Skip to main content

Biofortification for Alleviating Iron Deficiency Anemia

  • Chapter
  • First Online:
Banana: Genomics and Transgenic Approaches for Genetic Improvement

Abstract

Iron deficiency anemia (IDA) is a global problem, with women and children of lower strata of society bearing the brunt of its effects. Several measures to rectify this exist, of which biofortification of food crops is increasingly gaining importance as it provides a safe and palatable way to supply adequate iron. Work on this aspect involves the physiology of iron uptake, translocation, storage, and redistribution in plants. While several food crops such as rice, wheat, and maize are already popular model plants, banana, a widely consumed fruit as well as infant food, is considered as a potential fruit crop to become “micronutrient enriched.” Fortification of banana is more advantageous over other plants owing to its ploidy, parthenocarpic fruit development, its reach to the masses at large, and availability throughout the year. Bioavailability studies on the absorption of iron from banana cultivars give an indication on the time frame needed to achieve the desired levels of iron content in banana fruit. The recent advances made in understanding the mechanisms of iron uptake in humans, plants, and homeostasis along with biofortification of crop plants including banana for increasing the iron content as described in this article appear to alleviate IDA in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen LH (2003) Interventions for micronutrient deficiency control in developing countries: past, present and future. J Nutr 133(11):3875S–3878S

    CAS  PubMed  Google Scholar 

  • Andaluz S, López-Millán AF, De las Rivas J, Aro EM, Abadía J, Abadía A (2006) Proteomic profiles of thylakoid membranes and changes in response to iron deficiency. Photosynth Res 89(2–3):141–155

    Article  CAS  PubMed  Google Scholar 

  • Andrews NC, Schmidt PJ (2007) Iron homeostasis. Annu Rev Physiol 69:69–85

    Article  CAS  PubMed  Google Scholar 

  • Aoyama T, Kobayashi T, Takahashi M et al (2009) OsYSL18 is a rice iron (III)–deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Mol Biol 70(6):681–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araki R, Murata J, Murata Y (2011) A novel barley yellow stripe 1-like transporter (HvYSL2) localized to the root endodermis transports metal–phytosiderophore complexes. Plant Cell Physiol 52(11):1931–1940

    Article  CAS  PubMed  Google Scholar 

  • Ariza-Nieto M, Sanchez MT, Heller LI, Hu Y, Welch RM, Glahn RP (2006) Cassava (Manihot esculenta) has high potential for iron biofortification. FASEB J 20(4):A624

    Google Scholar 

  • Ariza-Nieto M, Blair MW, Welch RM, Glahn RP (2007) Screening of iron bioavailability patterns in eight bean (Phaseolus vulgaris L.) genotypes using the Caco-2 cell in vitro model. J Agric Food Chem 55(19):7950–7956

    Article  CAS  PubMed  Google Scholar 

  • Baltussen R, Knai C, Sharan M (2004) Iron fortification and iron supplementation are cost-effective interventions to reduce iron deficiency in four subregions of the world. J Nutr 134(10):2678–2684

    CAS  PubMed  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–488

    Article  CAS  PubMed  Google Scholar 

  • Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem 281(43):32395–32402

    Article  CAS  PubMed  Google Scholar 

  • Bashir K, Nagasaka S, Itai RN et al (2007) Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants. Plant Mol Biol 65(3):277–284

    Article  CAS  PubMed  Google Scholar 

  • Bashir K, Ishimaru Y, Shimo H, Kakei Y, Senoura T, Takahashi R, Satob Y, Satob Y, Uozumib N, Nakanishis H, Nishizawa NK (2011a) Rice phenolics efflux transporter 2 (PEZ2) plays an important role in solubilizing apoplasmic iron. Soil Sci Plant Nutr 57(6):803–812

    Article  CAS  Google Scholar 

  • Bashir K, Ishimaru Y, Shimo H et al (2011b) The rice mitochondrial iron transporter is essential for plant growth. Nat Commun 2:322. doi:10.1038/ncomms1326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bashir K, Ishimaru Y, Itai RN, Senoura T, Takahashi M, An G, Oikawa T, Ueda M, Sato A, Uozumi N, Nakanishi H, Nishizawa NK (2015) Iron deficiency regulated OsOPT7 is essential for iron homeostasis in rice. Plant Mol Biol 88(1–2):165–176

    Article  CAS  PubMed  Google Scholar 

  • Beard J (2003) Iron deficiency alters brain development and functioning. J Nutr 133(5):1468S–1472S

    CAS  PubMed  Google Scholar 

  • Becker DK, Dugdale B, Smith MK, Harding RM, Dale JL (2000) Genetic transformation of Cavendish banana (Musa spp. AAA group) cv ‘Grand Nain’ via microprojectile bombardment. Plant Cell Rep 19(3):229–234

    Article  CAS  Google Scholar 

  • Black MM (2003) Micronutrient deficiencies and cognitive functioning. J Nutr 133(11):3927S–3931S

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blair MW, Astudillo C, Grusak MA, Graham R, Beebe SE (2009) Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Mol Breed 23(2):197–207

    Article  CAS  Google Scholar 

  • Briat JF, Labouré AM, Laulhére JP et al (1995) Molecular and cellular biology of plant ferritins. In: Iron nutrition in soils and plants. Springer, Dordrecht, pp 265–276

    Chapter  Google Scholar 

  • Brüggemann W, Maas-Kantel K, Moog PR (1993) Iron uptake by leaf mesophyll cells: the role of the plasma membrane-bound ferric-chelate reductase. Planta 190(2):151–155

    Article  Google Scholar 

  • Brumbarova T, Matros A, Mock HP, Bauer P (2008) A proteomic study showing differential regulation of stress, redox regulation and peroxidase proteins by iron supply and the transcription factor FER. Plant J 54(2):321–334

    Article  CAS  PubMed  Google Scholar 

  • Brumbarova T, Bauer P, Ivanov R (2015) Molecular mechanisms governing Arabidopsis iron uptake. Trends Plant Sci 20(2):124–133

    Article  CAS  PubMed  Google Scholar 

  • Bruner AB, Joffe A, Duggan AK, Casella JF, Brandt J (1996) Randomised study of cognitive effects of iron supplementation in non-anaemic iron-deficient adolescent girls. Lancet 348(9033):992–996

    Article  CAS  PubMed  Google Scholar 

  • Cantrell RP, Reeves TG (2002) The cereal of the world’s poor takes center stage. Science 296(5565):53. doi:10.1126/science.1070721

    Article  CAS  PubMed  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW et al (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105(1):1–14

    Article  Google Scholar 

  • Chandler S (1995) The nutritional value of bananas. In: Gowen S (ed) Bananas and plantains. Chapman & Hall, London, pp 468–480. SE1 8HN. ISBN: 0-412-36870-6

    Chapter  Google Scholar 

  • Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ (2010) Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiol 154(2):810–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong-Pérez B, Reyes M, Rojas L, Ocaña B, Ramos A, Kosky RG, Angenon G (2013) Excision of a selectable marker gene in transgenic banana using a Cre/lox system controlled by an embryo specific promoter. Plant Mol Biol 83(1–2):143–152

    Article  PubMed  CAS  Google Scholar 

  • Chu HH, Chiecko J, Punshon T, Lanzirotti A, Lahner B, Salt DE, Walker EL (2010) Successful reproduction requires the function of Arabidopsis yellow Stripe-Like1 and yellow Stripe-Like3 metal-nicotianamine transporters in both vegetative and reproductive structures. Plant Physiol 154(1):197–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cogswell ME, Parvanta I, Ickes L, Yip R, Brittenham GM (2003) Iron supplementation during pregnancy, anemia, and birth weight: a randomized controlled trial. Am J Clin Nutr 78(4):773–781

    CAS  PubMed  Google Scholar 

  • Colangelo EP, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16:3400–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly EL, Campbell NH, Grotz N, Prichard CL, Guerinot ML (2003) Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol 133(3):1102–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook JD, Reddy MB, Burri J, Juillerat MA, Hurrell RF (1997) The influence of different cereal grains on iron absorption from infant cereal foods. Am J Clin Nutr 65(4):964–969

    CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218(6):900–905

    Article  CAS  PubMed  Google Scholar 

  • Crompton DWT, Nesheim MC (2002) Nutritional impact of intestinal helminthiasis during the human life cycle. Annu Rev Nutr 22(1):35–59

    Article  CAS  PubMed  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe (III) uptake. Nature 409(6818):346–349

    Article  CAS  PubMed  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M et al (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • D’Hont A, Denoeud F, Aury JM, Baurens et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488(7410):213–217

    Article  PubMed  CAS  Google Scholar 

  • Dary O, Mora JO (2002) Food fortification to reduce vitamin A deficiency: international vitamin a consultative group recommendations. J Nutr 132(9):2927S–2933S

    CAS  PubMed  Google Scholar 

  • Das JK, Salam RA, Kumar R, Bhutta ZA (2013) Micronutrient fortification of food and its impact on woman and child health: a systematic review. Syst Rev 2(1):67. doi:10.1186/2046-4053-2-67

    Article  PubMed  PubMed Central  Google Scholar 

  • Davey MW, Gudimella R, Harikrishna JA, Sin LW, Khalid N, Keulemans J (2013) A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter-and intra-specific Musa hybrids. BMC Genomics 14(1):683. doi:10.1186/1471-2164-14-683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deák M, Horváth GV, Davletova S, Török K, Sass L, Vass I, Barna B, Király Z, Dudits D (1999) Plants ectopically expressing the ironbinding protein, ferritin, are tolerant to oxidative damage and pathogens. Nat Biotechnol 17(2):192–196

    Article  PubMed  Google Scholar 

  • DellaPenna D (1999) Nutritional genomics: manipulating plant micronutrients to improve human health. Science 285(5426):375–379

    Article  CAS  PubMed  Google Scholar 

  • DiDonato RJ, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine–metal complexes. Plant J 39(3):403–414

    Article  CAS  PubMed  Google Scholar 

  • Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320(5878):942–945

    Article  CAS  PubMed  Google Scholar 

  • Distelfeld A, Cakmak I, Peleg Z et al (2007) Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Plant 129(3):635–643

    Article  CAS  Google Scholar 

  • Djennane S, Cesbron C, Sourice S, Cournol R, Dupuis F, Eychenne M, Loridon K, Chevreau E (2011) Iron homeostasis and fire blight susceptibility in transgenic pear plants overexpressing a pea ferritin gene. Plant Sci 180(5):694–701

    Article  CAS  PubMed  Google Scholar 

  • Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, Andrews NC (2005) The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 1(3):191–200

    Article  CAS  PubMed  Google Scholar 

  • Drakakaki G, Christou P, Stöger E (2000) Constitutive expression of soybean ferritin cDNA intransgenic wheat and rice results in increased iron levels in vegetative tissues but not in seeds. Transgenic Res 9(6):445–452

    Article  CAS  PubMed  Google Scholar 

  • Drakakaki G, Marcel S, Glahn RP, Lund EK, Pariagh S, Fischer R et al (2005) Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol 59(6):869–880

    Article  CAS  PubMed  Google Scholar 

  • Durrett TP, Gassmann W, Rogers EE (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol 144(1):197–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duy D, Wanner G, Meda AR, von Wirén N, Soll J, Philippar K (2007) PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. Plant Cell 19(3):986–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eddings JL, Brown AL (1967) Absorption and translocation of foliar-applied iron. Plant Physiol 42(1):15–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng H, An F, Zhang S, Ji Z, Ling HQ, Zuo J (2006) Light-regulated, tissue-specific, and cell differentiation-specific expression of the Arabidopsis Fe (III)-chelate reductase gene AtFRO6. Plant Physiol 140(4):1345–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2015) The state of food insecurity in the world. http://www.fao.org/hunger/glossary/en/

  • Fraga CG (2005) Relevance, essentiality and toxicity of trace elements in human health. Mol Aspects Med 26(4):235–244

    Article  CAS  PubMed  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galloway R, McGuire J (1994) Determinants of compliance with iron supplementation: supplies, side effects, or psychology? Soc Sci Med 39(3):381–390

    Article  CAS  PubMed  Google Scholar 

  • Ganapathi TR, Higgs NS, Balint-Kurti PJ, Arntzen CJ, May GD, Van Eck JM (2001) Agrobacterium-mediated transformation of embryogenic cell suspensions of the banana cultivar Rasthali (AAB). Plant Cell Rep 20(2):157–162

    Article  CAS  Google Scholar 

  • García MJ, Lucena C, Romera FJ, Alcántara E, Pérez-Vicente R (2010) Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis. J Exp Bot 61(14):3885–3899. doi:10.1093/jxb/erq203

    Article  PubMed  CAS  Google Scholar 

  • García MJ, Suárez V, Romera FJ, Alcántara E, Pérez-Vicente R (2011) A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in strategy I plants. Plant Physiol Biochem 49(5):537–544

    Article  PubMed  CAS  Google Scholar 

  • García OP, Martínez M, Romano D et al (2015) Iron absorption in raw and cooked bananas: a field study using stable isotopes in women. Food Nutr Res 59:25976. doi:10.3402/fnr.v59.25976

    Article  PubMed  CAS  Google Scholar 

  • Gegios A, Amthor R, Maziya-Dixon B et al (2010) Children consuming cassava as a staple food are at risk for inadequate zinc, iron, and vitamin A intake. Plant Foods Hum Nutr 65(1):64–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gendre D, Czernic P, Conéjéro G et al (2007) TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Plant J 49(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Ghandilyan A, Ilk N, Hanhart C et al (2009) A strong effect of growth medium and organ type on the identification of QTLs for phytate and mineral concentrations in three Arabidopsis thaliana RIL populations. J Exp Bot 60(5):1409–1425

    Article  CAS  PubMed  Google Scholar 

  • Giehl RF, Lima JE, von Wirén N (2012) Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution. Plant Cell 24(1):33–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17(3):282–286

    Article  CAS  PubMed  Google Scholar 

  • Goto F, Yoshihara T, Saiki H, Takaiwa F, Shigemoto N (2000) Iron accumulation in transgenic plants expressing the soybean ferritin gene. Acta Hortic 521:101–110

    Article  CAS  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142

    Article  Google Scholar 

  • Green LS, Rogers EE (2004) FRD3 controls iron localization in Arabidopsis. Plant Physiol 136(1):2523–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregorio GB, Senadhira D, Htut H, Graham RD (2000) Breeding for trace mineral density in rice. Food Nutr Bull 21(4):382–386

    Article  Google Scholar 

  • Grillet L, Mari S, Schmidt W (2013) Iron in seeds–loading pathways and subcellular localization. Front Plant Sci 4:535. doi:10.3389/fpls.2013.00535

    Google Scholar 

  • Grusak MA, DellaPenna D (1999) Improving the nutrient composition of plants to enhance human nutrition and health. Annu Rev Plant Biol 50(1):133–161

    Article  CAS  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV et al (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388(6641):482–488

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Phillips JD, Yu Y, Leibold EA (1995) Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome. J Biol Chem 270(37):21645–21651

    Article  CAS  PubMed  Google Scholar 

  • Haas JD, Beard JL, Murray-Kolb LE, del Mundo AM, Felix A, Gregorio GB (2005) Iron-biofortified rice improves the iron stores of nonanemic Filipino women. J Nutr 135(12):2823–2830

    CAS  PubMed  Google Scholar 

  • Hardisson A, Rubio C, Baez A, Martin M, Alvarez R, Diaz E (2001) Mineral composition of the banana (Musa acuminata) from the island of Tenerife. Food Chem 73(2):153–161

    Article  CAS  Google Scholar 

  • Haydon MJ, Cobbett CS (2007) A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. Plant Physiol 143(4):1705–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriques R, Jásik J, Klein M, Martinoia E, Feller U, Schell J, Pais MS, Koncz C (2002) Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Mol Biol 50(4–5):587–597

    Article  CAS  PubMed  Google Scholar 

  • Herbik A, Koch G, Mock HP, Dushkov D, Czihal A, Thielmann J, Stephan UW (1999) Isolation, characterization and cDNA cloning of nicotianamine synthase from barley. Eur J Biochem 265(1):231–239

    Article  CAS  PubMed  Google Scholar 

  • Hess SY (2010) The impact of common micronutrient deficiencies on iodine and thyroid metabolism: the evidence from human studies. Best Pract Res Clin Endocrinol Metab 24(1):117–132

    Article  CAS  PubMed  Google Scholar 

  • Hess SY, Zimmermann MB, Arnold M, Langhans W, Hurrell RF (2002) Iron deficiency anemia reduces thyroid peroxidase activity in rats. J Nutr 132(7):1951–1955

    CAS  PubMed  Google Scholar 

  • Hetzel B (1983) Iodine deficiency disorders (IDD) and their eradication. Lancet 322(8359):1126–1129

    Article  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119(2):471–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higuchi K, Watanabe S, Takahashi M, Kawasaki S, Nakanishi H, Nishizawa NK, Mori S (2001) Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. Plant J 25(2):159–167

    Article  CAS  PubMed  Google Scholar 

  • Hindt MN, Guerinot ML (2012) Getting a sense for signals: regulation of the plant iron deficiency response. Biochim Biophys Acta (BBA) Mol Cell Res 1823(9):1521–1530

    Article  CAS  Google Scholar 

  • Hoppe M, Hulthén L, Hallberg L (2006) The relative bioavailability in humans of elemental iron powders for use in food fortification. Eur J Nutr 45(1):37–44

    Article  CAS  PubMed  Google Scholar 

  • Hsieh SI, Castruita M, Malasarn D et al (2013) The proteome of copper, iron, zinc, and manganese micronutrient deficiency in chlamydomonas reinhardtii. Mol Cell Proteomics 12(1):65–86

    Article  PubMed  CAS  Google Scholar 

  • Hurrell R (2002) How to ensure adequate iron absorption from iron-fortified food. Nutr Rev 60(7):S7–S15. doi: http://dx.doi.org/10.1301/002966402320285137

    Article  PubMed  Google Scholar 

  • Hurrell R, Egli I (2010) Iron bioavailability and dietary reference values. Am J Clin Nutr 91(5):1461S–1467S

    Article  CAS  PubMed  Google Scholar 

  • Iannotti LL, Tielsch JM, Black MM, Black RE (2006) Iron supplementation in early childhood: health benefits and risks. Am J Clin Nutr 84(6):1261–1276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J 36(3):366–381

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Takahashi M, Kobayashi T, Suzuki M, Nakanishi H, Mori S, Nishizawa NK (2008) Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice. Plant Mol Biol 66(1–2):193–203

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Kobayashi T, Nozoye T et al (2009) Rice OsYSL15 is an iron-regulated iron (III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284(6):3470–3479

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T et al (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45(3):335–346

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Bashir K, Fujimoto M et al (2009) Rice-specific mitochondrial iron-regulated gene (MIR) plays an important role in iron homeostasis. Mol Plant 2(5):1059–1066

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Masuda H, Bashir K et al (2010) Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62(3):379–390

    Article  CAS  PubMed  Google Scholar 

  • Ivanov R, Brumbarova T, Bauer P (2012) Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants. Mol Plant 5(1):27–42

    Article  CAS  PubMed  Google Scholar 

  • Jacobs A, Miles PM (1969) Role of gastric secretion in iron absorption. Gut 10(3):226–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain A, Connolly EL (2013) Mitochondrial iron transport and homeostasis in plants. Front Plant Sci 4:348. doi:10.3389/fpls.2013.00348

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong J, Connolly EL (2009) Iron uptake mechanisms in plants: functions of the FRO family of ferric reductases. Plant Sci 176(6):709–714

    Article  CAS  Google Scholar 

  • Jeong J, Cohu C, Kerkeb L, Pilon M, Connolly EL, Guerinot ML (2008) Chloroplast Fe (III) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proc Natl Acad Sci 105(30):10619–10624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson AA, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E, Tester M (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron-and zinc-biofortification of rice endosperm. PLoS One 6(9):e24476. doi:10.1371/journal.pone.0024476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones MA, Raymond MJ, Smirnoff N (2006) Analysis of the root-hair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root-hair development in Arabidopsis. Plant J 45(1):83–100

    Article  CAS  PubMed  Google Scholar 

  • Kanobe MN, Rodermel SR, Bailey T, Scott MP (2013) Changes in endogenous gene transcript and protein levels in maize plants expressing the soybean ferritin transgene. Front Plant Sci 4:196. doi:10.3389/fpls.2013.00196

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapsokefalou M, Miller DD (1991) Effects of meat and selected food components on the valence of nonheme iron during in vitro digestion. J Food Sci 56(2):352–355

    Article  CAS  Google Scholar 

  • Keen CL, Clegg MS, Hanna LA et al (2003) The plausibility of micronutrient deficiencies being a significant contributing factor to the occurrence of pregnancy complications. J Nutr 133(5):1597S–1605S

    CAS  PubMed  Google Scholar 

  • Khanna H, Becker D, Kleidon J, Dale J (2004) Centrifugation assisted Agrobacterium tumefaciens-mediated transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and lady finger AAB). Mol Breed 14(3):239–252

    Article  CAS  Google Scholar 

  • Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581(12):2273–2280

    Article  CAS  PubMed  Google Scholar 

  • Kim SA, Punshon T, Lanzirotti A et al (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314(5803):1295–1298

    Article  CAS  PubMed  Google Scholar 

  • Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P (2009) The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol 150(1):257–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Nakanishi H, Takahashi M, Kawasaki S, Nishizawa NK, Mori S (2001) In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2-deoxymugineic acid to mugineic acid in transgenic rice. Planta 212:864–871

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Ogo Y, Itai RN, Nakanishi H, Takahashi M, Mori S, Nishizawa NK (2007) The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants. Proc Natl Acad Sci 104(48):19150–19155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T, Itai RN, Ogo Y, Kakei Y, Nakanishi H, Takahashi M, Nishizawa NK (2009) The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes. Plant J 60(6):948–961

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Ogo Y, Aung MS et al (2010) The spatial expression and regulation of transcription factors IDEF1 and IDEF2. Ann Bot 105(7):1109–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T, Itai RN, Aung MS, Senoura T, Nakanishi H, Nishizawa NK (2012) The rice transcription factor IDEF1 directly binds to iron and other divalent metals for sensing cellular iron status. Plant J 69(1):81–91

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Nagasaka S, Senoura T, Itai RN, Nakanishi H, Nishizawa NK (2013) Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nat Commun 4:2792. doi:10.1038/ncomms3792

    PubMed  PubMed Central  Google Scholar 

  • Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S et al (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39(3):415–424

    Article  CAS  PubMed  Google Scholar 

  • KoiKokot S, Phuong TD (1999) Elemental content of Vietnamese rice part 2.† Multivariate data analysis. Analyst 124(4):561–569

    Google Scholar 

  • Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40(1):37–44

    Article  CAS  PubMed  Google Scholar 

  • Kumar GBS, Ganapathi TR, Revathi CJ, Srinivas L, Bapat VA (2005) Expression of hepatitis B surface antigen in transgenic banana plants. Planta 222(3):484–493

    Google Scholar 

  • Kumar GBS, Srinivas L, Ganapathi TR (2011) Iron fortification of banana by the expression of soybean ferritin. Biol Trace Elem Res 142(2):232–241

    Article  CAS  PubMed  Google Scholar 

  • Lane DJ, Bae DH, Merlot AM, Sahni S, Richardson DR (2015) Duodenal cytochrome b (DCYTB) in iron metabolism: an update on function and regulation. Nutrients 7(4):2274–2296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanquar V, Lelièvre F, Bolte S et al (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24(23):4041–4051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Jeon US, Lee SJ, Kim YK, Persson DP, Husted S et al (2009) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci 106(51):22014–22019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leyva-Guerrero E, Narayanan NN, Ihemere U, Sayre RT (2012) Iron and protein biofortification of cassava: lessons learned. Curr Opin Biotechnol 23(2):257–264

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wu XD, Hao ST, Wang XJ, Ling HQ (2008) Proteomic response to iron deficiency in tomato root. Proteomics 8(11):2299–2311

    Article  CAS  PubMed  Google Scholar 

  • Lin YF, Liang HM, Yang SY, Boch A, Clemens S, Chen CC, Wu J-F, Huang J-L, Yeh KC (2009) Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol 182(2):392–404

    Article  CAS  PubMed  Google Scholar 

  • Ling HQ, Koch G, Bäumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci 96(12):7098–7103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling HQ, Bauer P, Bereczky Z, Keller B, Ganal M (2002) The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc Natl Acad Sci U S A 99:13938–13943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lingam S, Mohrbacher J, Brumbarova T, Potuschak T, Fink-Straube C, Blondet E, Genschik P, Bauer P (2011) Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. Plant Cell 23(5):1815–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN (2010) The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell 22:2219–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Bucio J, Cruz-Ramı́rez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6(3):280–287

    Article  PubMed  CAS  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2001a) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet 102(2–3):392–397

    Article  CAS  Google Scholar 

  • Lucca P, Ye X, Potrykus I (2001b) Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol Breed 7(1):43–49

    Article  CAS  Google Scholar 

  • Lung’aho MG, Mwaniki AM, Szalma SJ et al (2011) Genetic and physiological analysis of iron biofortification in maize kernels. PLoS One 6(6):e20429. doi:10.1371/journal.pone.0020429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lynch J, Brown KM (1997) Ethylene and plant responses to nutritional stress. Physiol Plant 100(3):613–619

    Article  CAS  Google Scholar 

  • Ma JF, Nomoto K (1996) Effective regulation of iron acquisition in graminaceous plants. The role of mugineic acids as phytosiderophores. Physiol Plant 97(3):609–617

    Article  CAS  Google Scholar 

  • Ma JF, Shinada T, Matsuda C, Nomoto K (1995) Biosynthesis of phytosiderophores, mugineic acids, associated with methionine cycling. J Biol Chem 270(28):16549–16554

    Article  CAS  PubMed  Google Scholar 

  • Masuda H, Ishimaru Y, Aung MS, Kobayashi T, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Nishizawa NK (2012) Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci Rep 2:543. doi:10.1038/srep00543

    PubMed  PubMed Central  Google Scholar 

  • Maurer F, Müller S, Bauer P (2011) Suppression of Fe deficiency gene expression by jasmonate. Plant Physiol Biochem 49(5):530–536

    Article  CAS  PubMed  Google Scholar 

  • McKie AT, Barrow D, Latunde-Dada GO et al (2001) An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291(5509):1755–1759

    Article  CAS  PubMed  Google Scholar 

  • McLaren DS (1999) Vitamin A deficiency disorders. J Indian Med Assoc 97(8):320–323

    CAS  PubMed  Google Scholar 

  • Mejía LA, Chew F (1988) Hematological effect of supplementing anemic children with vitamin A alone and in combination with iron. Am J Clin Nutr 48(3):595–600

    PubMed  Google Scholar 

  • Méndez-Bravo A, Raya-González J, Herrera-Estrella L, López-Bucio J (2010) Nitric oxide is involved in alkamide-induced lateral root development in Arabidopsis. Plant Cell Physiol 51(10):1612–1626

    Article  PubMed  CAS  Google Scholar 

  • Mendoza-Cózatl DG, Xie Q, Akmakjian GZ et al (2014) OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds. Mol Plant 7(9):1455–1469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mhatre M, Srinivas L, Ganapathi TR (2011) Enhanced iron and zinc accumulation in genetically engineered pineapple plants using soybean ferritin gene. Biol Trace Elem Res 144(1–3):1219–1228

    Article  CAS  PubMed  Google Scholar 

  • Mlalazi B, Welsch R, Namanya P et al (2012) Isolation and functional characterisation of banana phytoene synthase genes as potential cisgenes. Planta 236(5):1585–1598

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra D, Mishra S, Sutar N (2010) Banana and its by-product utilization: an overview. J Sci Ind Res 69(5):323–329

    CAS  Google Scholar 

  • Mole DR (2010) Iron homeostasis and its interaction with prolyl hydroxylases. Antioxid Redox Signal 12(4):445–458

    Article  CAS  PubMed  Google Scholar 

  • Mori S (1999) Iron acquisition by plants. Curr Opin Plant Biol 2(3):250–253

    Article  CAS  PubMed  Google Scholar 

  • Mori S, Nishizawa N, Hayashi H, Chino M, Yoshimura E, Ishihara J (1991) Why are young rice plants highly susceptible to iron deficiency? In: Chen Y, Hadar Y (eds) Iron nutrition and interactions in plants. Kluwer Academic Publishers, Netherlands, pp 175–188

    Chapter  Google Scholar 

  • Morrissey J, Baxter IR, Lee J, Li L, Lahner B, Grotz N, Kaplan J, Salt DE, Guerinot ML (2009) The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell 21(10):3326–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muckenthaler MU, Galy B, Hentze MW (2008) Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr 28:197–213

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee I, Campbell NH, Ash JS, Connolly EL (2006) Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223(6):1178–1190

    Article  CAS  PubMed  Google Scholar 

  • Müller M, Schmidt W (2004) Environmentally induced plasticity of root hair development in Arabidopsis. Plant Physiol 134(1):409–419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muñoz EC, Rosado JL, López P, Furr HC, Allen LH (2000) Iron and zinc supplementation improves indicators of vitamin A status of Mexican preschoolers. Am J Clin Nutr 71(3):789–794

    PubMed  Google Scholar 

  • Murray CJL, Vos T, Lozano R et al (2013) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380(9859):2197–2223

    Article  Google Scholar 

  • Nakanishi H, Yamaguchi H, Sasakuma T, Nishizawa NK, Mori S (2000) Two dioxygenase genes, Ids3 and Ids2, from hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Mol Biol 44:199–207

    Article  CAS  PubMed  Google Scholar 

  • Narayanan N, Beyene G, Chauhan RD, Gaitán-Solis E, Grusak MA, Taylor N, Anderson P (2015) Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems. Plant Sci 240:170–181

    Article  CAS  PubMed  Google Scholar 

  • Ndungo V, Eden-Green S, Blomme G, Crozier J, Smith JJ (2006) Presence of banana xanthomonas wilt (Xanthomonas campestris pv. musacearum) in the Democratic Republic of Congo (DRC). Plant Pathol 55(2):294

    Article  Google Scholar 

  • Nemeth E, Tuttle MS, Powelson J et al (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306(5704):2090–2093

    Article  CAS  PubMed  Google Scholar 

  • Nestel P, Bouis HE, Meenakshi JV, Pfeiffer W (2006) Biofortification of staple food crops. J Nutr 136(4):1064–1067

    CAS  PubMed  Google Scholar 

  • Nicolas G, Chauvet C, Viatte L et al (2002) The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 110(7):1037–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nouet C, Motte P, Hanikenne M (2011) Chloroplastic and mitochondrial metal homeostasis. Trends Plant Sci 16(7):395–404

    Article  CAS  PubMed  Google Scholar 

  • Nozoye T, Nagasaka S, Kobayashi T et al (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286(7):5446–5454

    Article  CAS  PubMed  Google Scholar 

  • Ogo Y, Itai RN, Nakanishi H et al (2006) Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot 57(11):2867–2878

    Article  CAS  PubMed  Google Scholar 

  • Ogo Y, Itai RN, Nakanishi H, Kobayashi T, Takahashi M, Mori S, Nishizawa NK (2007) The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J 51(3):366–377

    Article  CAS  PubMed  Google Scholar 

  • Ogo Y, Kobayashi T, Itai RN et al (2008) A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. J Biol Chem 283(19):13407–13417

    Article  CAS  PubMed  Google Scholar 

  • Ogo Y, Itai RN, Kobayashi T, Aung MS, Nakanishi H, Nishizawa NK (2011) OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Mol Biol 75(6):593–605

    Article  CAS  PubMed  Google Scholar 

  • Ozkan H, Brandolini A, Torun A, Altintas S, Eker S, Kilian B, Cakmak I (2007) Natural variation and identification of microelements content in seeds of einkorn wheat (Triticum monococcum). In: Buck HT, Nisi JE, Salomon N (eds) Wheat production in stressed environments, vol 12. Springer, Dordrecht, pp 455–462

    Chapter  Google Scholar 

  • Peleg Z, Cakmak I, Ozturk L et al (2009) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat× wild emmer wheat RIL population. Theor Appl Genet 119(2):353–369

    Article  CAS  PubMed  Google Scholar 

  • Petit JM, van Wuytswinkel O, Briat JF, Lobréaux S (2001) Characterization of an iron-dependent regulatory sequence involved in the transcriptional control of AtFer1and ZmFer1 plant ferritin genes by iron. J Biol Chem 276(8):5584–5590

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47(Supplement_3):S88–S105. doi:10.2135/cropsci2007.09.0020IPBS

    Article  Google Scholar 

  • Potrykus I (2015) From the concept of totipotency to biofortified cereals. Plant Biol 66(1):1–22

    Article  CAS  Google Scholar 

  • Proudhon D, Briat JF, Lescure AM (1989) Iron induction of ferritin synthesis in soybean cell suspensions. Plant Physiol 90(2):586–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi Y, Wang S, Shen C et al (2012) OsARF12, a transcription activator on auxin response gene, regulates root elongation and affects iron accumulation in rice (Oryza sativa). New Phytol 193:109–120. doi:10.1111/j.1469-8137.2011.03910.x

    Article  CAS  PubMed  Google Scholar 

  • Qu LQ, Yoshihara T, Ooyama A, Goto F, Takaiwa F (2005) Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. Planta 222(2):225–233

    Article  CAS  Google Scholar 

  • Raffin SB, Woo CH, Roost KT, Price DC, Schmid R (1974) Intestinal absorption of hemoglobin iron-heme cleavage by mucosal heme oxygenase. J Clin Invest 54:1344–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rampey RA, Woodward AW, Hobbs BN, Tierney MP, Lahner B, Salt DE, Bartel B (2006) An Arabidopsis basic helix-loop-helix leucine zipper protein modulates metal homeostasis and auxin conjugate responsiveness. Genetics 174:1841–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravet K, Touraine B, Boucherez J, Briat JF, Gaymard F, Cellier F (2009) Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J 57(3):400–412

    Article  CAS  PubMed  Google Scholar 

  • Rellán-Álvarez R, Andaluz S, Rodríguez-Celma J, Wohlgemuth G, Zocchi G, Álvarez-Fernández A et al (2010a) Changes in the proteomic and metabolic profiles of beta vulgaris root tips in response to iron deficiency and resupply. BMC Plant Biol 10(1):120. doi:10.1186/1471-2229-10-120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rellán-Álvarez R, Giner-Martínez-Sierra J, Orduna J, Orera I, Rodríguez-Castrillón JÁ, García-Alonso JI, Abadía J, Álvarez-Fernández A (2010b) Identification of a tri-iron (III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transport. Plant Cell Physiol 51(1):91–102

    Article  PubMed  CAS  Google Scholar 

  • Ricachenevsky FK, Menguer PK, Sperotto RA (2013) kNACking on heaven’s door: how important are NAC transcription factors for leaf senescence and Fe/Zn remobilization to seeds? Front Plant Sci 4:226. doi:10.3389/fpls.2013.00226

    PubMed  PubMed Central  Google Scholar 

  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397(6721):694–697

    Article  CAS  PubMed  Google Scholar 

  • Rogers EE, Guerinot ML (2002) FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. Plant Cell 14(8):1787–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romera FJ, Alcantara E, De La Guardia MD (1999) Ethylene production by Fe-deficient roots and its involvement in the regulation of Fe-deficiency stress responses by strategy I plants. Ann Bot 83(1):51–55

    Article  CAS  Google Scholar 

  • Römheld V (1987) Different strategies for iron acquisition in higher plants. Physiol Plant 70(2):231–234

    Article  Google Scholar 

  • Römheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 80(1):175–180

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2(8):406–414

    Article  CAS  PubMed  Google Scholar 

  • Sagi L, Panis B, Remy S, Schoofs H, De Smet K, Swennen R, Cammue BPA (1995) Genetic transformation of banana and plantain (Musa spp.) via particle bombardment. Biotechnology 13(5):481–485

    Article  CAS  PubMed  Google Scholar 

  • Saito A, Iino T, Sonoike K, Miwa E, Higuchi K (2010) Remodeling of the major light-harvesting antenna protein of PSII protects the young leaves of barley (Hordeum vulgare L.) from photoinhibition under prolonged iron deficiency. Plant Cell Physiol 51(12):2013–2030

    Article  CAS  PubMed  Google Scholar 

  • Sandberg AS, Hulthen LR, Turk M (1996) Dietary Aspergillus niger phytase increases iron absorption in humans. J Nutr 126(2):476–480

    CAS  PubMed  Google Scholar 

  • Sankaran RP, Huguet T, Grusak MA (2009) Identification of QTL affecting seed mineral concentrations and content in the model legume Medicago truncatula. Theor Appl Genet 119(2):241–253

    Article  CAS  PubMed  Google Scholar 

  • Santi S, Schmidt W (2008) Laser microdissection-assisted analysis of the functional fate of iron deficiency-induced root hairs in cucumber. J Exp Bot 59(3):697–704

    Article  CAS  PubMed  Google Scholar 

  • Santi S, Cesco S, Varanini Z, Pinton R (2005) Two plasma membrane H+-ATPase genes are differentially expressed in iron-deficient cucumber plants. Plant Physiol Biochem 43(3):287–292

    Article  CAS  PubMed  Google Scholar 

  • Sazawal S, Black RE, Ramsan M, Chwaya HM, Stoltzfus RJ, Dutta A et al (2006) Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebocontrolled trial. Lancet 367(9505):133–143

    Article  CAS  PubMed  Google Scholar 

  • Sazawal S, Dhingra U, Dhingra P et al (2010) Micronutrient fortified milk improves iron status, anemia and growth among children 1–4 years: a double masked, randomized, controlled trial. PLoS One 5(8):e12167. doi:10.1371/journal.pone.0012167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wirén N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore-and nicotianamine-chelated metals. J Biol Chem 279(10):9091–9096

    Article  CAS  PubMed  Google Scholar 

  • Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol 141(1):1–26

    Article  CAS  Google Scholar 

  • Schmidt W, Tittel J, Schikora A (2000) Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. Plant Physiol 122(4):1109–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Séguéla M, Briat JF, Vert G, Curie C (2008) Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway. Plant J 55(2):289–300

    Article  PubMed  CAS  Google Scholar 

  • Selote D, Samira R, Matthiadis A, Gillikin JW, Long TA (2015) Iron-binding E3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors. Plant Physiol 167(1):273–286

    Article  CAS  PubMed  Google Scholar 

  • Shayeghi M, Latunde-Dada GO, Oakhill JS et al (2005) Identification of an intestinal heme transporter. Cell 122(5):789–801

    Article  CAS  PubMed  Google Scholar 

  • Shekhawat UK, Ganapathi TR (2013) MusaWRKY71 overexpression in banana plants leads to altered abiotic and biotic stress responses. PLoS One 8(10):e75506. doi:10.1371/journal.pone.0075506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shekhawat UKS, Ganapathi TR, Srinivas L (2011) Cloning and characterization of a novel stress-responsive WRKY transcription factor gene (MusaWRKY71) from Musa spp. cv. Karibale Monthan (ABB group) using transformed banana cells. Mol Biol Rep 38(6):4023–4035

    Article  CAS  PubMed  Google Scholar 

  • Shi R, Li H, Tong Y, Jing R, Zhang F, Zou C (2008) Identification of quantitative trait locus of zinc and phosphorus density in wheat (Triticum aestivum L.) grain. Plant and Soil 306(1–2):95–104

    Article  CAS  Google Scholar 

  • Shojima S, Nishizawa NK, Mori S (1989) Establishment of a cell-free system for the biosynthesis of nicotianamine. Plant Cell Physiol 30(5):673–677

    CAS  Google Scholar 

  • Solomons NW, Ruz M (1998) Trace element requirements in humans: an update. J Trace Elem Exp Med 11(2–3):177–195

    Article  CAS  Google Scholar 

  • Sommer A (2008) Vitamin A deficiency and clinical disease: an historical overview. J Nutr 138(10):1835–1839

    CAS  PubMed  Google Scholar 

  • Sperotto RA, Ricachenevsky FK, de Abreu WV, Fett JP (2012) Iron biofortification in rice: it’s a long way to the top. Plant Sci 190:24–39

    Article  CAS  PubMed  Google Scholar 

  • Sreeramanan S, Mahmood M, Abdullah MP, Meon S, Xavier R (2006) Transient expression of gusA and gfp gene in Agrobacterium-mediated banana transformation using single tiny meristematic bud. Asian J Plant Sci 5(3):468–480

    Article  Google Scholar 

  • Stangoulis JC, Huynh BL, Welch RM, Choi EY, Graham RD (2007) Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content. Euphytica 154(3):289–294

    Article  Google Scholar 

  • Stoltzfus RJ (2003) Iron deficiency: global prevalence and consequences. Food Nutr Bull 24(Supplement 2):99–103

    Article  Google Scholar 

  • Studholme DJ, Kemen E, MacLean D et al (2010) Genome-wide sequencing data reveals virulence factors implicated in banana Xanthomonas wilt. FEMS Microbiol Lett 310(2):182–192

    Article  CAS  PubMed  Google Scholar 

  • Subramanyam K, Subramanyam K, Sailaja KV, Srinivasulu M, Lakshmidevi K (2011) Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. Plant Cell Rep 30(3):425–436

    Article  CAS  PubMed  Google Scholar 

  • Suharno D, Karyadi D, West CE, Hautvast JGA (1993) Supplementation with vitamin A and iron for nutritional anaemia in pregnant women in west Java, Indonesia. Lancet 342(8883):1325–1328

    Article  CAS  PubMed  Google Scholar 

  • Susin S, Abian J, Sanchez-Baeza F, Peleato ML, Abadia A, Gelpi E, Abadia J (1993) Riboflavin 3′-and 5′-sulfate, two novel flavins accumulating in the roots of iron-deficient sugar beet (Beta vulgaris). J Biol Chem 268(28):20958–20965

    CAS  PubMed  Google Scholar 

  • Susín S, Abián J, Peleato ML, Sánchez-Baeza F, Abadía A, Gelpi E, Abadía J (1994) Flavin excretion from roots of iron-deficient sugar beet (Beta vulgaris L.). Planta 193(4):514–519

    Article  Google Scholar 

  • Swanson MD, Winter HC, Goldstein IJ, Markovitz DM (2010) A lectin isolated from bananas is a potent inhibitor of HIV replication. J Biol Chem 285(12):8646–8655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi M, Yamaguchi H, Nakanishi H, Shioiri T, Nishizawa NK, Mori S (1999) Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiol 121(3):947–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15(6):1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi M, Nozoye T, Kitajima N et al (2009) In vivo analysis of metal distribution and expression of metal transporters in rice seed during germination process by microarray and X-ray fluorescence imaging of Fe, Zn, Mn, and Cu. Plant and Soil 325(1–2):39–51

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng YS, Su YS, Chen LJ, Lee YJ, Hwang I, Li HM (2006) Tic21 is an essential translocon component for protein translocation across the chloroplast inner envelope membrane. Plant Cell 18(9):2247–2257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorneycroft D, Sherson SM, Smith SM (2001) Using gene knockouts to investigate plant metabolism. J Exp Bot 52(361):1593–1601

    Article  CAS  PubMed  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314(5803):1298–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11(9):636–646

    Article  CAS  PubMed  Google Scholar 

  • Van Thuy P, Berger J, Davidsson L et al (2003) Regular consumption of NaFeEDTA-fortified fish sauce improves iron status and reduces the prevalence of anemia in anemic Vietnamese women. Am J Clin Nutr 78(2):284–290

    CAS  PubMed  Google Scholar 

  • Van Wuytswinkel O, Vansuyt G, Grignon N, Fourcroy P, Briat JF (1999) Iron homeostasis alteration in transgenic tobacco overexpressing ferritin. Plant J 17(1):93–97

    Article  PubMed  Google Scholar 

  • Vasconcelos M, Datta K, Oliva N et al (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164(3):371–378

    Article  CAS  Google Scholar 

  • Vert G, Briat JF, Curie C (2001) Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant J 26(2):181–189

    Article  CAS  PubMed  Google Scholar 

  • Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14(6):1223–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vert G, Barberon M, Zelazny E, Séguéla M, Briat JF, Curie C (2009) Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells. Planta 229(6):1171–1179

    Article  CAS  PubMed  Google Scholar 

  • Vigani G, Zocchi G (2009) The fate and the role of mitochondria in Fe-deficient roots of strategy I plants. Plant Signal Behav 4(5):375–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vigani G, Zocchi G (2010) Effect of Fe deficiency on mitochondrial alternative NAD (P) H dehydrogenases in cucumber roots. J Plant Physiol 167(8):666–669

    Article  CAS  PubMed  Google Scholar 

  • Vigani G, Maffi D, Zocchi G (2009) Iron availability affects the function of mitochondria in cucumber roots. New Phytol 182(1):127–136

    Article  CAS  PubMed  Google Scholar 

  • von Wirén N, Mori S, Marschner H, Romheld V (1994) Iron inefficiency in maize mutant ys1 (Zea mays L. cv Yellow-Stripe) is caused by a defect in uptake of iron phytosiderophores. Plant Physiol 106(1):71–77

    Article  Google Scholar 

  • Von Wirén N, Klair S, Bansal S, Briat JF, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both Fe III and Fe II. Implications for metal transport in plants. Plant Physiol 119:1107–1114

    Article  Google Scholar 

  • Vulpe CD, Kuo YM, Murphy TL et al (1999) Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the Sla mouse. Nat Genet 21(2):195–199

    Article  CAS  PubMed  Google Scholar 

  • Wairegi LW, van Asten PJ, Tenywa MM, Bekunda MA (2010) Abiotic constraints override biotic constraints in east African highland banana systems. Field Crop Res 117(1):146–153

    Article  Google Scholar 

  • Wall MM (2006) Ascorbic acid, vitamin A, and mineral composition of banana (Musa sp.) and papaya (Carica papaya) cultivars grown in Hawaii. J Food Compos Anal 19(5):434–445

    Article  CAS  Google Scholar 

  • Waltz E (2014) Vitamin A super banana in human trials. Nat Biotechnol 32(9):857

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Cuia Y, Liua Y, Fana H, Dua J, Huangd Z, Yuana Y, Wua H, Linga HQ (2013) Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana. Mol Plant 6(2):503–513

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100(4):681–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters BM, Blevins DG, Eide DJ (2002) Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Plant Physiol 129(1):85–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters BM, Chu HH, DiDonato RJ et al (2006) Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiol 141(4):1446–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters BM, Uauy C, Dubcovsky J, Grusak MA (2009) Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J Exp Bot 60(15):4263–4274

    Article  CAS  PubMed  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55(396):353–364

    Article  CAS  PubMed  Google Scholar 

  • Welch RM, House WA, Beebe S, Cheng Z (2000) Genetic selection for enhanced bioavailable levels of iron in bean (Phaseolus vulgaris L.) seeds. J Agric Food Chem 48(8):3576–3580

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182(1):49–84

    Article  CAS  PubMed  Google Scholar 

  • WHO (2003) Diet, nutrition and the prevention of chronic diseases. World Health Organ Tech Rep Ser 916:i–viii. http://www.who.int/dietphysicalactivity/publications/trs916/en/

    Google Scholar 

  • Wieringa FT, Dijkhuizen MA, West CE, Thurnham DI, Van der Meer JW (2003) Redistribution of vitamin A after iron supplementation in Indonesian infants. Am J Clin Nutr 77(3):651–657

    CAS  PubMed  Google Scholar 

  • Wieser S, Plessow R, Eichler K, Malek O, Capanzana MV, Agdeppa I, Bruegger U (2013) Burden of micronutrient deficiencies by socio-economic strata in children aged 6 months to 5 years in the Philippines. BMC Public Health 13(1):1167

    Article  PubMed  PubMed Central  Google Scholar 

  • Wirth J, Poletti S, Aeschlimann B, Yakandawala N, Drosse B, Osorio S, Tohge T, Fernie AR, Günther D, Gruissem W, Sautter C (2009) Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol J 7(7):631–644

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2007) Joint statement by the World Health organization, the World Food Programme and the United Nations Children’s Fund: preventing and controlling micronutrient deficiencies in populations affected by an emergency. WHO, Geneva. http://www.unicef.org/nutrition/index_iodine.html

    Google Scholar 

  • Wu J, Wang C, Zheng L, Wang L, Chen Y, Whelan J, Shou H (2010) Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa. J Exp Bot 62(2):667–674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu H, Chen C, Du J, Liu H, Cui Y, Zhang Y, Ling HQ et al (2012) Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiol 158(2):790–800

    Article  CAS  PubMed  Google Scholar 

  • Wyllie JC, Kaufman N (1982) An electron microscopic study of heme uptake by rat duodenum. Labo Investig; J Tech Methods Pathol 47(5):471–476

    CAS  Google Scholar 

  • Yuan YX, Zhang J, Wang DW, Ling HQ (2005) AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants. Cell Res 15:613–621

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Wu H, Wang N, Li J, Zhao W, Du J, Wang D, Ling HQ (2008) FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res 18:385–397

    Article  CAS  PubMed  Google Scholar 

  • Zhai Z, Gayomba SR, Jung HI et al (2014) OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis. Plant Cell Online 26(5):2249–2264

    Article  CAS  Google Scholar 

  • Zhang DL, Ghosh MC, Rouault TA (2014) The physiological functions of iron regulatory proteins in iron homeostasis-an update. Front Pharmacol 13(5):124. doi:10.3389/fphar.2014.00124

    Google Scholar 

  • Zhang J, Liu B, Li M, Feng D, Jin H, Wang P, Liu J, Xiong F, Wang J, Wang HB (2015) The bHLH Transcription Factor bHLH104 Interacts with IAA-LEUCINE RESISTANT3 and Modulates Iron Homeostasis in Arabidopsis. Plant Cell 27(3):787–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Ying Y, Wang L, Wang F, Whelan J, Shou H (2010) Identification of a novel iron regulated basic helix-loop-helix protein involved in Fe homeostasis in Oryza sativa. BMC Plant Biol 10:166. http://www.biomedcentral.com/1471-2229/10/166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng L, Fujii M, Yamaji N et al (2011) Isolation and characterization of a barley yellow stripe-like gene, HvYSL5. Plant Cell Physiol 52(5):765–774

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann MB, Hurrell RF (2007) Nutritional iron deficiency. Lancet 370(9586):511–520

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann M, Adou P, Torresani T, Zeder C, Hurrell R (2000) Persistence of goiter despite oral iodine supplementation in goitrous children with iron deficiency anemia in Cote d’Ivoire. Am J Clin Nutr 71(1):88–93

    CAS  PubMed  Google Scholar 

  • Zimmermann MB, Zeder C, Chaouki N, Torresani T, Saad A, Hurrell RF (2002) Addition of microencapsulated iron to iodized salt improves the efficacy of iodine in goitrous, iron-deficient children: a randomized, double-blind, controlled trial. Eur J Endocrinol 147(6):747–753

    Google Scholar 

  • Zimmermann MB, Zeder C, Chaouki N, Saad A, Torresani T, Hurrell RF (2003) Dual fortification of salt with iodine and microencapsulated iron: a randomized, double-blind, controlled trial in Moroccan schoolchildren. Am J Clin Nutr 77(2):425–432

    CAS  PubMed  Google Scholar 

  • Zimmermann MB, Wegmueller R, Zeder C et al (2004) Dual fortification of salt with iodine and micronized ferric pyrophosphate: a randomized, double-blind, controlled trial. Am J Clin Nutr 80(4):952–959

    CAS  PubMed  Google Scholar 

  • Zimmermann MB, Winichagoon P, Gowachirapant S et al (2005) Comparison of the efficacy of wheat-based snacks fortified with ferrous sulfate, electrolytic iron, or hydrogen-reduced elemental iron: randomized, double-blind, controlled trial in Thai women. Am J Clin Nutr 82(6):1276–1282

    CAS  PubMed  Google Scholar 

  • Zimmermann MB, Muthayya S, Moretti D, Kurpad A, Hurrell RF (2006) Iron fortification reduces blood lead levels in children in Bangalore, India. Pediatrics 117(6):2014–2021

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Biotechnology Industry Research Assistance Council (a Government of India Enterprise of DBT) for the financial assistance in the form of banana biofortification project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Ganapathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Patel, P., Yadav, K., Ganapathi, T.R. (2016). Biofortification for Alleviating Iron Deficiency Anemia. In: Mohandas, S., Ravishankar, K. (eds) Banana: Genomics and Transgenic Approaches for Genetic Improvement. Springer, Singapore. https://doi.org/10.1007/978-981-10-1585-4_20

Download citation

Publish with us

Policies and ethics