Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 976))

Abstract

This chapter offers a brief introduction of the functions of TRPC channels in non-neuronal systems. We focus on three major organs of which the research on TRPC channels have been most focused on: kidney, heart, and lung. The chapter highlights on cellular functions and signaling pathways mediated by TRPC channels. It also summarizes several inherited diseases in humans that are related to or caused by TRPC channel mutations and malfunction. A better understanding of TRPC channels functions and the importance of TRPC channels in health and disease should lead to new insights and discovery of new therapeutic approaches for intractable disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suh JH, Miner JH (2013) The glomerular basement membrane as a barrier to albumin. Nat Rev Nephrol 9:470–477

    Article  CAS  PubMed  Google Scholar 

  2. Brinkkoetter PT, Ising C, Benzing T (2013) The role of the podocyte in albumin filtration. Nat Rev Nephrol 9:328–336

    Article  CAS  PubMed  Google Scholar 

  3. Niehof M, Borlak J (2008) HNF4 alpha and the Ca-channel TRPC1 are novel disease candidate genes in diabetic nephropathy. Diabetes 57:1069–1077

    Article  CAS  PubMed  Google Scholar 

  4. Goel M, Zuo CD, Schilling WP (2010) Role of cAMP/PKA signaling cascade in vasopressin-induced trafficking of TRPC3 channels in principal cells of the collecting duct. Am J Physiol Ren Physiol 298:F988–F996

    Article  CAS  Google Scholar 

  5. Sours-Brothers S, Ding M, Graham S, Ma R (2009) Interaction between TRPC1/TRPC4 assembly and STIM1 contributes to store-operated Ca2+ entry in mesangial cells. Exp Biol Med 234:673–682

    Article  CAS  Google Scholar 

  6. Schaldecker T et al (2013) Inhibition of the TRPC5 ion channel protects the kidney filter. J Clin Invest 123:5298–5309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sonneveld R et al (2014) Glucose specifically regulates TRPC6 expression in the podocyte in an AngII-dependent manner. Am J Pathol 184:1715–1726

    Article  CAS  PubMed  Google Scholar 

  8. Goel M, Sinkins WG, Zuo CD, Estacion M, Schilling WP (2006) Identification and localization of TRPC channels in the rat kidney. Am J Physiol Ren Physiol 290:F1241–F1252

    Article  CAS  Google Scholar 

  9. Migliorini A, Ebid R, Scherbaum CR, Anders HJ (2013) The danger control concept in kidney disease: mesangial cells. J Nephrol 26:437–449

    Article  CAS  PubMed  Google Scholar 

  10. Hsu YJ, Hoenderop JG, Bindels RJ (2007) TRP channels in kidney disease. Biochim Biophys Acta 1772:928–936

    Article  CAS  PubMed  Google Scholar 

  11. Kimberling WJ et al (1988) Linkage heterogeneity of autosomal dominant polycystic kidney disease. N Engl J Med 319:913–918

    Article  CAS  PubMed  Google Scholar 

  12. Reiser J et al (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37:739–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Winn MP et al (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:1801–1804

    Article  CAS  PubMed  Google Scholar 

  14. Hoenderop JG et al (2002) Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1alpha-hydroxylase knockout mice. FASEBJ 16:1398–1406

    Article  CAS  Google Scholar 

  15. Kim EY, Anderson M, Dryer SE (2012) Insulin increases surface expression of TRPC6 channels in podocytes: role of NADPH oxidases and reactive oxygen species. Am J Physiol Ren Physiol 302:F298–F307

    Article  CAS  Google Scholar 

  16. Graham S et al (2007) Downregulation of TRPC6 protein expression by high glucose, a possible mechanism for the impaired Ca2+ signaling in glomerular mesangial cells in diabetes. Am J Physiol Ren Physiol 293:F1381–F1390

    Article  CAS  Google Scholar 

  17. Qian Y, Feldman E, Pennathur S, Kretzler M, Brosius FC 3rd (2008) From fibrosis to sclerosis: mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes 57:1439–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Griveas I, Stavianoudakis G, Karanikas E, Gogos K, Nakopoulou L (2009) The role of pure diffuse mesangial hypercellularity in patients with proteinuria. Ren Fail 31:192–195

    Article  CAS  PubMed  Google Scholar 

  19. Soni H, Adebiyi A (2016) TRPC6 channel activation promotes neonatal glomerular mesangial cell apoptosis via calcineurin/NFAT and FasL/Fas signaling pathways. Sci Rep 6:29041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qiu G, Ji Z (2014) AngII-induced glomerular mesangial cell proliferation inhibited by losartan via changes in intracellular calcium ion concentration. Clin Exp Med 14:169–176

    Article  CAS  PubMed  Google Scholar 

  21. Greka A, Mundel P (2012) Cell biology and pathology of podocytes. Annu Rev Physiol 74:299–323

    Article  CAS  PubMed  Google Scholar 

  22. Ilatovskaya DV et al (2015) Podocyte injury in diabetic nephropathy: implications of angiotensin II-dependent activation of TRPC channels. Sci Rep 5:17637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu H et al (2013) Rac1 activation in podocytes induces rapid foot process effacement and proteinuria. Mol Cell Biol 33:4755–4764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Greka A, Mundel P (2011) Balancing calcium signals through TRPC5 and TRPC6 in podocytes. J Am Soc Nephrol: JASN 22:1969–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tian D et al (2010) Antagonistic regulation of actin dynamics and cell motility by TRPC5 and TRPC6 channels. Sci Signal 3:ra77

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yu H et al (2016) Synaptopodin limits TRPC6 podocyte surface expression and attenuates proteinuria. J Am Soc Nephrol 27(11):3308–3319

    Article  PubMed  Google Scholar 

  27. Moller CC et al (2007) Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. J Am Soc Nephrol 18:29–36

    Article  CAS  PubMed  Google Scholar 

  28. Eckel J et al (2011) TRPC6 enhances angiotensin II-induced albuminuria. J Am Soc Nephrol: JASN 22:526–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goel M, Sinkins WG, Zuo CD, Hopfer U, Schilling WP (2007) Vasopressin-induced membrane trafficking of TRPC3 and AQP2 channels in cells of the rat renal collecting duct. Am J Physiol Ren Physiol 293:F1476–F1488

    Article  CAS  Google Scholar 

  30. Inoue R et al (2006) Transient receptor potential channels in cardiovascular function and disease. Circ Res 99:119

    Article  CAS  PubMed  Google Scholar 

  31. Dietrich A, Gudermann T (2011) TRP channels in the cardiopulmonary vasculature. In: Islam MS (ed) Transient receptor potential channels. Springer Netherlands, Dordrecht, pp 781–810

    Chapter  Google Scholar 

  32. Seth M et al (2009) TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res 105:1023–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ohba T et al (2007) Upregulation of TRPC1 in the development of cardiac hypertrophy. J Mol Cell Cardiol 42:498–507

    Article  CAS  PubMed  Google Scholar 

  34. Bush EW et al (2006) Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem 281:33487–33496

    Article  CAS  PubMed  Google Scholar 

  35. Satoh S et al (2007) Transient receptor potential (TRP) protein 7 acts as a G protein-activated Ca2+ channel mediating angiotensin II-induced myocardial apoptosis. Mol Cell Biochem 294:205–215

    Article  CAS  PubMed  Google Scholar 

  36. Kuwahara K et al (2006) TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Investig 116:3114–3126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Molkentin JD et al (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu X, Eder P, Chang B, Molkentin JD (2010) TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc Natl Acad Sci U S A 107:7000–7005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vindis C et al (2010) Essential role of TRPC1 channels in cardiomyoblasts hypertrophy mediated by 5-HT2A serotonin receptors. Biochem Biophys Res Commun 391:979–983

    Article  CAS  PubMed  Google Scholar 

  40. Onohara N et al (2006) TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J 25:5305–5316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakayama H, Wilkin BJ, Bodi I, Molkentin JD (2006) Calcineurin-dependent cardiac hypertrophy is activated by TRPC in the adult mouse heart. FASEB J: Off Publ Fed Am Soc Exp Biol 20:1660–1670

    Article  CAS  Google Scholar 

  42. Han JW et al (2016) Resistance to pathologic cardiac hypertrophy and reduced expression of CaV1.2 in Trpc3-depleted mice. Mol Cell Biochem 421:55–65

    Article  CAS  PubMed  Google Scholar 

  43. Xie J et al (2012) Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat Commun 3:1238–1238

    Article  PubMed  PubMed Central  Google Scholar 

  44. Seo K et al (2014) Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy. Proc Natl Acad Sci U S A 111:1551–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kiyonaka S et al (2009) Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci U S A 106:5400–5405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schindl R et al (2008) The first ankyrin-like repeat is the minimum indispensable key structure for functional assembly of homo- and heteromeric TRPC4/TRPC5 channels. Cell Calcium 43:260–269

    Article  CAS  PubMed  Google Scholar 

  47. Shan D, Marchase RB, Chatham JC (2008) Overexpression of TRPC3 increases apoptosis but not necrosis in response to ischemia-reperfusion in adult mouse cardiomyocytes. Am J Phys Cell Physiol 294:C833–C841

    Article  CAS  Google Scholar 

  48. Cui L-B et al (2016) Morphological identification of TRPC7 in cardiomyocytes from normal and renovascular hypertensive rats. J Cardiovasc Pharmacol 67:121–128

    Article  CAS  PubMed  Google Scholar 

  49. Nishida M et al (2007) Gα12/13-mediated up-regulation of TRPC6 negatively regulates endothelin-1-induced cardiac myofibroblast formation and collagen synthesis through nuclear factor of activated T cells activation. J Biol Chem 282:23117–23128

    Article  CAS  PubMed  Google Scholar 

  50. Yao X, Garland CJ (2005) Recent developments in vascular endothelial cell transient receptor potential channels. Circ Res 97:853

    Article  CAS  PubMed  Google Scholar 

  51. Yip H et al (2004) Expression of TRPC homologs in endothelial cells and smooth muscle layers of human arteries. Histochem Cell Biol 122:553–561

    Article  CAS  PubMed  Google Scholar 

  52. Earley S, Brayden JE (2015) Transient receptor potential channels in the vasculature. Physiol Rev 95:645–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bochaton-Piallat ML, Gabbiani G (2005) Modulation of smooth muscle cell proliferation and migration: role of smooth muscle cell heterogeneity. In: von Eckardstein A (ed) Atherosclerosis: diet and drugs. Springer, Berlin/Heidelberg, pp 645–663

    Chapter  Google Scholar 

  54. Leung FP, Yung LM, Yao X, Laher I, Huang Y (2008) Store-operated calcium entry in vascular smooth muscle. Br J Pharmacol 153:846–857

    Article  CAS  PubMed  Google Scholar 

  55. Sweeney M et al (2002) Inhibition of endogenous TRP1 decreases capacitative Ca2+entry and attenuates pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 283:L144

    Article  CAS  PubMed  Google Scholar 

  56. Zhang S, Remillard CV, Fantozzi I, Yuan JXJ (2004) ATP-induced mitogenesis is mediated by cyclic AMP response element-binding protein-enhanced TRPC4 expression and activity in human pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 287:C1192

    Article  CAS  PubMed  Google Scholar 

  57. Yu Y et al (2004) Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc Natl Acad Sci U S A 101:13861–13866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Weissmann N et al (2006) Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc Natl Acad Sci U S A 103:19093–19098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Golovina VA et al (2001) Upregulated TRP and enhanced capacitative Ca2+ entry in human pulmonary artery myocytes during proliferation. Am J Physiol Heart Circ Physiol 280:H746

    CAS  PubMed  Google Scholar 

  60. Kunichika N et al (2004) Overexpression of TRPC1 enhances pulmonary vasoconstriction induced by capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol 287:L962

    Article  CAS  PubMed  Google Scholar 

  61. Inoue R et al (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular α1-adrenoceptor–activated Ca2 + −permeable cation channel. Circ Res 88:325

    Article  CAS  PubMed  Google Scholar 

  62. Jung S, Strotmann R, Schultz G, Plant TD (2002) TRPC6 is a candidate channel involved in receptor-stimulated cation currents in A7r5 smooth muscle cells. Am J Physiol Cell Physiol 282:C347

    Article  CAS  PubMed  Google Scholar 

  63. Dietrich A et al (2005) Increased vascular smooth muscle contractility in TRPC6(−)(/)(−) Mice. Mol Cell Biol 25:6980–6989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sel S et al (2008) Loss of classical transient receptor potential 6 channel reduces allergic airway response. Clin Exp Allergy 38:1548–1558

    Article  CAS  PubMed  Google Scholar 

  65. Reading SA, Earley S, Waldron BJ, Welsh DG, Brayden JE (2005) TRPC3 mediates pyrimidine receptor-induced depolarization of cerebral arteries. Am J Physiol Heart Circ Physiol 288:H2055

    Article  CAS  PubMed  Google Scholar 

  66. Liu D et al (2005) Increased transient receptor potential channel TRPC3 expression in spontaneously hypertensive rats. Am J Hypertens 18:1503–1507

    Article  CAS  PubMed  Google Scholar 

  67. Peppiatt-Wildman CM, Albert AP, Saleh SN, Large WA (2007) Endothelin-1 activates a Ca(2+)-permeable cation channel with TRPC3 and TRPC7 properties in rabbit coronary artery myocytes. J Physiol 580:755–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Weissmann N et al (2006) Oxygen sensors in hypoxic pulmonary vasoconstriction. Cardiovasc Res 71:620

    Article  CAS  PubMed  Google Scholar 

  69. Weigand L, Foxson J, Wang J, Shimoda LA, Sylvester JT (2005) Inhibition of hypoxic pulmonary vasoconstriction by antagonists of store-operated Ca2+ and nonselective cation channels. Am J Physiol Lung Cell Mol Physiol 289:L5

    Article  CAS  PubMed  Google Scholar 

  70. Lin M-J et al (2004) Chronic hypoxia–induced upregulation of store-operated and receptor-operated Ca2+channels in pulmonary arterial smooth muscle cells. Circ Res 95:496

    Article  CAS  PubMed  Google Scholar 

  71. Wang J et al (2006) Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 98:1528

    Article  CAS  PubMed  Google Scholar 

  72. Tiruppathi C, Ahmmed GU, Vogel SM, Malik AB (2006) Ca2+ signaling, TRP channels, and endothelial permeability. Microcirculation 13:693–708

    Article  CAS  PubMed  Google Scholar 

  73. Paria BC et al (2003) Tumor necrosis factor-α induces nuclear factor-κB-dependent TRPC1 expression in endothelial cells. J Biol Chem 278:37195–37203

    Article  CAS  PubMed  Google Scholar 

  74. Tiruppathi C et al (2002) Impairment of store-operated Ca2+ entry in TRPC4−/− mice interferes with increase in lung microvascular permeability. Circ Res 91:70–76

    Article  CAS  PubMed  Google Scholar 

  75. Singh I et al (2007) Galphaq-TRPC6-mediated Ca2+ entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin. J Biol Chem 282:7833–7843

    Article  CAS  PubMed  Google Scholar 

  76. Jho D et al (2005) Angiopoietin-1 opposes VEGF-induced increase in endothelial permeability by inhibiting TRPC1-dependent Ca2+ influx. Circ Res 96:1282

    Article  CAS  PubMed  Google Scholar 

  77. Cheng HW, James AF, Foster RR, Hancox JC, Bates DO (2006) VEGF activates receptor-operated cation channels in human microvascular endothelial cells. Arterioscler Thromb Vasc Biol 26:1768

    Article  CAS  PubMed  Google Scholar 

  78. Ge R et al (2009) Critical role of TRPC6 channels in VEGF-mediated angiogenesis. Cancer Lett 283:43–51

    Article  CAS  PubMed  Google Scholar 

  79. Zadeh MH, Glass CA, Magnussen A, Hancox JC, Bates DO (2008) VEGF-mediated elevated intracellular calcium and angiogenesis in human microvascular endothelial cells in vitro are inhibited by dominant negative TRPC6. Microcirc (New York, NY: 1994) 15:605–614

    Article  Google Scholar 

  80. Antigny F, Girardin N, Frieden M (2012) Transient receptor potential canonical channels are required for in vitro endothelial tube formation. J Biol Chem 287:5917–5927

    Article  CAS  PubMed  Google Scholar 

  81. Poteser M et al (2006) TRPC3 and TRPC4 associate to form a redox-sensitive cation channel: evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 281:13588–13595

    Article  CAS  PubMed  Google Scholar 

  82. Senadheera S et al (2012) Transient receptor potential canonical type 3 channels facilitate endothelium-derived hyperpolarization-mediated resistance artery vasodilator activity. Cardiovasc Res 95:439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yeon S-I et al (2014) Transient receptor potential canonical type 3 channels control the vascular contractility of mouse mesenteric arteries. PLoS One 9:e110413

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chiappara G et al (2001) Airway remodelling in the pathogenesis of asthma. Curr Opin Allergy Clin Immunol 1:85–93

    Article  CAS  PubMed  Google Scholar 

  85. Jeffery PK (1999) Differences and similarities between chronic obstructive pulmonary disease and asthma. Clin Exp Allergy: J Br Soc Allergy Clin Immunol 29(Suppl 2):14–26

    Article  Google Scholar 

  86. Corteling RL et al (2004) Expression of transient receptor potential C6 and related transient receptor potential family members in human airway smooth muscle and lung tissue. Am J Respir Cell Mol Biol 30:145–154

    Article  CAS  PubMed  Google Scholar 

  87. Ong HL, Brereton HM, Harland ML, Barritt GJ (2003) Evidence for the expression of transient receptor potential proteins in guinea pig airway smooth muscle cells. Respirology 8:23–32

    Article  PubMed  Google Scholar 

  88. Sweeney M et al (2002) Role of capacitative Ca2+ entry in bronchial contraction and remodeling. J Appl Physiol 92:1594–1602

    Article  CAS  PubMed  Google Scholar 

  89. Yu Y et al (2003) PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. Am J Phys Cell Physiol 284:C316–C330

    Article  CAS  Google Scholar 

  90. Chung YH et al (2007) Immunohistochemical study on the distribution of canonical transient receptor potential channels in rat basal ganglia. Neurosci Lett 422:18–23

    Article  CAS  PubMed  Google Scholar 

  91. Sundivakkam PC et al (2012) The Ca(2+) sensor stromal interaction molecule 1 (STIM1) is necessary and sufficient for the store-operated Ca(2+) entry function of transient receptor potential canonical (TRPC) 1 and 4 channels in endothelial cells. Mol Pharmacol 81:510–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kini V, Chavez A, Mehta D (2010) A new role for PTEN in regulating transient receptor potential canonical channel 6-mediated Ca2+ entry, endothelial permeability, and angiogenesis. J Biol Chem 285:33082–33091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kim HR, Appel S, Vetterkind S, Gangopadhyay SS, Morgan KG (2008) Smooth muscle signalling pathways in health and disease. J Cell Mol Med 12:2165–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tliba O, Panettieri RA Jr (2009) Noncontractile functions of airway smooth muscle cells in asthma. Annu Rev Physiol 71:509–535

    Article  CAS  PubMed  Google Scholar 

  95. Gerthoffer WT (1986) Calcium dependence of myosin phosphorylation and airway smooth muscle contraction and relaxation. Am J physiol 250:C597–C604

    CAS  PubMed  Google Scholar 

  96. Xiao JH, Zheng YM, Liao B, Wang YX (2010) Functional role of canonical transient receptor potential 1 and canonical transient receptor potential 3 in normal and asthmatic airway smooth muscle cells. Am J Respir Cell Mol Biol 43:17–25

    Article  CAS  PubMed  Google Scholar 

  97. Godin N, Rousseau E (2007) TRPC6 silencing in primary airway smooth muscle cells inhibits protein expression without affecting OAG-induced calcium entry. Mol Cell Biochem 296:193–201

    Article  CAS  PubMed  Google Scholar 

  98. White TA et al (2006) Role of transient receptor potential C3 in TNF-alpha-enhanced calcium influx in human airway myocytes. Am J Respir Cell Mol Biol 35:243–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yilin Tai or Shenglian Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tai, Y., Yang, S., Liu, Y., Shao, W. (2017). TRPC Channels in Health and Disease. In: Wang, Y. (eds) Transient Receptor Potential Canonical Channels and Brain Diseases. Advances in Experimental Medicine and Biology, vol 976. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1088-4_4

Download citation

Publish with us

Policies and ethics