Skip to main content

Somatic Embryogenesis as a Tool in Genetic Transformation

  • Chapter
  • First Online:
Banana: Genomics and Transgenic Approaches for Genetic Improvement

Abstract

Bananas and plantains are the most important staple food crop in the world. The production of banana is hampered by various stresses. Genetic transformation has become an important potential tool in developing improved banana with desired agronomic traits, which is highly difficult to achieve through conventional breeding. To be successful, genetic engineering technique requires reliable, efficient in vitro regeneration protocol through tissue culture. Plant regeneration through somatic embryogenesis has become an important tool due to high proliferation potential, minimal genetic instability, and single-cell origin which in turn reduces the formation of chimera. However, banana is highly recalcitrant toward the development of somatic embryogenesis. Considerable progress has been achieved in the regeneration of banana through somatic embryogenesis, but there are still many factors to overcome. In present review key factors such as age of the explant, genotype, and plant growth regulators affecting the induction and regeneration of plants by embryogenic callus are discussed. This review also provides special focus on methods being applied in plant transformation through somatic embryogenesis, different factors which affect somatic embryogenesis, and various strategies to improve the transformation efficiency using somatic embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahloowalia BS (1991) Somatic embryos in monocots. Their genesis and genetic stability. Rev Cytol Biol Veget Bot 14:223–235

    Google Scholar 

  • Arinaitwe G (2008) Improved Agrobacterium-mediated transformation methods for banana and plantain. Catholic University of Leuven, Belgium. Ph.D. thesis

    Google Scholar 

  • Arinaitwe G, Rubaihayo PR, Magambo MJS (2000) Proliferation rate effects of cytokinins on banana (Musa spp.) cultivars. Sci Hortic 86:13–21

    Article  CAS  Google Scholar 

  • Arinaitwe G, Remy S, Strosse H, Swennen R, Sági L (2004) Agrobacterium- and particle bombardment-mediated transformation of a wide range of banana cultivars. In: Mohan, Jain S, Swennen R (eds) Banana improvement: cellular, molecular biology, and induced mutations. Science Publishers Inc., Enfield, pp 351–357

    Google Scholar 

  • Assani A, Bakry F, Kerbellec F, Haicour R, Wenzel G, Fehr W (2003) Production of haploids from anther culture of banana (Musa balbisiana (BB)). Plant Cell Rep 21:511–516

    CAS  PubMed  Google Scholar 

  • Becker DK, Dugdale B, Smith MK, Harding RM, Dale JL (2000) Genetic transformation of Cavendish banana (Musa spp. AAA group) cv. Grand Nain’via microprojectile bombardment. Plant Cell Rep 19:229–234

    Article  CAS  Google Scholar 

  • Betty N (2011) Expression of amphipathic protein (sap1) from sweet pepper for induction of resistance to xanthomonas campestris pv. musacearum in banana. B.Schn. Makerere university

    Google Scholar 

  • Carvalho CHS, Zehr UB, Nilupa G, Anderson J, Kononowicz HH, Hodges TK, Axtell JD (2004) Agrobacterium-mediated transformation of sorghum: factors that affect transformation efficiency. Genet Mol Biol 27:259–269

    Article  CAS  Google Scholar 

  • Chakrabarti A, Ganapathi TR, Mukherjee PK, Bapat VA (2003) MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216:587–596

    CAS  PubMed  Google Scholar 

  • Chang S, Shu H (2013) A method to suppress the browning in banana (Musa- AAA) embryogenic callus induced. Res J Biotech 8:63–69

    CAS  Google Scholar 

  • Chee WW, Jalil M, Abdullah Meilina OR, Othman Y, Khalid N (2005) Comparison of β-glucuronidase expression and anatomical localization in bombarded immature embryos of banana cultivar Mas via biolistic transformation. As Pac J Mol Biol Biotechnol 13:15–22

    Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong B, Gómez R, Reyes M, Bermúdez I, Gallardo J, Freire M, Posada L, Herrera I, Swennen R (2005) New methodology for the establishment of cell suspensions of Grande Naine (AAA). InfoMusa 14:13–17

    Google Scholar 

  • Christou P (1996) Transformation technology. Trends Plant Sci 1:423–431

    Article  Google Scholar 

  • Côte FX, Domergue R, Monmarson S, Schwendiman J, Teisson C, Escalant JV (1996) Embryogenic cell suspensions from male flower of Musa AAA cv. Grand nain. PhysiolPlantarum 97:285–290

    Article  Google Scholar 

  • Dai XM, Xiao W, Huang X, Zhao JT, Chen YF, Huang XL (2010) Plant regeneration from embryogenic cell suspensions and protoplasts of dessert banana cv. Da Jiao’ (Musa paradisiacal ABB Linn.) via somatic embryogenesis. In Vitro Cell Dev Biol Plant 46:403–410

    Article  Google Scholar 

  • Daniels D, Gomez KR, Reyes VM (2002) plant regeneration system via somatic embryogenesis in the hybrid cultivar FHIA-21 group). In Vitro Cell Dev Biol Plant 38:330–333

    Article  Google Scholar 

  • Dhed’a D, Dumortier F, Panis B, Vuylsteke D, De Langhe E (1991) Plant regeneration in cell suspension cultures of the cooking banana cv. Bluggoe’ (Musa spp. ABB group). Fruits 46:125–135

    Google Scholar 

  • Elayabalan S, Kalaiponmani K, Michael Pillay A, Chandrasekar R, Selvarajan KK, Kumar, Balasubramanian P (2013a) Efficient regeneration of the endangered banana cultivar Virupakshi’ (AAB) via embryogenic cell suspension from immature male flowers. Afr J Biotechnol 12:563–569

    CAS  Google Scholar 

  • Elayabalan S, Kalaiponmani K, Subramaniam S, Selvarajan R, Panchanathan R, Muthuvelayoutham R, Kumar KK, Balasubramanian P (2013b) Development of Agrobacterium-mediated transformation of highly valued hill banana cultivar Virupakshi (AAB) for resistance to BBTV disease. World J Microbiol Biotechnol 29:589–596

    Article  CAS  PubMed  Google Scholar 

  • Escalant JV, Teisson C (1989) Somatic embryogenesis and plants from immature zygotic embryos of the species Musa acuminate and Musa balbisiana. Plant Cell Rep 7:665–668

    CAS  PubMed  Google Scholar 

  • Escalant JV, Teisson C, Cote FX (1994) Amplified somatic embryogenesis from male flowers of triploid banana and plantain cultivars (Musa sp.). In Vitro Cell Dev Biol Plant 30:181–186

    Article  Google Scholar 

  • Esuola CO, Tripathi L, Fawole I (2011) Effect of various virulent strains of Agrobacterium tumefaciens on genetic transformation of banana (Musa sp.) cultivar Williams. Afr J Hortic Sci 5:84–91

    Google Scholar 

  • FAOSTAT Agriculture Data (2013) - http://faostat3.fao.org/download/Q/QC/E

  • Finer JJ, Mc Mullen MD (1991) Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell Dev Biol Plant 27:175–182

    Article  Google Scholar 

  • Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for the DNA delivery to plant cells. Plant Cell Rep 11:323–328

    Article  CAS  PubMed  Google Scholar 

  • Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Reg 43:27–47

    Article  CAS  Google Scholar 

  • Ganapathi TR, Suprasanna P, Bapat VA, Kulakarni VM, Rao PS (1999) Somatic embryogenesis and plant regeneration from male flower buds in banana. Curr Sci 76:1229–1231

    Google Scholar 

  • Ganapathi TR, Higgs NS, Balint-Kurti PJ, Arntzen CJ, May GD, Van Eck JM (2001) Agrobacterium-mediated transformation of the embryogenic cell suspensions of the banana cultivar Rasthali (AAB). Plant Cell Rep 20:157–162

    Article  CAS  Google Scholar 

  • George EF, Hall MA, De Klerk G-J (2008) Plant propagation by tissue culture, vol 1, 3rd edn, The background. Springer, Dordrecht, p 551

    Google Scholar 

  • Georget F, Domergue R, Ferrier N, Cote FX (2000) Morpho-histological study of the different constituents of a banana (Musa AAA, cv. Grand Naine) embryogenic cell suspension. Plant Cell Rep 19:748–754

    Article  Google Scholar 

  • Ghag SB, Shekhawat UKS, Ganapathi TR (2012) Petunia floral defensins with unique prodomains as novel candidates for development of Fusarium wilt resistance in transgenic banana plants. PLoS One 7:e39557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghag SB, Shekhawat UKS, Ganapathi TR (2014a) Transgenic banana plants expressing a Stellaria media defensin gene (Sm-AMP-D1) demonstrate improved resistance to Fusarium oxysporum. Plant Cell Tissue Organ Cult 119:247–255

    Article  CAS  Google Scholar 

  • Ghag SB, Shekhawat UKS, Ganapathi TR (2014b) Native cell-death genes as candidates for developing wilt resistance in transgenic banana plants. AoB PLANTS plu037; doi:10.1093/aobpla/plu037

    Google Scholar 

  • Ghag SB, Shekhawat UKS, Ganapathi TR (2014b) Host induced posttranscriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. Plant Biotechnol J12:541–553

    Article  CAS  Google Scholar 

  • Gheysen G, Angenon G, Van Montague M (1998) Agrobacterium mediated plant transformation: a scientifically intriguing story with significant application. In: Lindsey K (ed) Transgenic plant research. Harwood Academic Press, Amsterdam, pp 1–33

    Google Scholar 

  • Ghosh A, Ganapathi TR, Nath P, Bapat VA (2009) Establishment of embryogenic cell suspension cultures and Agrobacterium mediated transformation in an important Cavendish banana cv. Robusta (AAA). Plant Cell Tissue Organ Cult 97:131–139

    Article  Google Scholar 

  • Gomez KR, De Feria MS, Posada LP, Gilliard T, Bernal FM, Reyes MV, Chavez MM, Quiala EM (2002) Somatic embryogenesis of the banana hybrid cultivar FHIA-18 (AAA-B) in liquid medium and scaled –up in a bioreactor. Plant Cell Tissue Organ Cult 68:21–26

    Article  Google Scholar 

  • Grapin A, Schwendiman J, Teisson C (1996) Somatic embryogenesis in plantain banana. In Vitro Cell Dev Biol Plant 32:66–71

    Article  Google Scholar 

  • Grapin A, Ortı’z JL, Lescot T, Ferrie’re N, Côte FX (2000) Recovery and regeneration of embryogenic cultures from female flowers of False Horn Plantain. Plant Cell Tissue Organ Cult 61:237–244

    Article  CAS  Google Scholar 

  • Haccius B (1978) Question of unicellular origin of non-zygotic embryos in callus cultures. Phytomorphology 28:74–81

    Google Scholar 

  • Hadi MZ, McMullen MD, Finer JJ (1996) Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep 15:500–505

    Article  CAS  PubMed  Google Scholar 

  • Hansen G (2000) Evidence for Agrobacterium-induced apoptosis in maize cells. Mol Plant Microbe Interact 13:649–657

    Article  CAS  PubMed  Google Scholar 

  • Hansen G, Martha SW (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–231

    Article  PubMed  Google Scholar 

  • Harwood WA (2011) Advances and remaining challenges in the transformation of barley and wheat. J Exp Bot 63:1791–1798

    Article  PubMed  CAS  Google Scholar 

  • Henry RJ (1998) Molecular and biochemical characterization of somaclonal variation. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer Academic Publishers, Dordrecht, 485–499

    Chapter  Google Scholar 

  • Herrera-Estrella L, Simpson J, Martinez-Trujillo M (2005) Transgenic plants: an historical perspective. Methods Mol Biol 286:3–32

    CAS  PubMed  Google Scholar 

  • Houllou-Kido LM, Kido EA, Falco MC, Silva Filho MCS, Figueira AVO, Nogueira NL, Rossi ML, Neto AT (2005) Somatic embryogenesis and the effect of particle bombardment on banana ‘Maçã’ regeneration. Pesqagropec bras Brasília 40:1081–1086

    Google Scholar 

  • Hu CH, Wei YR, Huang YH, Yi GJ (2013) An efficient protocol for the production of chit42 transgenic Furenzhi banana (Musa spp. AA group) resistant to Fusarium oxysporum. In Vitro Cell Dev Biol Plant 49:584–592

    Article  CAS  Google Scholar 

  • Huang X, Huang XL, Xiao W, Zhao JT, Di X, Chen YF, Li XJ (2007) Highly efficient Agrobacterium-mediated transformation of embryogenic cell suspensions of Musa acuminata cv. Mas (AA)via a liquid co-cultivation system. Plant Cell Rep 26:1755–1762

    Article  CAS  PubMed  Google Scholar 

  • Husina N, Jalil M, Othman RY, Khalid N (2014) Enhancement of regeneration efficiency in banana (Musa acuminate cv. Berangan) by using proline and glutamine. Sci Hortic 168:33–37

    Article  CAS  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  CAS  PubMed  Google Scholar 

  • Jalil M, Khalid N, Othman RY (2003) Plant regeneration from embryogenic suspension cultures of Musa acuminata cv. Mas (AA). Plant Cell Tissue Organ Cult 75:209–214

    Article  CAS  Google Scholar 

  • Kamle M, Bajpai A, Chandra R, Kalim S, Kumar R (2011) Somatic embryogenesis for crop improvement. GERF Bull Biosci 2:54–59

    Google Scholar 

  • Khanna H, Becker D, Kleidon J, Dale J (2004) Centrifugation Assisted Agrobacterium tumefaciens-mediated Transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady finger AAB). Mol Breed 14:239–252

    Article  CAS  Google Scholar 

  • Kitamiya E, Suzuki S, Sano T, Nagata T (2000) Isolation of two genes that were induced upon initiation of somatic embryogenesis on carrot hypocotyls by high concentrations of 2,4-D. Plant Cell Rep 19:551–557

    Article  CAS  Google Scholar 

  • Kovács G, Sági L, Jacon G, Arinaitwe G, Busogoro JP, Thiry E, Strosse H, Swennen R, Remy S (2013) Expression of a rice chitinase gene in transgenic banana (‘Gros Michel’, AAA genome group) confers resistance to black leaf streak disease. Transgenic Res 22:117–130

    Article  PubMed  CAS  Google Scholar 

  • Li L, Qu R, de Kochko A, Fauquet C, Beachy RN (1993) An improved rice transformation system using the biolistic method. Plant Cell Rep 10:401–405

    Google Scholar 

  • Ma SS (1991) Somatic embryogenesis and plant regeneration from- cell suspension culture of banana. In: Department of Agriculture, National Taiwan University (ed) Proceedings of the symposium on tissue culture and horticultural crops. National Taiwan University, Taipei, 181–188

    Google Scholar 

  • Magambo B (2012) Generation of transgenic banana (cv. SukaliNdizi) resistance to Fusarium wilt, B.Schn.Queensland Universisty of Technology. Australia

    Google Scholar 

  • Mahn A, Matzk A, Sautter C, Schiemann J (1995) Transient gene expressions in shoot apical meristems of sugarbeet seedlings after particle bombardment. J Exp Bot 46:1625–1628

    Article  CAS  Google Scholar 

  • McCullen CA, Binns AN (2006) Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell DevBiol 22:101–127

    Article  CAS  Google Scholar 

  • Mohandas S, Sowmya HD, Manjula R, Pratibha KY, Meenakshi S, Ajay KM (2011) Development of highly regenerative embryogenic cell suspensions of ‘NanjangudRasbale’ (syn. ‘Rasthali’, Musa, AAB, Silk Subgroup) and transformants with AMP gene. Acta Hort 897:245–249

    Article  Google Scholar 

  • Mohandas S, Sowmya HD, Meenakshi S (2013a) Somatic Embryogenesis and plant regeneration through cell suspension in Diploid (AB) banana cultivar Elakki Bale (synNeypoovan). J Plant Biochem Biotechnol 22:245–249

    Article  Google Scholar 

  • Mohandas S, Sowmya HD, Saxena AK, Meenakshi S, Rani RT, Mahmood R (2013b) Transgenic banana cv. Rasthali (AAB, Silk gp) harboring Ace-AMP1 gene imparts enhanced resistance to Fusarium oxysporumf.sp. cubense race. Sci Hortic 164:392–399

    Article  CAS  Google Scholar 

  • Morais-Lino LS, Santos-Serejo JA, Oliveira eSilva S, Ferreira de Santana JR, Kobayashi AK (2008) Cell suspension culture and plant regeneration of a Brazilian plantain, cultivar Terra. Pesqagropec bras Brasília 43:1325–1330

    Google Scholar 

  • Namuddu A, Kiggundu A, Mukasa SB, Kurnet K, Karamura E, Tushemereirwe W (2013) Agrobacterium mediated transformation of banana (Musa sp.) cv. Sukali Ndiizi (ABB) with a modified Carica papaya cystatin (CpCYS) gene. Afr J Biotechnol 12:1811–1819

    Article  CAS  Google Scholar 

  • Namukwaya B, Tripathi L, Tripathi JN, Arinaitwe G, Mukasa SB, Tushemereirwe WK (2012) Transgenic banana expressing Pflp gene confers enhanced resistance to Xanthomonas wilt disease. Transgenic Res 21:855–865

    Article  CAS  PubMed  Google Scholar 

  • Navarro C, Escobedo RM, Mayo A (1997) In vitro plant regeneration from embryogenic cultures of a diploid and a triploid, Cavendish banana. Plant Cell Tissue Organ Cult 51:17–25

    Article  Google Scholar 

  • Negi S, Tak H, Ganapathi TR (2016) Expression analysis of MusaNAC68 transcription factor and its functional analysis by overexpression in transgenic banana plants. Plant Cell Tissue Organ Cult 125:59–70

    Article  CAS  Google Scholar 

  • Novak FJ, Afza R, Van Duren M, Perea-Dallos M, Conger BV, Xiaolang T (1989) Somatic embryogenesis and plant regeneration in suspension cultures of dessert (AA and AAA) and cooking (ABB) bananas (Musa spp.). Biol Technol 7:154–159

    Article  Google Scholar 

  • Opabode JT (2006) Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnol Mol Biol Rev 1:12–2

    Google Scholar 

  • Paul JY, Becker DK, Dickman MB, Harding RM, Khanna HK, Dale JL (2011) Apoptosis-related genes confer resistance to Fusarium wilt in transgenic Lady Finger’ bananas. Plant Biotechnol J 9:1141–1148

    Article  CAS  PubMed  Google Scholar 

  • Quiroz-Figueroa FR, Rojas-Herrera R, Galaz-Avalos RM, Loyola- Vargas VM (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tissue Org Cult 86:285–301

    Article  Google Scholar 

  • Raghavan V (1976) Adventive embryogenesis: induction of diploid embryoids. In: Sutchliffe JF (ed) Experimental embryogenesis in vascular plants. Academic, London, pp 349–381

    Google Scholar 

  • Ramírez-Villalobos M, de García E (2008) Obtainment of embryogenic cell suspensions from scalps of the banana CIEN-BTA-03 (Musa sp., AAAA) and regeneration of the plants. J Biotechnol 5:11

    Google Scholar 

  • Roderick H, Tripathi L, Babirye A, Wang D, Tripathi J, Urwin PE, Atkinson HJ (2012) Generation of transgenic plantain (Musa spp.) with resistance to plant pathogenic nematodes. Mol Plant Pathol 13:842–851

    Article  CAS  PubMed  Google Scholar 

  • Roux N, Dolezel J, Swennen R, Zapata-Arias FJ (2001) Effectiveness of three micropropagation techniques to dissociate cytochimeras in Musa spp. Plant Cell Tiss Org 66:189–197

    Article  Google Scholar 

  • Sadik K, Rubaihayo PR, Magambo MJS, Pillay M (2007) Generation of cell suspensions of East African highland bananas through scalps. Afr J Biotechnol 6:1352–1357

    CAS  Google Scholar 

  • Sagi L, Panis B, Remy S, Schoofs H, De Smit K, Swennen R, Cammue BPA (1995a) Genetic transformation of banana and plantain (Musa spp.) by particle bombardment. Biol Technol 13:481–485

    Article  CAS  Google Scholar 

  • Sagi L, Panis B, Remy S, Verelst B, Cammue BPA, Volckaert G, Swennen R (1995b) Transient gene expression in transformed banana (Musa spp., cv. Bluggoe’) protoplasts and embryogenic cell suspensions. Euphytica 85:89–95

    Article  Google Scholar 

  • Sanford JC (1990) Biolistic plant transformation. Physiol Plantarum 79:206–209

    Article  CAS  Google Scholar 

  • Santos M, Albuquerque de Barros E, Tinoco M, Brasileiro A, Aragão F (2002) Repetitive somatic embryogenesis in cacao and optimisation of gene expression by particle bombardment. J Plant Biotechnol 4:71–76

    Google Scholar 

  • Sasson A (1997) Importance of tropical and subtropical horticulture, future prospects of biotechnology in tropical and subtropical horticulture species. Acta Hortic 460:12–26

    Google Scholar 

  • Schoofs H, Panis B, Strosse H, Mosqueda AM, Torres JL (1999) Bottlenecks in the generation and maintenance of morphogenic banana cell suspensions and plant regeneration via somatic embryogenesis therefrom. Info Musa 8:3–7

    Google Scholar 

  • Sharp WR, Sondahl MR, Caldas LS, Maraffa SB (1980) The physiology of in vitro asexual embryogenesis. Hortic Rev 2:268–310

    CAS  Google Scholar 

  • Shekhawat UKS, Ganapathi TR (2013) MusaWRKY71 overexpression in banana plants leads to altered abiotic and biotic stress responses. PLoS One 8:e75506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shekhawat UKS, Srinivas L, Ganapathi TR (2011) MusaDHN-1, a novel multiple stress-inducible SK3-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta 234:915–932

    Article  CAS  PubMed  Google Scholar 

  • Shekhawat UKS, Ganapathi TR, Hadapad AB (2012) Transgenic banana plants expressing small interfering RNAs targeted against viral replication initiation gene display high-level resistance to banana bunchy top virus infection. J Gen Virol 93:1804–1813

    Article  CAS  PubMed  Google Scholar 

  • Shibata D, Liu YG (2000) Agrobacterium-mediated plant transformation with large DNA fragments. Trends Plant Sci 5:354–357

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Jaiswal U, Jaiswal VS (2004) In vitro regeneration and improvement in tropical fruit trees: an assessment. In: Srivastava PS, Narula A, Srivastava S (eds) Plant biotechnology and molecular markers. Anamanya Publishers, New Delhi, pp 228–243

    Google Scholar 

  • Solís-Ramos LY, Andrade-Torres A, Carbonell LAS, Carlos M, Salín O, Castaño de la Serna E (2012) Somatic embryogenesis in recalcitrant plants, embryogenesis. In: Sato K-I (ed) ISBN: 978-953-51-0466-7, InTech, pp 597–618

    Google Scholar 

  • Sreedharan S, Shekhawat UKS, Ganapathi TR (2013) Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses. Plant Biotechnol J 11:942–952

    Article  CAS  PubMed  Google Scholar 

  • Strosse H, Domergue R, Panis B, Escalent JV, Côte F (2003) Banana and plantain embryogenic cell suspensions. INIBAP technical guidelines 8. INIBAP, In: Vézina A, Picq C (Eds). International Network for the Improvement of Banana and Plantain, Montpellier, France.

    Google Scholar 

  • Strosse H, Schoofs H, Panis B, Andre E, Reyniers K, Swennen R (2006) Development of embryogenic cell suspension from shoot meristematic tissue in bananas and plantains (Musa spp.). Plant Sci 170:104–112

    Article  CAS  Google Scholar 

  • Suzuki S, Supaibulwatana K, Mii M, Nakano M (2001) Production of transgenic plants of the Liliaceous ornamental plant Agapanthus praecox ssp. Orientalis (Leighton) Leighton via Agrobacterium-mediated transformation of embryogenic calli. Plant Sci 161:89–97

    Article  CAS  Google Scholar 

  • Tanasienko IV, Emets AI, Ia VP, KorkhovoÄ­ VI, Abumkhadi N, IaB B (2011) Developing transgenic barley lines producing human lactoferrin using mutant alfa-tubulin gene as selective marker gene. Tsitol Genet J 45:3–10

    CAS  Google Scholar 

  • Taylor NJ, Fauquet CM (2002) Microprojectile bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol 21:963–977

    Article  CAS  PubMed  Google Scholar 

  • Toonen MAJ, De Vries SC (1996) Initiation of somatic embryos from single cells. In: Wang TL, Cuming A (eds) Embryogenesis: the generation of a plant. Bios Scientific, Oxford, pp 173–189

    Google Scholar 

  • Trick NH, Finer JJ (1997) SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–336

    Article  CAS  Google Scholar 

  • Tripathi L, Mwaka H, Tripathi JN, Tushemereirw WK (2010) Expression of sweet pepper Hrap gene in banana enhances resistance to Xanthomonas campestris pv. Musacearum. Mol Plant Pathol 11:721–731

    CAS  PubMed  Google Scholar 

  • Venkatachalam L, Thimmaraju R, Sreedhar RV, Bhagyalakshmi N (2006) Direct shoot and cormlet regeneration from leaf explants of ‘silk’ banana (AAB). In Vitro Cell Dev Biol Plant 42:262–269

    Article  Google Scholar 

  • Visarada KBRS, Sarma NP (2004) Transformation of indica rice through particle bombardment: factors influencing transient expression and selection. Biol Plantarum 48:25–31

    Article  CAS  Google Scholar 

  • Wei YR, Huang XL, Li J, Huang X, Li Z, Li XJ (2005) Establishment of embryogenic cell suspension culture and plant regeneration of edible banana Musa acuminate cv. Mas (AA). Chin J Biotechnol 21:58–65

    CAS  Google Scholar 

  • Williams EG, Maheswaran G (1986) Somatic embryogenesis: factors influencing coordinated behavior of cells as an embryogenic group. Ann Bot 57:443–462

    Google Scholar 

  • Wong WC, Jalil M, Ong-Abdullah M, Othman RY, Khalid N (2006) Enhancement of banana plant regeneration by incorporating a liquid-based embryo development medium for embryogenic cell suspension. J Hortic Sci Biotech 81:385–390

    Article  Google Scholar 

  • Xu CX, Liang QR, Peng GK, Chen HB (2004) Factors affecting induction of callus from immature male flowers of bananas(Musa AAA). Adv Hortic 6:96–99

    Google Scholar 

  • Xu C, Zou R, Pan X, Chen H (2008) Somatic embryogenesis in banana (Musa spp.). Int J Plant Dev Biol 2:52–58

    Google Scholar 

  • Yao Q, Cong L, Chang JL, Li KX, Yang GX, He GY (2006) Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment. J Exp Bot 57:3737–3746

    Article  CAS  PubMed  Google Scholar 

  • Yip MK, Lee SW, Su KC, Lin YH, Chen TY, Feng TY (2011) An easy and efficient protocol in the production of pflp transgenic banana against Fusarium wilt. Plant Biotechnol Rep 5:245–254

    Article  Google Scholar 

  • Youssef M, James A, Mayo-Mosqueda A, Ku-Cauich JR, Grijalva-Arango R, Escobedo RM (2010) Influence of genotype and age of explant source on the capacity for somatic embryogenesis of two Cavendish banana cultivars (Musa acuminata Colla, AAA). Afr J Biotechnol 9:2216–2223

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhada Mohandas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sowmya, H.D., Usharani, T.R., Mohandas, S. (2016). Somatic Embryogenesis as a Tool in Genetic Transformation. In: Mohandas, S., Ravishankar, K. (eds) Banana: Genomics and Transgenic Approaches for Genetic Improvement. Springer, Singapore. https://doi.org/10.1007/978-981-10-1585-4_10

Download citation

Publish with us

Policies and ethics