene confers enhanced resistance toXanthomonas wilt disease. Transgenic Res 21:855–865

    Article  CAS  PubMed  Google Scholar 

  • O’Kennedy MM, Burger JT, Berger DK (2001) Transformation of elite white maize using particle inflow gun and detailed analysis of a low copy integration event. Plant Cell Rep 20:721–730

    Article  Google Scholar 

  • Opabode JT (2006) Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnol Mol Biol Rev 1:12–20

    Google Scholar 

  • Panis B, Wauwe AV, Swennen R (1993) Plant regeneration through direct somatic embryogenesis from protoplasts of banana (Musa spp.). Plant Cell Rep 12:403–407

    Article  CAS  PubMed  Google Scholar 

  • Paul J-Y, Becker DK, Dickman MB et al (2011) Apoptosis-related genes confer resistance to Fusarium wilt in transgenic ‘Lady Finger’ bananas. Plant Biotechnol J 9(9):1141–1148

    Article  CAS  PubMed  Google Scholar 

  • Pei XW, Chen SK, Wen RM et al (2005) Creation of transgenic bananas expressing human lysozyme gene for panama wilt resistance. J Integr Plant Biol 47:971–977

    Article  CAS  Google Scholar 

  • Quoirin M, Aragão F, Rech E et al (1997) Transient expression of a reporter gene introduced by bioballistic bombardment into Racosperma mangium (Leguminosae family) tissues. Braz J Genet 20: 507–510

    Google Scholar 

  • Rajasekaran K, Stromberg KD, Cary JW et al (2001) Broad-spectrum antimicrobial activity in vitro of the synthetic peptide D4E1. J Agric Food Chem 49:2799–2803

    Article  CAS  PubMed  Google Scholar 

  • Remy S, Buyens A, Cammue BPA et al (2000) Production of transgenic banana plants expressing antifungal proteins. International Symposium on Banana in the Subtropics. Acta Hortic 490:219–277

    Google Scholar 

  • Russell JA, Ray MK, Sanford JC (1992) Physical trauma and tungsten toxicity reduce the efficiency of biolistic transformation. Plant Physiol 98:1050–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagi L, Remy S, Panis B et al (1994) Transient gene expression in electroporated banana (Musa spp., cv. ‘Bluggoe’, ABB group) protoplasts isolated from regenerable embryogenetic cell suspension. Plant Cell Rep 13:262–266

    Article  CAS  PubMed  Google Scholar 

  • Sagi L, Remy S, Verelst B et al (1995) Transient gene expression in transformed banana (Musa cv. Bluggoe) protoplasts and embryogenic cell suspension. Euphytica 85:89–95

    Article  Google Scholar 

  • Sagi L, Remy S, Swennen R (1998) Genetic transformation for the improvement of bananas – a critical assessment. In: INIBAP annual report. FRA, Montpellier, pp 33–36

    Google Scholar 

  • Sahrawat AK, Becker D, Lütticke S et al (2003) Genetic improvement of wheat via alien gene transfer, an assessment. Plant Sci 165:1147–1168

    Article  CAS  Google Scholar 

  • Sanford JC, Smith FD, Russell JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483–509

    Article  CAS  PubMed  Google Scholar 

  • Santos MO, Barros EVSA, Tinoco MLP et al (2002) Repetitive somatic embryogenesis in cacao and optimization of gene expression by particle bombardment. J Plant Biotechnol 4:71–76

    Google Scholar 

  • Sharma KK, Bhatnagar-Mathur P, Thorpe TA (2005) Genetic transformation technology: status and problems. In Vitro Cell Dev Biol Plant 41:102–112

    Article  CAS  Google Scholar 

  • Shekhawat UKS, Ganapathi TR (2013) Musa WRKY71 overexpression in banana plants leads to altered abiotic and biotic stress responses. PLoS ONE 8:75506

    Article  Google Scholar 

  • Shekhawat UKS, Ganapathi TR, Hadapad AB (2012) Transgenic banana plants expressing small interfering RNAs targeted against viral replication initiation gene display high-level resistance to banana bunchy top virus infection. J Gen Virol 93:1804–1813

    Article  CAS  PubMed  Google Scholar 

  • Shibata D, Liu YG (2000) Agrobacterium-mediated plant transformation with large DNA fragments. Trends Plant Sci 5:354–357

    Article  CAS  PubMed  Google Scholar 

  • Sreedharan S, Shekhawat UKS, Ganapathi TR (2013) Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses. Plant Biotechnol J 11(8):942–952

    Article  CAS  PubMed  Google Scholar 

  • Strosse H, Domergue R, Panis B et al (2003) Banana and plantain embryogenic cell suspensions. In: Vézina A, Picq C (eds) INIBAP technical guidelines 8. The International Network for the Improvement of Banana and Plantain, Montpellier

    Google Scholar 

  • Subramanyam K, Subramanyam K, Sailaja KV et al (2011) Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. Plant Cell Rep 30:425–436

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Supaibulwatana K, Mii M et al (2001) Production of transgenic plants of the liliaceous ornamental plant Agapanthus praecox ssp. orientalis (Leighton) via Agrobacterium-mediated transformation of embryogenic calli. Plant Sci 161:89–97

    Article  CAS  Google Scholar 

  • Taylor NJ, Fauquet CM (2002) Microprojectile bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol 21:963–977

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Seguin A (2004) Microprojectile particle effect on stable transformation of black spruce via bombardment. Plant Mol Biol Report 22:199a–199f

    Article  Google Scholar 

  • Tripathi L (2003) Genetic engineering for improvement of Musa production in Africa. Afr J Biotechnol 2:503–508

    Article  Google Scholar 

  • Tripathi L, Tripathi JN, Tushemereirwe WK (2008) Rapid and efficient production of transgenic East African Highland Banana (Musa spp.) using intercalary meristematic tissues. Afr J Biotechnol 7:1438–1445

    Google Scholar 

  • Tripathi JN, Lorenzen J, Bahar O et al (2014) Transgenic expression of the rice Xa21pattern-recognition receptor in banana (Musa sp.) confers resistance to Xanthomonas campestris pv. musacearum. Plant Biotechnol J 12:663–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ul-Haq I (2005) Callus proliferation and somatic embryogenesis in cotton (Gossypium hirsutum L.). Afr J Biotechnol 4:206–209

    Google Scholar 

  • Wang J, Seliskar DM, Gallagher JL (2004) Plant regeneration via somatic embryogenesis in the brackish wetland monocot Scirpus robustus. Aquat Bot 79:163–174

    Article  CAS  Google Scholar 

  • Yang J, Lee H-J, Shin DH (1999) Genetic transformation of Cymbidium orchid by particle bombardment. Plant Cell Rep 18:978–984

    Article  CAS  Google Scholar 

  • Ye GN, Daniell H, Sanford JC (1990) Optimization of delivery of foreign DNA into higher plant chloroplasts. Plant Mol Biol (Hist Arch) 15:809–819

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harjeet Kaur Khanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Khanna, H.K., Deo, P.C. (2016). Novel Gene Transfer Technologies. In: Mohandas, S., Ravishankar, K. (eds) Banana: Genomics and Transgenic Approaches for Genetic Improvement. Springer, Singapore. https://doi.org/10.1007/978-981-10-1585-4_9

Download citation

Publish with us

Policies and ethics