Skip to main content

Molecular Biology of Aquaporins

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 969))

Abstract

Aquaporins (AQPs ) are a family of membrane water channels that basically function as regulators of intracellular and intercellular water flow. To date, thirteen AQPs , which are distributed widely in specific cell types in various organs and tissues, have been characterized in humans. Four AQP monomers, each of which consists of six membrane-spanning alpha-helices that have a central water-transporting pore, assemble to form tetramers, forming the functional units in the membrane. AQP facilitates osmotic water transport across plasma membranes and thus transcellular fluid movement. The cellular functions of aquaporins are regulated by posttranslational modifications , e.g. phosphorylation, ubiquitination, glycosylation, subcellular distribution, degradation, and protein interactions. Insight into the molecular mechanisms responsible for regulated aquaporin trafficking and synthesis is proving to be fundamental for development of novel therapeutic targets or reliable diagnostic and prognostic biomarkers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abascal F, Irisarri I, Zardoya R (2014) Diversity and evolution of membrane intrinsic proteins. Biochim Biophys Acta 1840:1468–1481

    Article  CAS  PubMed  Google Scholar 

  2. Agre P, Preston GM, Smith BL, Jung JS, Raina S, Moon C, Guggino WB, Nielsen S (1993) Aquaporin CHIP: the archetypal molecular water channel. Am J Phys 265:F463–F476

    CAS  Google Scholar 

  3. Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels – from atomic structure to clinical medicine. J Physiol 542:3–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Almasalmeh A, Krenc D, Wu B, Beitz E (2014) Structural determinants of the hydrogen peroxide permeability of aquaporins. FEBS J 281:647–656

    Article  CAS  PubMed  Google Scholar 

  5. Anthony TL, Brooks HL, Boassa D, Leonov S, Yanochko GM, Regan JW, Yool AJ (2000) Cloned human aquaporin-1 is a cyclic GMP-gated ion channel. Mol Pharmacol 57:576–588

    CAS  PubMed  Google Scholar 

  6. Aoki T, Suzuki T, Hagiwara H, Kuwahara M, Sasaki S, Takata K, Matsuzaki T (2012) Close association of aquaporin-2 internalization with caveolin-1. Acta Histochem Cytochem 45:139–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arthur J, Huang J, Nomura N, Jin WW, Li W, Cheng X, Brown D, Lu HJ (2015) Characterization of the putative phosphorylation sites of the AQP2 C terminus and their role in AQP2 trafficking in LLC-PK1 cells. Am J Physiol Ren Physiol 309:F673–F679

    Article  CAS  Google Scholar 

  8. Assentoft M, Kaptan S, Fenton RA, Hua SZ, de Groot BL, MacAulay N (2013) Phosphorylation of rat aquaporin-4 at Ser(111) is not required for channel gating. Glia 61:1101–1112

    Article  PubMed  Google Scholar 

  9. Assentoft M, Larsen BR, Olesen ET, Fenton RA, MacAulay N (2014) AQP4 plasma membrane trafficking or channel gating is not significantly modulated by phosphorylation at COOH-terminal serine residues. Am J Phys Cell Physiol 307:C957–C965

    Article  CAS  Google Scholar 

  10. Barile M, Pisitkun T, Yu MJ, Chou CL, Verbalis MJ, Shen RF, Knepper MA (2005) Large scale protein identification in intracellular aquaporin-2 vesicles from renal inner medullary collecting duct. Mol Cell Proteomics 4:1095–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baumgarten R, Van De Pol MH, Wetzels JF, Van Os CH, Deen PM (1998) Glycosylation is not essential for vasopressin-dependent routing of aquaporin-2 in transfected Madin-Darby canine kidney cells. J Am Soc Nephrol 9:1553–1559

    CAS  PubMed  Google Scholar 

  12. Beitz E, Liu K, Ikeda M, Guggino WB, Agre P, Yasui M (2006) Determinants of AQP6 trafficking to intracellular sites versus the plasma membrane in transfected mammalian cells. Biol Cell 98:101–109

    Article  CAS  PubMed  Google Scholar 

  13. Benga G (2012) The first discovered water channel protein, later called aquaporin 1: molecular characteristics, functions and medical implications. Mol Asp Med 33:518–534

    Article  CAS  Google Scholar 

  14. Bienert GP, Moller AL, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    Article  CAS  PubMed  Google Scholar 

  15. Bienert GP, Thorsen M, Schussler MD, Nilsson HR, Wagner A, Tamas MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bienert GP, Chaumont F (2014) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta 1840:1596–1604

    Article  CAS  PubMed  Google Scholar 

  17. Bin K, Shi-Peng Z (2011) Acetazolamide inhibits aquaporin-1 expression and colon cancer xenograft tumor growth. Hepato-Gastroenterology 58:1502–1506

    CAS  PubMed  Google Scholar 

  18. Bollag WB, Xie D, Zheng X, Zhong X (2007) A potential role for the phospholipase D2-aquaporin-3 signaling module in early keratinocyte differentiation: production of a phosphatidylglycerol signaling lipid. J Invest Dermatol 127:2823–2831

    Article  CAS  PubMed  Google Scholar 

  19. Boone M, Kortenoeven M, Robben JH, Deen PM (2010) Effect of the cGMP pathway on AQP2 expression and translocation: potential implications for nephrogenic diabetes insipidus. Nephrol Dial Transplant 25:48–54

    Article  CAS  PubMed  Google Scholar 

  20. Boone M, Kortenoeven ML, Robben JH, Tamma G, Deen PM (2011) Counteracting vasopressin-mediated water reabsorption by ATP, dopamine, and phorbol esters: mechanisms of action. Am J Physiol Ren Physiol 300:F761–F771

    Article  CAS  Google Scholar 

  21. Borgnia M, Nielsen S, Engel A, Agre P (1999) Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem 68:425–458

    Article  CAS  PubMed  Google Scholar 

  22. Bouley R, Breton S, Sun T, McLaughlin M, Nsumu NN, Lin HY, Ausiello DA, Brown D (2000) Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. J Clin Invest 106:1115–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bouley R, Pastor-Soler N, Cohen O, McLaughlin M, Breton S, Brown D (2005) Stimulation of AQP2 membrane insertion in renal epithelial cells in vitro and in vivo by the cGMP phosphodiesterase inhibitor sildenafil citrate (viagra). Am J Physiol Ren Physiol 288:F1103–F1112

    Article  CAS  Google Scholar 

  24. Bouley R, Hawthorn G, Russo LM, Lin HY, Ausiello DA, Brown D (2006) Aquaporin 2 (AQP2) and vasopressin type 2 receptor (V2R) endocytosis in kidney epithelial cells: AQP2 is located in ‘endocytosis-resistant’ membrane domains after vasopressin treatment. Biol Cell 98:215–232

    Article  CAS  PubMed  Google Scholar 

  25. Boury-Jamot M, Sougrat R, Tailhardat M, Le Varlet B, Bonte F, Dumas M, Verbavatz JM (2006) Expression and function of aquaporins in human skin: Is aquaporin-3 just a glycerol transporter? Biochim Biophys Acta 1758:1034–1042

    Article  CAS  PubMed  Google Scholar 

  26. Brown D, Weyer P, Orci L (1988) Vasopressin stimulates endocytosis in kidney collecting duct principal cells. Eur J Cell Biol 46:336–341

    CAS  PubMed  Google Scholar 

  27. Brown D (2003) The ins and outs of aquaporin-2 trafficking. Am J Physiol Ren Physiol 284:F893–F901

    Article  CAS  Google Scholar 

  28. Buck TM, Eledge J, Skach WR (2004) Evidence for stabilization of aquaporin-2 folding mutants by N-linked glycosylation in endoplasmic reticulum. Am J Phys Cell Physiol 287:C1292–C1299

    Article  CAS  Google Scholar 

  29. Calamita G, Mazzone A, Bizzoca A, Cavalier A, Cassano G, Thomas D, Svelto M (2001) Expression and immunolocalization of the aquaporin-8 water channel in rat gastrointestinal tract. Eur J Cell Biol 80:711–719

    Article  CAS  PubMed  Google Scholar 

  30. Calamita G, Ferri D, Gena P, Liquori GE, Cavalier A, Thomas D, Svelto M (2005) The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water. J Biol Chem 280:17149–17153

    Article  CAS  PubMed  Google Scholar 

  31. Calvanese L, Pellegrini-Calace M, Oliva R (2013) In silico study of human aquaporin AQP11 and AQP12 channels. Protein Sci 22:455–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Campbell EM, Birdsell DN, Yool AJ (2012) The activity of human aquaporin 1 as a cGMP-gated cation channel is regulated by tyrosine phosphorylation in the carboxyl-terminal domain. Mol Pharmacol 81:97–105

    Article  CAS  PubMed  Google Scholar 

  33. Carmosino M, Procino G, Tamma G, Mannucci R, Svelto M, Valenti G (2007) Trafficking and phosphorylation dynamics of AQP4 in histamine-treated human gastric cells. Biol Cell 99:25–36

    Article  CAS  PubMed  Google Scholar 

  34. Chae YK, Kang SK, Kim MS, Woo J, Lee J, Chang S, Kim DW, Kim M, Park S, Kim I, Keam B, Rhee J, Koo NH, Park G, Kim SH, Jang SE, Kweon IY, Sidransky D, Moon C (2008) Human AQP5 plays a role in the progression of chronic myelogenous leukemia (CML). PLoS One 3:e2594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Champigneulle A, Siga E, Vassent G, Imbert-Teboul M (1993) V2-like vasopressin receptor mobilizes intracellular Ca2+ in rat medullary collecting tubules. Am J Phys 265:F35–F45

    CAS  Google Scholar 

  36. Chandy G, Zampighi GA, Kreman M, Hall JE (1997) Comparison of the water transporting properties of MIP and AQP1. J Membr Biol 159:29–39

    Article  CAS  PubMed  Google Scholar 

  37. Choi HJ, Jung HJ, Kwon TH (2015) Extracellular pH affects phosphorylation and intracellular trafficking of AQP2 in inner medullary collecting duct cells. Am J Physiol Ren Physiol 308:F737–F748

    Article  CAS  Google Scholar 

  38. Chou CL, Yip KP, Michea L, Kador K, Ferraris JD, Wade JB, Knepper MA (2000) Regulation of aquaporin-2 trafficking by vasopressin in the renal collecting duct. Roles of ryanodine-sensitive Ca2+ stores and calmodulin. J Biol Chem 275:36839–36846

    Article  CAS  PubMed  Google Scholar 

  39. Christensen BM, Zelenina M, Aperia A, Nielsen S (2000) Localization and regulation of PKA-phosphorylated AQP2 in response to V(2)-receptor agonist/antagonist treatment. Am J Physiol Ren Physiol 278:F29–F42

    CAS  Google Scholar 

  40. Clemens DM, Nemeth-Cahalan KL, Trinh L, Zhang T, Schilling TF, Hall JE (2013) In vivo analysis of aquaporin 0 function in zebrafish: permeability regulation is required for lens transparency. Invest Ophthalmol Vis Sci 54:5136–5143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Conner MT, Conner AC, Brown JE, Bill RM (2010) Membrane trafficking of aquaporin 1 is mediated by protein kinase C via microtubules and regulated by tonicity. Biochemistry 49:821–823

    Article  CAS  PubMed  Google Scholar 

  42. Conner MT, Conner AC, Bland CE, Taylor LH, Brown JE, Parri HR, Bill RM (2012) Rapid aquaporin translocation regulates cellular water flow: mechanism of hypotonicity-induced subcellular localization of aquaporin 1 water channel. J Biol Chem 287:11516–11525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Day RE, Kitchen P, Owen DS, Bland C, Marshall L, Conner AC, Bill RM, Conner MT (2014) Human aquaporins: regulators of transcellular water flow. Biochim Biophys Acta 1840:1492–1506

    Article  CAS  PubMed  Google Scholar 

  44. de Almeida A, Martins AP, Mosca AF, Wijma HJ, Prista C, Soveral G, Casini A (2016) Exploring the gating mechanisms of aquaporin-3: new clues for the design of inhibitors? Mol BioSyst 12:1564–1573

    Article  PubMed  CAS  Google Scholar 

  45. Deen PM, Verdijk MA, Knoers NV, Wieringa B, Monnens LA, van Os CH, van Oost BA (1994) Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264:92–95

    Article  CAS  PubMed  Google Scholar 

  46. Deen PM, Weghuis DO, Sinke RJ, Geurts van Kessel A, Wieringa B, van Os CH (1994) Assignment of the human gene for the water channel of renal collecting duct Aquaporin 2 (AQP2) to chromosome 12 region q12-->q13. Cytogenet Cell Genet 66:260–262

    Article  CAS  PubMed  Google Scholar 

  47. Denker BM, Smith BL, Kuhajda FP, Agre P (1988) Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem 263:15634–15642

    CAS  PubMed  Google Scholar 

  48. DiGiovanni SR, Nielsen S, Christensen EI, Knepper MA (1994) Regulation of collecting duct water channel expression by vasopressin in Brattleboro rat. Proc Natl Acad Sci U S A 91:8984–8988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ecelbarger CA, Terris J, Frindt G, Echevarria M, Marples D, Nielsen S, Knepper MA (1995) Aquaporin-3 water channel localization and regulation in rat kidney. Am J Phys 269:F663–F672

    CAS  Google Scholar 

  50. Echevarria M, Windhager EE, Tate SS, Frindt G (1994) Cloning and expression of AQP3, a water channel from the medullary collecting duct of rat kidney. Proc Natl Acad Sci U S A 91:10997–11001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Edemir B, Pavenstadt H, Schlatter E, Weide T (2011) Mechanisms of cell polarity and aquaporin sorting in the nephron. Pflugers Arch 461:607–621

    Article  CAS  PubMed  Google Scholar 

  52. Elkjaer M, Vajda Z, Nejsum LN, Kwon T, Jensen UB, Amiry-Moghaddam M, Frokiaer J, Nielsen S (2000) Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain. Biochem Biophys Res Commun 276:1118–1128

    Article  CAS  PubMed  Google Scholar 

  53. Elkjaer ML, Nejsum LN, Gresz V, Kwon TH, Jensen UB, Frokiaer J, Nielsen S (2001) Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways. Am J Physiol Ren Physiol 281:F1047–F1057

    Article  CAS  Google Scholar 

  54. Eto K, Noda Y, Horikawa S, Uchida S, Sasaki S (2010) Phosphorylation of aquaporin-2 regulates its water permeability. J Biol Chem 285:40777–40784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fenton RA, Moeller HB, Hoffert JD, Yu MJ, Nielsen S, Knepper MA (2008) Acute regulation of aquaporin-2 phosphorylation at Ser-264 by vasopressin. Proc Natl Acad Sci U S A 105:3134–3139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fenton RA, Pedersen CN, Moeller HB (2013) New insights into regulated aquaporin-2 function. Curr Opin Nephrol Hypertens 22:551–558

    Article  CAS  PubMed  Google Scholar 

  57. Ferri D, Mazzone A, Liquori GE, Cassano G, Svelto M, Calamita G (2003) Ontogeny, distribution, and possible functional implications of an unusual aquaporin, AQP8, in mouse liver. Hepatology 38:947–957

    Article  CAS  PubMed  Google Scholar 

  58. Finn RN, Cerda J (2015) Evolution and functional diversity of aquaporins. Biol Bull 229:6–23

    Article  CAS  PubMed  Google Scholar 

  59. Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S (1993) Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361:549–552

    Article  CAS  PubMed  Google Scholar 

  60. Fushimi K, Sasaki S, Marumo F (1997) Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J Biol Chem 272:14800–14804

    Article  CAS  PubMed  Google Scholar 

  61. Garcia F, Kierbel A, Larocca MC, Gradilone SA, Splinter P, LaRusso NF, Marinelli RA (2001) The water channel aquaporin-8 is mainly intracellular in rat hepatocytes, and its plasma membrane insertion is stimulated by cyclic AMP. J Biol Chem 276:12147–12152

    Article  CAS  PubMed  Google Scholar 

  62. Geyer RR, Musa-Aziz R, Qin X, Boron WF (2013) Relative CO(2)/NH(3) selectivities of mammalian aquaporins 0-9. Am J Phys Cell Physiol 304:C985–C994

    Article  Google Scholar 

  63. Golestaneh N, Fan J, Zelenka P, Chepelinsky AB (2008) PKC putative phosphorylation site Ser235 is required for MIP/AQP0 translocation to the plasma membrane. Mol Vis 14:1006–1014

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gonen T, Cheng Y, Kistler J, Walz T (2004) Aquaporin-0 membrane junctions form upon proteolytic cleavage. J Mol Biol 342:1337–1345

    Article  CAS  PubMed  Google Scholar 

  65. Gorin MB, Yancey SB, Cline J, Revel JP, Horwitz J (1984) The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning. Cell 39:49–59

    Article  CAS  PubMed  Google Scholar 

  66. Gouraud S, Laera A, Calamita G, Carmosino M, Procino G, Rossetto O, Mannucci R, Rosenthal W, Svelto M, Valenti G (2002) Functional involvement of VAMP/synaptobrevin-2 in cAMP-stimulated aquaporin 2 translocation in renal collecting duct cells. J Cell Sci 115:3667–3674

    Article  CAS  PubMed  Google Scholar 

  67. Gradilone SA, Garcia F, Huebert RC, Tietz PS, Larocca MC, Kierbel A, Carreras FI, Larusso NF, Marinelli RA (2003) Glucagon induces the plasma membrane insertion of functional aquaporin-8 water channels in isolated rat hepatocytes. Hepatology 37:1435–1441

    Article  CAS  PubMed  Google Scholar 

  68. Gradilone SA, Carreras FI, Lehmann GL, Marinelli RA (2005) Phosphoinositide 3-kinase is involved in the glucagon-induced translocation of aquaporin-8 to hepatocyte plasma membrane. Biol Cell 97:831–836

    Article  CAS  PubMed  Google Scholar 

  69. Gunnarson E, Zelenina M, Aperia A (2004) Regulation of brain aquaporins. Neuroscience 129:947–955

    Article  CAS  PubMed  Google Scholar 

  70. Gunnarson E, Axehult G, Baturina G, Zelenin S, Zelenina M, Aperia A (2005) Lead induces increased water permeability in astrocytes expressing aquaporin 4. Neuroscience 136:105–114

    Article  CAS  PubMed  Google Scholar 

  71. Gunnarson E, Zelenina M, Axehult G, Song Y, Bondar A, Krieger P, Brismar H, Zelenin S, Aperia A (2008) Identification of a molecular target for glutamate regulation of astrocyte water permeability. Glia 56:587–596

    Article  PubMed  Google Scholar 

  72. Gutierrez DB, Garland D, Schey KL (2011) Spatial analysis of human lens aquaporin-0 post-translational modifications by MALDI mass spectrometry tissue profiling. Exp Eye Res 93:912–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Han Z, Patil RV (2000) Protein kinase A-dependent phosphorylation of aquaporin-1. Biochem Biophys Res Commun 273:328–332

    Article  CAS  PubMed  Google Scholar 

  74. Hara-Chikuma M, Sohara E, Rai T, Ikawa M, Okabe M, Sasaki S, Uchida S, Verkman AS (2005) Progressive adipocyte hypertrophy in aquaporin-7-deficient mice: adipocyte glycerol permeability as a novel regulator of fat accumulation. J Biol Chem 280:15493–15496

    Article  CAS  PubMed  Google Scholar 

  75. Hara-Chikuma M, Chikuma S, Sugiyama Y, Kabashima K, Verkman AS, Inoue S, Miyachi Y (2012) Chemokine-dependent T cell migration requires aquaporin-3-mediated hydrogen peroxide uptake. J Exp Med 209:1743–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hara-Chikuma M, Satooka H, Watanabe S, Honda T, Miyachi Y, Watanabe T, Verkman AS (2015) Aquaporin-3-mediated hydrogen peroxide transport is required for NF-kappaB signalling in keratinocytes and development of psoriasis. Nat Commun 6:7454

    Article  CAS  PubMed  Google Scholar 

  77. Hara-Chikuma M, Watanabe S, Satooka H (2016) Involvement of aquaporin-3 in epidermal growth factor receptor signaling via hydrogen peroxide transport in cancer cells. Biochem Biophys Res Commun 471:603–609

    Article  CAS  PubMed  Google Scholar 

  78. Hasegawa T, Azlina A, Javkhlan P, Yao C, Akamatsu T, Hosoi K (2011) Novel phosphorylation of aquaporin-5 at its threonine 259 through cAMP signaling in salivary gland cells. Am J Phys Cell Physiol 301:C667–C678

    Article  CAS  Google Scholar 

  79. Hasler U, Jeon US, Kim JA, Mordasini D, Kwon HM, Feraille E, Martin PY (2006) Tonicity-responsive enhancer binding protein is an essential regulator of aquaporin-2 expression in renal collecting duct principal cells. J Am Soc Nephrol 17:1521–1531

    Article  CAS  PubMed  Google Scholar 

  80. Hasler U, Leroy V, Jeon US, Bouley R, Dimitrov M, Kim JA, Brown D, Kwon HM, Martin PY, Feraille E (2008) NF-kappaB modulates aquaporin-2 transcription in renal collecting duct principal cells. J Biol Chem 283:28095–28105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hatakeyama S, Yoshida Y, Tani T, Koyama Y, Nihei K, Ohshiro K, Kamiie JI, Yaoita E, Suda T, Hatakeyama K, Yamamoto T (2001) Cloning of a new aquaporin (AQP10) abundantly expressed in duodenum and jejunum. Biochem Biophys Res Commun 287:814–819

    Article  CAS  PubMed  Google Scholar 

  82. Hendriks G, Koudijs M, van Balkom BW, Oorschot V, Klumperman J, Deen PM, van der Sluijs P (2004) Glycosylation is important for cell surface expression of the water channel aquaporin-2 but is not essential for tetramerization in the endoplasmic reticulum. J Biol Chem 279:2975–2983

    Article  CAS  PubMed  Google Scholar 

  83. Henn V, Edemir B, Stefan E, Wiesner B, Lorenz D, Theilig F, Schmitt R, Vossebein L, Tamma G, Beyermann M, Krause E, Herberg FW, Valenti G, Bachmann S, Rosenthal W, Klussmann E (2004) Identification of a novel A-kinase anchoring protein 18 isoform and evidence for its role in the vasopressin-induced aquaporin-2 shuttle in renal principal cells. J Biol Chem 279:26654–26665

    Article  CAS  PubMed  Google Scholar 

  84. Hibuse T, Maeda N, Funahashi T, Yamamoto K, Nagasawa A, Mizunoya W, Kishida K, Inoue K, Kuriyama H, Nakamura T, Fushiki T, Kihara S, Shimomura I (2005) Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Proc Natl Acad Sci U S A 102:10993–10998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hirano Y, Okimoto N, Kadohira I, Suematsu M, Yasuoka K, Yasui M (2010) Molecular mechanisms of how mercury inhibits water permeation through aquaporin-1: understanding by molecular dynamics simulation. Biophys J 98:1512–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hoffert JD, Pisitkun T, Wang G, Shen RF, Knepper MA (2006) Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci U S A 103:7159–7164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hoffert JD, Nielsen J, Yu MJ, Pisitkun T, Schleicher SM, Nielsen S, Knepper MA (2007) Dynamics of aquaporin-2 serine-261 phosphorylation in response to short-term vasopressin treatment in collecting duct. Am J Physiol Ren Physiol 292:F691–F700

    Article  CAS  Google Scholar 

  88. Hoffert JD, Fenton RA, Moeller HB, Simons B, Tchapyjnikov D, McDill BW, Yu MJ, Pisitkun T, Chen F, Knepper MA (2008) Vasopressin-stimulated increase in phosphorylation at Ser269 potentiates plasma membrane retention of aquaporin-2. J Biol Chem 283:24617–24627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Holm LM, Klaerke DA, Zeuthen T (2004) Aquaporin 6 is permeable to glycerol and urea. Pflugers Arch 448:181–186

    Article  CAS  PubMed  Google Scholar 

  90. Hua Y, Ding S, Zhang W, Zhou Q, Ye W, Chen M, Zhu X (2015) Expression of AQP3 protein in hAECs is regulated by Camp-PKA-CREB signalling pathway. Front Biosci (Landmark Ed) 20:1047–1055

    Article  Google Scholar 

  91. Huber VJ, Tsujita M, Nakada T (2012) Aquaporins in drug discovery and pharmacotherapy. Mol Asp Med 33:691–703

    Article  CAS  Google Scholar 

  92. Hunter T (2007) The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell 28:730–738

    Article  CAS  PubMed  Google Scholar 

  93. Hwang CS, Shemorry A, Varshavsky A (2010) N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327:973–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ikeda M, Beitz E, Kozono D, Guggino WB, Agre P, Yasui M (2002) Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J Biol Chem 277:39873–39879

    Article  CAS  PubMed  Google Scholar 

  95. Ikeda M, Andoo A, Shimono M, Takamatsu N, Taki A, Muta K, Matsushita W, Uechi T, Matsuzaki T, Kenmochi N, Takata K, Sasaki S, Ito K, Ishibashi K (2011) The NPC motif of aquaporin-11, unlike the NPA motif of known aquaporins, is essential for full expression of molecular function. J Biol Chem 286:3342–3350

    Article  CAS  PubMed  Google Scholar 

  96. Inase N, Fushimi K, Ishibashi K, Uchida S, Ichioka M, Sasaki S, Marumo F (1995) Isolation of human aquaporin 3 gene. J Biol Chem 270:17913–17916

    Article  CAS  PubMed  Google Scholar 

  97. Inoue T, Nielsen S, Mandon B, Terris J, Kishore BK, Knepper MA (1998) SNAP-23 in rat kidney: colocalization with aquaporin-2 in collecting duct vesicles. Am J Phys 275:F752–F760

    CAS  Google Scholar 

  98. Inoue Y, Sohara E, Kobayashi K, Chiga M, Rai T, Ishibashi K, Horie S, Su X, Zhou J, Sasaki S, Uchida S (2014) Aberrant glycosylation and localization of polycystin-1 cause polycystic kidney in an AQP11 knockout model. J Am Soc Nephrol 25:2789–2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ishibashi K, Sasaki S, Saito F, Ikeuchi T, Marumo F (1995) Structure and chromosomal localization of a human water channel (AQP3) gene. Genomics 27:352–354

    Article  CAS  PubMed  Google Scholar 

  100. Ishibashi K, Kuwahara M, Gu Y, Kageyama Y, Tohsaka A, Suzuki F, Marumo F, Sasaki S (1997) Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J Biol Chem 272:20782–20786

    Article  CAS  PubMed  Google Scholar 

  101. Ishibashi K, Sasaki S, Fushimi K, Yamamoto T, Kuwahara M, Marumo F (1997) Immunolocalization and effect of dehydration on AQP3, a basolateral water channel of kidney collecting ducts. Am J Phys 272:F235–F241

    CAS  Google Scholar 

  102. Ishibashi K, Kuwahara M, Gu Y, Tanaka Y, Marumo F, Sasaki S (1998) Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol. Biochem Biophys Res Commun 244:268–274

    Article  CAS  PubMed  Google Scholar 

  103. Ishibashi K, Morinaga T, Kuwahara M, Sasaki S, Imai M (2002) Cloning and identification of a new member of water channel (AQP10) as an aquaglyceroporin. Biochim Biophys Acta 1576:335–340

    Article  CAS  PubMed  Google Scholar 

  104. Ishibashi K, Tanaka Y, Morishita Y (2014) The role of mammalian superaquaporins inside the cell. Biochim Biophys Acta 1840:1507–1512

    Article  CAS  PubMed  Google Scholar 

  105. Ishibashi K, Kuwahara M, Kageyama Y, Sasaki S, Suzuki M, Imai M (2000) Molecular cloning of a new aquaporin superfamily in mammals: AQPX1 and AQPX2. In: Hohmann S, Nielson S (eds) Molecular biology and physiology of water and solute transport, 1st edn. Kluwer Academic/Plenum Publishers, New York, pp 123–126

    Chapter  Google Scholar 

  106. Ishikawa Y, Skowronski MT, Inoue N, Ishida H (1999) alpha(1)-adrenoceptor-induced trafficking of aquaporin-5 to the apical plasma membrane of rat parotid cells. Biochem Biophys Res Commun 265:94–100

    Article  CAS  PubMed  Google Scholar 

  107. Itoh T, Rai T, Kuwahara M, Ko SB, Uchida S, Sasaki S, Ishibashi K (2005) Identification of a novel aquaporin, AQP12, expressed in pancreatic acinar cells. Biochem Biophys Res Commun 330:832–838

    Article  CAS  PubMed  Google Scholar 

  108. Jenq W, Cooper DR, Bittle P, Ramirez G (1999) Aquaporin-1 expression in proximal tubule epithelial cells of human kidney is regulated by hyperosmolarity and contrast agents. Biochem Biophys Res Commun 256:240–248

    Article  CAS  PubMed  Google Scholar 

  109. Jourdain P, Becq F, Lengacher S, Boinot C, Magistretti PJ, Marquet P (2014) The human k protein expressed in CHO cells activates aquaporin-3 in a cAMP-dependent pathway: study by digital holographic microscopy. J Cell Sci 127:546–556

    Article  CAS  PubMed  Google Scholar 

  110. Jung JS, Preston GM, Smith BL, Guggino WB, Agre P (1994) Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J Biol Chem 269:14648–14654

    CAS  PubMed  Google Scholar 

  111. Kamsteeg EJ, Hendriks G, Boone M, Konings IB, Oorschot V, van der Sluijs P, Klumperman J, Deen PM (2006) Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc Natl Acad Sci U S A 103:18344–18349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Katsura T, Gustafson CE, Ausiello DA, Brown D (1997) Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells. Am J Phys 272:F817–F822

    CAS  Google Scholar 

  113. Kim HY, Choi HJ, Lim JS, Park EJ, Jung HJ, Lee YJ, Kim SY, Kwon TH (2011) Emerging role of Akt substrate protein AS160 in the regulation of AQP2 translocation. Am J Physiol Ren Physiol 301:F151–F161

    Article  CAS  Google Scholar 

  114. Kishida K, Kuriyama H, Funahashi T, Shimomura I, Kihara S, Ouchi N, Nishida M, Nishizawa H, Matsuda M, Takahashi M, Hotta K, Nakamura T, Yamashita S, Tochino Y, Matsuzawa Y (2000) Aquaporin adipose, a putative glycerol channel in adipocytes. J Biol Chem 275:20896–20902

    Article  CAS  PubMed  Google Scholar 

  115. Kitchen P, Oberg F, Sjohamn J, Hedfalk K, Bill RM, Conner AC, Conner MT, Tornroth-Horsefield S (2015) Plasma membrane abundance of human aquaporin 5 is dynamically regulated by multiple pathways. PLoS One 10:e0143027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Klokkers J, Langehanenberg P, Kemper B, Kosmeier S, von Bally G, Riethmuller C, Wunder F, Sindic A, Pavenstadt H, Schlatter E, Edemir B (2009) Atrial natriuretic peptide and nitric oxide signaling antagonizes vasopressin-mediated water permeability in inner medullary collecting duct cells. Am J Physiol Ren Physiol 297:F693–F703

    Article  CAS  Google Scholar 

  117. Klussmann E, Maric K, Wiesner B, Beyermann M, Rosenthal W (1999) Protein kinase A anchoring proteins are required for vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem 274:4934–4938

    Article  CAS  PubMed  Google Scholar 

  118. Klussmann E, Rosenthal W (2001) Role and identification of protein kinase A anchoring proteins in vasopressin-mediated aquaporin-2 translocation. Kidney Int 60:446–449

    Article  CAS  PubMed  Google Scholar 

  119. Koffman JS, Arnspang EC, Marlar S, Nejsum LN (2015) Opposing effects of cAMP and T259 phosphorylation on plasma membrane diffusion of the water channel aquaporin-5 in Madin-Darby Canine kidney cells. PLoS One 10:e0133324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Kondo H, Shimomura I, Kishida K, Kuriyama H, Makino Y, Nishizawa H, Matsuda M, Maeda N, Nagaretani H, Kihara S, Kurachi Y, Nakamura T, Funahashi T, Matsuzawa Y (2002) Human aquaporin adipose (AQPap) gene. Genomic structure, promoter analysis and functional mutation. Eur J Biochem 269:1814–1826

    Article  CAS  PubMed  Google Scholar 

  121. Kosugi-Tanaka C, Li X, Yao C, Akamatsu T, Kanamori N, Hosoi K (2006) Protein kinase A-regulated membrane trafficking of a green fluorescent protein-aquaporin 5 chimera in MDCK cells. Biochim Biophys Acta 1763:337–344

    Article  CAS  PubMed  Google Scholar 

  122. Koyama N, Ishibashi K, Kuwahara M, Inase N, Ichioka M, Sasaki S, Marumo F (1998) Cloning and functional expression of human aquaporin8 cDNA and analysis of its gene. Genomics 54:169–172

    Article  CAS  PubMed  Google Scholar 

  123. Kreida S, Tornroth-Horsefield S (2015) Structural insights into aquaporin selectivity and regulation. Curr Opin Struct Biol 33:126–134

    Article  CAS  PubMed  Google Scholar 

  124. Laforenza U, Scaffino MF, Gastaldi G (2013) Aquaporin-10 represents an alternative pathway for glycerol efflux from human adipocytes. PLoS One 8:e54474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lanaspa MA, Andres-Hernando A, Li N, Rivard CJ, Cicerchi C, Roncal-Jimenez C, Schrier RW, Berl T (2010) The expression of aquaporin-1 in the medulla of the kidney is dependent on the transcription factor associated with hypertonicity, TonEBP. J Biol Chem 285:31694–31703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lee MD, Bhakta KY, Raina S, Yonescu R, Griffin CA, Copeland NG, Gilbert DJ, Jenkins NA, Preston GM, Agre P (1996) The human Aquaporin-5 gene. Molecular characterization and chromosomal localization. J Biol Chem 271:8599–8604

    Article  CAS  PubMed  Google Scholar 

  127. Lee YJ, Lee JE, Choi HJ, Lim JS, Jung HJ, Baek MC, Frokiaer J, Nielsen S, Kwon TH (2011) E3 ubiquitin-protein ligases in rat kidney collecting duct: response to vasopressin stimulation and withdrawal. Am J Physiol Ren Physiol 301:F883–F896

    Article  CAS  Google Scholar 

  128. Leitch V, Agre P, King LS (2001) Altered ubiquitination and stability of aquaporin-1 in hypertonic stress. Proc Natl Acad Sci U S A 98:2894–2898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li C, Wang W, Summer SN, Cadnapaphornchai MA, Falk S, Umenishi F, Schrier RW (2006) Hyperosmolality in vivo upregulates aquaporin 2 water channel and Na-K-2Cl co-transporter in Brattleboro rats. J Am Soc Nephrol 17:1657–1664

    Article  CAS  PubMed  Google Scholar 

  130. Li C, Wang W, Summer SN, Westfall TD, Brooks DP, Falk S, Schrier RW (2008) Molecular mechanisms of antidiuretic effect of oxytocin. J Am Soc Nephrol 19:225–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Li C, Wang W, Rivard CJ, Lanaspa MA, Summer S, Schrier RW (2011) Molecular mechanisms of angiotensin II stimulation on aquaporin-2 expression and trafficking. Am J Physiol Ren Physiol 300:F1255–F1261

    Article  CAS  Google Scholar 

  132. Li W, Zhang Y, Bouley R, Chen Y, Matsuzaki T, Nunes P, Hasler U, Brown D, Lu HA (2011) Simvastatin enhances aquaporin-2 surface expression and urinary concentration in vasopressin-deficient Brattleboro rats through modulation of Rho GTPase. Am J Physiol Ren Physiol 301:F309–F318

    Article  CAS  Google Scholar 

  133. Liu K, Kozono D, Kato Y, Agre P, Hazama A, Yasui M (2005) Conversion of aquaporin 6 from an anion channel to a water-selective channel by a single amino acid substitution. Proc Natl Acad Sci U S A 102:2192–2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen BP (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci U S A 99:6053–6058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Loitto VM, Huang C, Sigal YJ, Jacobson K (2007) Filopodia are induced by aquaporin-9 expression. Exp Cell Res 313:1295–1306

    Article  CAS  PubMed  Google Scholar 

  136. Lorenz D, Krylov A, Hahm D, Hagen V, Rosenthal W, Pohl P, Maric K (2003) Cyclic AMP is sufficient for triggering the exocytic recruitment of aquaporin-2 in renal epithelial cells. EMBO Rep 4:88–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lu H, Sun TX, Bouley R, Blackburn K, McLaughlin M, Brown D (2004) Inhibition of endocytosis causes phosphorylation (S256)-independent plasma membrane accumulation of AQP2. Am J Physiol Ren Physiol 286:F233–F243

    Article  CAS  Google Scholar 

  138. Lu HA, Sun TX, Matsuzaki T, Yi XH, Eswara J, Bouley R, McKee M, Brown D (2007) Heat shock protein 70 interacts with aquaporin-2 and regulates its trafficking. J Biol Chem 282:28721–28732

    Article  CAS  PubMed  Google Scholar 

  139. Lu HJ, Matsuzaki T, Bouley R, Hasler U, Qin QH, Brown D (2008) The phosphorylation state of serine 256 is dominant over that of serine 261 in the regulation of AQP2 trafficking in renal epithelial cells. Am J Physiol Ren Physiol 295:F290–F294

    Article  CAS  Google Scholar 

  140. Lu M, Lee MD, Smith BL, Jung JS, Agre P, Verdijk MA, Merkx G, Rijss JP, Deen PM (1996) The human AQP4 gene: definition of the locus encoding two water channel polypeptides in brain. Proc Natl Acad Sci U S A 93:10908–10912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ma T, Yang B, Kuo WL, Verkman AS (1996) cDNA cloning and gene structure of a novel water channel expressed exclusively in human kidney: evidence for a gene cluster of aquaporins at chromosome locus 12q13. Genomics 35:543–550

    Article  CAS  PubMed  Google Scholar 

  142. Ma T, Yang B, Umenishi F, Verkman AS (1997) Closely spaced tandem arrangement of AQP2, AQP5, and AQP6 genes in a 27-kilobase segment at chromosome locus 12q13. Genomics 43:387–389

    Article  CAS  PubMed  Google Scholar 

  143. Maeda N (2012) Implications of aquaglyceroporins 7 and 9 in glycerol metabolism and metabolic syndrome. Mol Asp Med 33:665–675

    Article  CAS  Google Scholar 

  144. Mandon B, Chou CL, Nielsen S, Knepper MA (1996) Syntaxin-4 is localized to the apical plasma membrane of rat renal collecting duct cells: possible role in aquaporin-2 trafficking. J Clin Invest 98:906–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Marinelli RA, Pham L, Agre P, LaRusso NF (1997) Secretin promotes osmotic water transport in rat cholangiocytes by increasing aquaporin-1 water channels in plasma membrane. Evidence for a secretin-induced vesicular translocation of aquaporin-1. J Biol Chem 272:12984–12988

    Article  CAS  PubMed  Google Scholar 

  146. Marinelli RA, Tietz PS, Pham LD, Rueckert L, Agre P, LaRusso NF (1999) Secretin induces the apical insertion of aquaporin-1 water channels in rat cholangiocytes. Am J Phys 276:G280–G286

    CAS  Google Scholar 

  147. Marlar S, Arnspang EC, Koffman JS, Locke EM, Christensen BM, Nejsum LN (2014) Elevated cAMP increases aquaporin-3 plasma membrane diffusion. Am J Phys Cell Physiol 306:C598–C606

    Article  CAS  Google Scholar 

  148. Marples D, Knepper MA, Christensen EI, Nielsen S (1995) Redistribution of aquaporin-2 water channels induced by vasopressin in rat kidney inner medullary collecting duct. Am J Phys 269:C655–C664

    CAS  Google Scholar 

  149. Mateo Sanchez S, Freeman SD, Delacroix L, Malgrange B (2016) The role of post-translational modifications in hearing and deafness. Cell Mol Life Sci 73:3521–3533

    Article  CAS  PubMed  Google Scholar 

  150. Mathai JC, Agre P (1999) Hourglass pore-forming domains restrict aquaporin-1 tetramer assembly. Biochemistry 38:923–928

    Article  CAS  PubMed  Google Scholar 

  151. Matsumura Y, Uchida S, Rai T, Sasaki S, Marumo F (1997) Transcriptional regulation of aquaporin-2 water channel gene by cAMP. J Am Soc Nephrol 8:861–867

    CAS  PubMed  Google Scholar 

  152. Michalek K (2016) Aquaglyceroporins in the kidney: present state of knowledge and prospects. J Physiol Pharmacol 67:185–193

    CAS  PubMed  Google Scholar 

  153. Miyauchi T, Yamamoto H, Abe Y, Yoshida GJ, Rojek A, Sohara E, Uchida S, Nielsen S, Yasui M (2015) Dynamic subcellular localization of aquaporin-7 in white adipocytes. FEBS Lett 589:608–614

    Article  CAS  PubMed  Google Scholar 

  154. Moeller HB, Fenton RA, Zeuthen T, Macaulay N (2009) Vasopressin-dependent short-term regulation of aquaporin 4 expressed in Xenopus oocytes. Neuroscience 164:1674–1684

    Article  CAS  PubMed  Google Scholar 

  155. Moeller HB, Knepper MA, Fenton RA (2009) Serine 269 phosphorylated aquaporin-2 is targeted to the apical membrane of collecting duct principal cells. Kidney Int 75:295–303

    Article  CAS  PubMed  Google Scholar 

  156. Moeller HB, Praetorius J, Rutzler MR, Fenton RA (2010) Phosphorylation of aquaporin-2 regulates its endocytosis and protein-protein interactions. Proc Natl Acad Sci U S A 107:424–429

    Article  CAS  PubMed  Google Scholar 

  157. Moeller HB, Olesen ET, Fenton RA (2011) Regulation of the water channel aquaporin-2 by posttranslational modification. Am J Physiol Ren Physiol 300:F1062–F1073

    Article  CAS  Google Scholar 

  158. Moeller HB, Fenton RA (2012) Cell biology of vasopressin-regulated aquaporin-2 trafficking. Pflugers Arch 464:133–144

    Article  CAS  PubMed  Google Scholar 

  159. Moeller HB, Aroankins TS, Slengerik-Hansen J, Pisitkun T, Fenton RA (2014) Phosphorylation and ubiquitylation are opposing processes that regulate endocytosis of the water channel aquaporin-2. J Cell Sci 127:3174–3183

    Article  CAS  PubMed  Google Scholar 

  160. Molinas SM, Trumper L, Marinelli RA (2012) Mitochondrial aquaporin-8 in renal proximal tubule cells: evidence for a role in the response to metabolic acidosis. Am J Physiol Ren Physiol 303:F458–F466

    Article  CAS  Google Scholar 

  161. Morinaga T, Nakakoshi M, Hirao A, Imai M, Ishibashi K (2002) Mouse aquaporin 10 gene (AQP10) is a pseudogene. Biochem Biophys Res Commun 294:630–634

    Article  CAS  PubMed  Google Scholar 

  162. Morishita Y, Matsuzaki T, Hara-chikuma M, Andoo A, Shimono M, Matsuki A, Kobayashi K, Ikeda M, Yamamoto T, Verkman A, Kusano E, Ookawara S, Takata K, Sasaki S, Ishibashi K (2005) Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol Cell Biol 25:7770–7779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  CAS  PubMed  Google Scholar 

  164. Musa-Aziz R, Chen LM, Pelletier MF, Boron WF (2009) Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc Natl Acad Sci U S A 106:5406–5411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Nakahigashi K, Kabashima K, Ikoma A, Verkman AS, Miyachi Y, Hara-Chikuma M (2011) Upregulation of aquaporin-3 is involved in keratinocyte proliferation and epidermal hyperplasia. J Invest Dermatol 131:865–873

    Article  CAS  PubMed  Google Scholar 

  166. Nakhoul NL, Davis BA, Romero MF, Boron WF (1998) Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. Am J Phys 274:C543–C548

    CAS  Google Scholar 

  167. Nemeth-Cahalan KL, Hall JE (2000) pH and calcium regulate the water permeability of aquaporin 0. J Biol Chem 275:6777–6782

    Article  CAS  PubMed  Google Scholar 

  168. Nemeth-Cahalan KL, Kalman K, Hall JE (2004) Molecular basis of pH and Ca2+ regulation of aquaporin water permeability. J Gen Physiol 123:573–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Nemeth-Cahalan KL, Clemens DM, Hall JE (2013) Regulation of AQP0 water permeability is enhanced by cooperativity. J Gen Physiol 141:287–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Nico B, Ribatti D (2010) Aquaporins in tumor growth and angiogenesis. Cancer Lett 294:135–138

    Article  CAS  PubMed  Google Scholar 

  171. Nielsen S, DiGiovanni SR, Christensen EI, Knepper MA, Harris HW (1993) Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci U S A 90:11663–11667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA (1995) Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A 92:1013–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA (2002) Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82:205–244

    Article  CAS  PubMed  Google Scholar 

  174. Nishimoto G, Zelenina M, Li D, Yasui M, Aperia A, Nielsen S, Nairn AC (1999) Arginine vasopressin stimulates phosphorylation of aquaporin-2 in rat renal tissue. Am J Phys 276:F254–F259

    CAS  Google Scholar 

  175. Noda Y, Horikawa S, Katayama Y, Sasaki S (2004) Water channel aquaporin-2 directly binds to actin. Biochem Biophys Res Commun 322:740–745

    Article  CAS  PubMed  Google Scholar 

  176. Noda Y, Horikawa S, Katayama Y, Sasaki S (2005) Identification of a multiprotein “motor” complex binding to water channel aquaporin-2. Biochem Biophys Res Commun 330:1041–1047

    Article  CAS  PubMed  Google Scholar 

  177. Noda Y, Sasaki S (2006) Regulation of aquaporin-2 trafficking and its binding protein complex. Biochim Biophys Acta 1758:1117–1125

    Article  CAS  PubMed  Google Scholar 

  178. Noda Y, Horikawa S, Kanda E, Yamashita M, Meng H, Eto K, Li Y, Kuwahara M, Hirai K, Pack C, Kinjo M, Okabe S, Sasaki S (2008) Reciprocal interaction with G-actin and tropomyosin is essential for aquaporin-2 trafficking. J Cell Biol 182:587–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Oberg F, Sjohamn J, Fischer G, Moberg A, Pedersen A, Neutze R, Hedfalk K (2011) Glycosylation increases the thermostability of human aquaporin 10 protein. J Biol Chem 286:31915–31923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Ohta E, Itoh T, Nemoto T, Kumagai J, Ko SB, Ishibashi K, Ohno M, Uchida K, Ohta A, Sohara E, Uchida S, Sasaki S, Rai T (2009) Pancreas-specific aquaporin 12 null mice showed increased susceptibility to caerulein-induced acute pancreatitis. Am J Phys Cell Physiol 297:C1368–C1378

    Article  CAS  Google Scholar 

  181. Okutsu R, Rai T, Kikuchi A, Ohno M, Uchida K, Sasaki S, Uchida S (2008) AKAP220 colocalizes with AQP2 in the inner medullary collecting ducts. Kidney Int 74:1429–1433

    Article  CAS  PubMed  Google Scholar 

  182. Olesen ET, Rutzler MR, Moeller HB, Praetorius HA, Fenton RA (2011) Vasopressin-independent targeting of aquaporin-2 by selective E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus. Proc Natl Acad Sci U S A 108:12949–12954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Oshikawa S, Sonoda H, Ikeda M (2016) Aquaporins in Urinary Extracellular Vesicles (Exosomes). Int J Mol Sci 17

    Google Scholar 

  184. Patil RV, Han Z, Wax MB (1997) Regulation of water channel activity of aquaporin 1 by arginine vasopressin and atrial natriuretic peptide. Biochem Biophys Res Commun 238:392–396

    Article  CAS  PubMed  Google Scholar 

  185. Petroski MD, Deshaies RJ (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6:9–20

    Article  CAS  PubMed  Google Scholar 

  186. Pisano MM, Chepelinsky AB (1991) Genomic cloning, complete nucleotide sequence, and structure of the human gene encoding the major intrinsic protein (MIP) of the lens. Genomics 11:981–990

    Article  CAS  PubMed  Google Scholar 

  187. Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101:13368–13373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Pohl M, Shan Q, Petsch T, Styp-Rekowska B, Matthey P, Bleich M, Bachmann S, Theilig F (2015) Short-term functional adaptation of aquaporin-1 surface expression in the proximal tubule, a component of glomerulotubular balance. J Am Soc Nephrol 26:1269–1278

    Article  CAS  PubMed  Google Scholar 

  189. Prasad GV, Coury LA, Finn F, Zeidel ML (1998) Reconstituted aquaporin 1 water channels transport CO2 across membranes. J Biol Chem 273:33123–33126

    Article  CAS  PubMed  Google Scholar 

  190. Preston GM, Agre P (1991) Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci U S A 88:11110–11114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    Article  CAS  PubMed  Google Scholar 

  192. Preston GM, Jung JS, Guggino WB, Agre P (1993) The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J Biol Chem 268:17–20

    CAS  PubMed  Google Scholar 

  193. Procino G, Barbieri C, Tamma G, De Benedictis L, Pessin JE, Svelto M, Valenti G (2008) AQP2 exocytosis in the renal collecting duct – involvement of SNARE isoforms and the regulatory role of Munc18b. J Cell Sci 121:2097–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Procino G, Barbieri C, Carmosino M, Rizzo F, Valenti G, Svelto M (2010) Lovastatin-induced cholesterol depletion affects both apical sorting and endocytosis of aquaporin-2 in renal cells. Am J Physiol Ren Physiol 298:F266–F278

    Article  CAS  Google Scholar 

  195. Qiu LW, Gu LY, Lu L, Chen XF, Li CF, Mei ZC (2015) FOXO1-mediated epigenetic modifications are involved in the insulin-mediated repression of hepatocyte aquaporin 9 expression. Mol Med Rep 11:3064–3068

    CAS  PubMed  Google Scholar 

  196. Rabaud NE, Song L, Wang Y, Agre P, Yasui M, Carbrey JM (2009) Aquaporin 6 binds calmodulin in a calcium-dependent manner. Biochem Biophys Res Commun 383:54–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Rai T, Uchida S, Marumo F, Sasaki S (1997) Cloning of rat and mouse aquaporin-2 gene promoters and identification of a negative cis-regulatory element. Am J Phys 273:F264–F273

    CAS  Google Scholar 

  198. Reichow SL, Clemens DM, Freites JA, Nemeth-Cahalan KL, Heyden M, Tobias DJ, Hall JE, Gonen T (2013) Allosteric mechanism of water-channel gating by Ca2+−calmodulin. Nat Struct Mol Biol 20:1085–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Rinschen MM, Yu MJ, Wang G, Boja ES, Hoffert JD, Pisitkun T, Knepper MA (2010) Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci U S A 107:3882–3887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ripoche P, Goossens D, Devuyst O, Gane P, Colin Y, Verkman AS, Cartron JP (2006) Role of RhAG and AQP1 in NH3 and CO2 gas transport in red cell ghosts: a stopped-flow analysis. Transfus Clin Biol 13:117–122

    Article  CAS  PubMed  Google Scholar 

  201. Rodriguez A, Catalan V, Gomez-Ambrosi J, Fruhbeck G (2011) Aquaglyceroporins serve as metabolic gateways in adiposity and insulin resistance control. Cell Cycle 10:1548–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Rojek A, Praetorius J, Frokiaer J, Nielsen S, Fenton RA (2008) A current view of the mammalian aquaglyceroporins. Annu Rev Physiol 70:301–327

    Article  CAS  PubMed  Google Scholar 

  203. Russo LM, McKee M, Brown D (2006) Methyl-beta-cyclodextrin induces vasopressin-independent apical accumulation of aquaporin-2 in the isolated, perfused rat kidney. Am J Physiol Ren Physiol 291:F246–F253

    Article  CAS  Google Scholar 

  204. Sachdeva R, Singh B (2014) Phosphorylation of Ser-180 of rat aquaporin-4 shows marginal affect on regulation of water permeability: molecular dynamics study. J Biomol Struct Dyn 32:555–566

    Article  CAS  PubMed  Google Scholar 

  205. Sales AD, Lobo CH, Carvalho AA, Moura AA, Rodrigues AP (2013) Structure, function, and localization of aquaporins: their possible implications on gamete cryopreservation. Genet Mol Res 12:6718–6732

    Article  CAS  PubMed  Google Scholar 

  206. Sandoval PC, Slentz DH, Pisitkun T, Saeed F, Hoffert JD, Knepper MA (2013) Proteome-wide measurement of protein half-lives and translation rates in vasopressin-sensitive collecting duct cells. J Am Soc Nephrol 24:1793–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Saparov SM, Liu K, Agre P, Pohl P (2007) Fast and selective ammonia transport by aquaporin-8. J Biol Chem 282:5296–5301

    Article  CAS  PubMed  Google Scholar 

  208. Sasaki S, Fushimi K, Saito H, Saito F, Uchida S, Ishibashi K, Kuwahara M, Ikeuchi T, Inui K, Nakajima K et al (1994) Cloning, characterization, and chromosomal mapping of human aquaporin of collecting duct. J Clin Invest 93:1250–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Sasaki S (2012) Aquaporin 2: from its discovery to molecular structure and medical implications. Mol Asp Med 33:535–546

    Article  CAS  Google Scholar 

  210. Satooka H, Hara-Chikuma M (2016) Aquaporin-3 controls breast cancer cell migration by regulating hydrogen peroxide transport and its downstream cell signaling. Mol Cell Biol 36:1206–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Sidhaye V, Hoffert JD, King LS (2005) cAMP has distinct acute and chronic effects on aquaporin-5 in lung epithelial cells. J Biol Chem 280:3590–3596

    Article  CAS  PubMed  Google Scholar 

  212. Simon H, Gao Y, Franki N, Hays RM (1993) Vasopressin depolymerizes apical F-actin in rat inner medullary collecting duct. Am J Phys 265:C757–C762

    CAS  Google Scholar 

  213. Smith BL, Agre P (1991) Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J Biol Chem 266:6407–6415

    CAS  PubMed  Google Scholar 

  214. Solomon AK, Chasan B, Dix JA, Lukacovic MF, Toon MR, Verkman AS (1983) The aqueous pore in the red cell membrane: band 3 as a channel for anions, cations, nonelectrolytes and water. In: Kumerow FA, Benga GH, Holmes RP (eds) Biomembranes and cell function. The New York Academy of Sciences, New York, pp 97–124

    Google Scholar 

  215. Song Y, Verkman AS (2001) Aquaporin-5 dependent fluid secretion in airway submucosal glands. J Biol Chem 276:41288–41292

    Article  CAS  PubMed  Google Scholar 

  216. Song Y, Sonawane N, Verkman AS (2002) Localization of aquaporin-5 in sweat glands and functional analysis using knockout mice. J Physiol 541:561–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Soria LR, Fanelli E, Altamura N, Svelto M, Marinelli RA, Calamita G (2010) Aquaporin-8-facilitated mitochondrial ammonia transport. Biochem Biophys Res Commun 393:217–221

    Article  CAS  PubMed  Google Scholar 

  218. Strange K, Willingham MC, Handler JS, Harris HW Jr (1988) Apical membrane endocytosis via coated pits is stimulated by removal of antidiuretic hormone from isolated, perfused rabbit cortical collecting tubule. J Membr Biol 103:17–28

    Article  CAS  PubMed  Google Scholar 

  219. Street JM, Birkhoff W, Menzies RI, Webb DJ, Bailey MA, Dear JW (2011) Exosomal transmission of functional aquaporin 2 in kidney cortical collecting duct cells. J Physiol 589:6119–6127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Sui H, Han BG, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878

    Article  CAS  PubMed  Google Scholar 

  221. Sun TX, Van Hoek A, Huang Y, Bouley R, McLaughlin M, Brown D (2002) Aquaporin-2 localization in clathrin-coated pits: inhibition of endocytosis by dominant-negative dynamin. Am J Physiol Ren Physiol 282:F998–1011

    Article  CAS  Google Scholar 

  222. Suzuki H, Nishikawa K, Hiroaki Y, Fujiyoshi Y (2008) Formation of aquaporin-4 arrays is inhibited by palmitoylation of N-terminal cysteine residues. Biochim Biophys Acta 1778:1181–1189

    Article  CAS  PubMed  Google Scholar 

  223. Tada J, Sawa T, Yamanaka N, Shono M, Akamatsu T, Tsumura K, Parvin MN, Kanamori N, Hosoi K (1999) Involvement of vesicle-cytoskeleton interaction in AQP5 trafficking in AQP5-gene-transfected HSG cells. Biochem Biophys Res Commun 266:443–447

    Article  CAS  PubMed  Google Scholar 

  224. Tajika Y, Matsuzaki T, Suzuki T, Aoki T, Hagiwara H, Kuwahara M, Sasaki S, Takata K (2004) Aquaporin-2 is retrieved to the apical storage compartment via early endosomes and phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 145:4375–4383

    Article  CAS  PubMed  Google Scholar 

  225. Tajika Y, Matsuzaki T, Suzuki T, Ablimit A, Aoki T, Hagiwara H, Kuwahara M, Sasaki S, Takata K (2005) Differential regulation of AQP2 trafficking in endosomes by microtubules and actin filaments. Histochem Cell Biol 124:1–12

    Article  CAS  PubMed  Google Scholar 

  226. Takahashi S, Muta K, Sonoda H, Kato A, Abdeen A, Ikeda M (2014) The role of Cysteine 227 in subcellular localization, water permeability, and multimerization of aquaporin-11. FEBS Open Bio 4:315–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Tamma G, Carmosino M, Svelto M, Valenti G (2005) Bradykinin signaling counteracts cAMP-elicited aquaporin 2 translocation in renal cells. J Am Soc Nephrol 16:2881–2889

    Article  CAS  PubMed  Google Scholar 

  228. Tamma G, Robben JH, Trimpert C, Boone M, Deen PM (2011) Regulation of AQP2 localization by S256 and S261 phosphorylation and ubiquitination. Am J Phys Cell Physiol 300:C636–C646

    Article  CAS  Google Scholar 

  229. Tamma G, Ranieri M, Di Mise A, Centrone M, Svelto M, Valenti G (2014) Glutathionylation of the aquaporin-2 water channel: a novel post-translational modification modulated by the oxidative stress. J Biol Chem 289:27807–27813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Tani K, Mitsuma T, Hiroaki Y, Kamegawa A, Nishikawa K, Tanimura Y, Fujiyoshi Y (2009) Mechanism of aquaporin-4’s fast and highly selective water conduction and proton exclusion. J Mol Biol 389:694–706

    Article  CAS  PubMed  Google Scholar 

  231. Terris J, Ecelbarger CA, Nielsen S, Knepper MA (1996) Long-term regulation of four renal aquaporins in rats. Am J Phys 271:F414–F422

    CAS  Google Scholar 

  232. Tsukaguchi H, Weremowicz S, Morton CC, Hediger MA (1999) Functional and molecular characterization of the human neutral solute channel aquaporin-9. Am J Phys 277:F685–F696

    CAS  Google Scholar 

  233. Uchida S, Sasaki S, Fushimi K, Marumo F (1994) Isolation of human aquaporin-CD gene. J Biol Chem 269:23451–23455

    CAS  PubMed  Google Scholar 

  234. Umenishi F, Schrier RW (2002) Identification and characterization of a novel hypertonicity-responsive element in the human aquaporin-1 gene. Biochem Biophys Res Commun 292:771–775

    Article  CAS  PubMed  Google Scholar 

  235. Umenishi F, Schrier RW (2003) Hypertonicity-induced aquaporin-1 (AQP1) expression is mediated by the activation of MAPK pathways and hypertonicity-responsive element in the AQP1 gene. J Biol Chem 278:15765–15770

    Article  CAS  PubMed  Google Scholar 

  236. van Balkom BW, Savelkoul PJ, Markovich D, Hofman E, Nielsen S, van der Sluijs P, Deen PM (2002) The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel. J Biol Chem 277:41473–41479

    Article  PubMed  CAS  Google Scholar 

  237. van Lieburg AF, Verdijk MA, Knoers VV, van Essen AJ, Proesmans W, Mallmann R, Monnens LA, van Oost BA, van Os CH, Deen PM (1994) Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water-channel gene. Am J Hum Genet 55:648–652

    PubMed  PubMed Central  Google Scholar 

  238. Verkman AS, Mitra AK (2000) Structure and function of aquaporin water channels. Am J Physiol Ren Physiol 278:F13–F28

    CAS  Google Scholar 

  239. Verlander JW, Madsen KM, Tisher CC (1987) Effect of acute respiratory acidosis on two populations of intercalated cells in rat cortical collecting duct. Am J Phys 253:F1142–F1156

    CAS  Google Scholar 

  240. Viadiu H, Gonen T, Walz T (2007) Projection map of aquaporin-9 at 7 A resolution. J Mol Biol 367:80–88

    Article  CAS  PubMed  Google Scholar 

  241. Viggiano L, Rocchi M, Svelto M, Calamita G (1999) Assignment of the aquaporin-8 water channel gene (AQP8) to human chromosome 16p12. Cytogenet Cell Genet 84:208–210

    Article  CAS  PubMed  Google Scholar 

  242. Walz T, Fujiyoshi Y, Engel A (2009) The AQP structure and functional implications. Handb Exp Pharmacol 190:31–56

    Article  CAS  Google Scholar 

  243. Wang W, Li C, Nejsum LN, Li H, Kim SW, Kwon TH, Jonassen TE, Knepper MA, Thomsen K, Frokiaer J, Nielsen S (2006) Biphasic effects of ANP infusion in conscious, euvolumic rats: roles of AQP2 and ENaC trafficking. Am J Physiol Ren Physiol 290:F530–F541

    Article  CAS  Google Scholar 

  244. Watanabe S, Moniaga CS, Nielsen S, Hara-Chikuma M (2016) Aquaporin-9 facilitates membrane transport of hydrogen peroxide in mammalian cells. Biochem Biophys Res Commun 471:191–197

    Article  CAS  PubMed  Google Scholar 

  245. Whiting JL, Ogier L, Forbush KA, Bucko P, Gopalan J, Seternes OM, Langeberg LK, Scott JD (2016) AKAP220 manages apical actin networks that coordinate aquaporin-2 location and renal water reabsorption. Proc Natl Acad Sci U S A 113:E4328–E4337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Woo J, Lee J, Kim MS, Jang SJ, Sidransky D, Moon C (2008) The effect of aquaporin 5 overexpression on the Ras signaling pathway. Biochem Biophys Res Commun 367:291–298

    Article  CAS  PubMed  Google Scholar 

  247. Yakata K, Hiroaki Y, Ishibashi K, Sohara E, Sasaki S, Mitsuoka K, Fujiyoshi Y (2007) Aquaporin-11 containing a divergent NPA motif has normal water channel activity. Biochim Biophys Acta 1768:688–693

    Article  CAS  PubMed  Google Scholar 

  248. Yakata K, Tani K, Fujiyoshi Y (2011) Water permeability and characterization of aquaporin-11. J Struct Biol 174:315–320

    Article  CAS  PubMed  Google Scholar 

  249. Yamamura Y, Motegi K, Kani K, Takano H, Momota Y, Aota K, Yamanoi T, Azuma M (2012) TNF-alpha inhibits aquaporin 5 expression in human salivary gland acinar cells via suppression of histone H4 acetylation. J Cell Mol Med 16:1766–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Yang B, Ma T, Verkman AS (1995) cDNA cloning, gene organization, and chromosomal localization of a human mercurial insensitive water channel. Evidence for distinct transcriptional units. J Biol Chem 270:22907–22913

    Article  CAS  PubMed  Google Scholar 

  251. Yang B, Brown D, Verkman AS (1996) The mercurial insensitive water channel (AQP-4) forms orthogonal arrays in stably transfected Chinese hamster ovary cells. J Biol Chem 271:4577–4580

    Article  CAS  PubMed  Google Scholar 

  252. Yang B, Verkman AS (1997) Water and glycerol permeabilities of aquaporins 1-5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J Biol Chem 272:16140–16146

    Article  CAS  PubMed  Google Scholar 

  253. Yang B, Zhao D, Verkman AS (2006) Evidence against functionally significant aquaporin expression in mitochondria. J Biol Chem 281:16202–16206

    Article  CAS  PubMed  Google Scholar 

  254. Yang F, Kawedia JD, Menon AG (2003) Cyclic AMP regulates aquaporin 5 expression at both transcriptional and post-transcriptional levels through a protein kinase A pathway. J Biol Chem 278:32173–32180

    Article  CAS  PubMed  Google Scholar 

  255. Yasui M, Zelenin SM, Celsi G, Aperia A (1997) Adenylate cyclase-coupled vasopressin receptor activates AQP2 promoter via a dual effect on CRE and AP1 elements. Am J Phys 272:F443–F450

    CAS  Google Scholar 

  256. Yasui M, Hazama A, Kwon TH, Nielsen S, Guggino WB, Agre P (1999) Rapid gating and anion permeability of an intracellular aquaporin. Nature 402:184–187

    Article  CAS  PubMed  Google Scholar 

  257. Yip KP (2002) Coupling of vasopressin-induced intracellular Ca2+ mobilization and apical exocytosis in perfused rat kidney collecting duct. J Physiol 538:891–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Yu MJ, Miller RL, Uawithya P, Rinschen MM, Khositseth S, Braucht DW, Chou CL, Pisitkun T, Nelson RD, Knepper MA (2009) Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct. Proc Natl Acad Sci U S A 106:2441–2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Yui N, Lu HJ, Bouley R, Brown D (2012) AQP2 is necessary for vasopressin- and forskolin-mediated filamentous actin depolymerization in renal epithelial cells. Biol Open 1:101–108

    Article  CAS  PubMed  Google Scholar 

  260. Zeidel ML, Ambudkar SV, Smith BL, Agre P (1992) Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 31:7436–7440

    Article  CAS  PubMed  Google Scholar 

  261. Zeidel ML, Nielsen S, Smith BL, Ambudkar SV, Maunsbach AB, Agre P (1994) Ultrastructure, pharmacologic inhibition, and transport selectivity of aquaporin channel-forming integral protein in proteoliposomes. Biochemistry 33:1606–1615

    Article  CAS  PubMed  Google Scholar 

  262. Zelenina M, Christensen BM, Palmer J, Nairn AC, Nielsen S, Aperia A (2000) Prostaglandin E(2) interaction with AVP: effects on AQP2 phosphorylation and distribution. Am J Physiol Ren Physiol 278:F388–F394

    CAS  Google Scholar 

  263. Zelenina M, Zelenin S, Bondar AA, Brismar H, Aperia A (2002) Water permeability of aquaporin-4 is decreased by protein kinase C and dopamine. Am J Physiol Ren Physiol 283:F309–F318

    Article  CAS  Google Scholar 

  264. Zhang W, Zitron E, Homme M, Kihm L, Morath C, Scherer D, Hegge S, Thomas D, Schmitt CP, Zeier M, Katus H, Karle C, Schwenger V (2007) Aquaporin-1 channel function is positively regulated by protein kinase C. J Biol Chem 282:20933–20940

    Article  CAS  PubMed  Google Scholar 

  265. Zhang Y, Peti-Peterdi J, Muller CE, Carlson NG, Baqi Y, Strasburg DL, Heiney KM, Villanueva K, Kohan DE, Kishore BK (2015) P2Y12 receptor localizes in the renal collecting duct and its blockade augments arginine vasopressin action and alleviates nephrogenic diabetes insipidus. J Am Soc Nephrol 26:2978–2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Zeuthen T (2001) How water molecules pass through aquaporins. Trends Biochem Sci. Feb 26(2):77–79

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Wang M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Li, C., Wang, W. (2017). Molecular Biology of Aquaporins. In: Yang, B. (eds) Aquaporins. Advances in Experimental Medicine and Biology, vol 969. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1057-0_1

Download citation

Publish with us

Policies and ethics