Skip to main content

Drag Reduction Using Compliant Walls

  • Conference paper

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 72))

Abstract

Compliant coating research is one of those areas which experienced its fair share of triumphs and debacles. For over forty years, the subject has fascinated, frustrated and occasionally gratified scientists and engineers searching for methods to delay laminar-to-turbulence transition, to reduce skin-friction drag in turbulent wall-bounded flows, to quell vibrations, and to suppress flow-induced noise. In its simplest form, the technique is passive, relatively easy to apply to an existing vehicle or device, and perhaps not too expensive. Through the years, however, claims for substantial drag and noise reductions were made, only to be later refuted when the results were more critically examined. There are several important issues with regard to the reliability of available analytical, numerical and experimental results. In this chapter, some of these issues, particularly as they relate to the search for drag-reducing compliant coatings, will be addressed with the objective of elucidating the potential pitfalls to newcomers to the field. Problem formulation with the proper boundary conditions, impossibility of obtaining first-principles analytical solutions when the wall-bounded flow is turbulent, and limitations of existing numerical simulations will be elaborated. The effects of background turbulence in a wind or water tunnel, accurate drag measurements, compliant wall motion, and the geometry and properties of the coatings used will be among the outstanding experimental issues discussed. Attempts will be made to explain some of the seemingly contradictory results available in the open literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aleyev, Yu.G. (1977) Nekton, Dr. W. Junk b.v. Publishers, the Hague, the Netherlands.

    Book  Google Scholar 

  • Au, D., and Weihs, D. (1980) “At High Speeds Dolphins Save Energy by Leaping,” Nature 284, no. 5756, 10 April, pp. 548–550.

    Article  ADS  Google Scholar 

  • Babenko, V.V., and Kozlov, L.F. (1972) “Experimental Investigation of Hydrodynamic Stability on Rigid and Elastic Damping Surfaces,” J. Hydraulic Res. 10, pp. 383–408.

    Article  Google Scholar 

  • Benjamin, T.B. (1960a) “Effects of a Flexible Boundary on Hydrodynamic Stability,” J. Fluid Mech. 9, pp. 513–532.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Benjamin, T.B. (1960b) “Fluid Flow with Flexible Boundaries, Proc. Eleventh International Congress of Applied Mechanics, ed. H. Görtler, pp. 109–128, Springer-Verlag, Berlin.

    Google Scholar 

  • Benjamin, T.B. (1963) “The Threefold Classification of Unstable Disturbances in Flexible Surfaces Bounding Inviscid Flows,” J. Fluid Mech. 16, pp. 436–450.

    Article  ADS  MATH  Google Scholar 

  • Benjamin, T.B. (1966) “Fluid Flow with Flexible Boundaries,” in Proc. Eleventh International Congress of Applied Mechanics, ed. H. Görtler, pp. 109–128, Springer-Verlag, Berlin.

    Google Scholar 

  • Betchov, K. (1960) “Simplified Analysis of Boundary-Layer Oscillations,” J. Ship Res. 4, pp. 37–54.

    Google Scholar 

  • Blick, E.F., and Walters, R.R. (1968) “Turbulent Boundary-Layer Characteristics of Compliant Surfaces,” J. Aircraft 5, pp. 11–16.

    Article  Google Scholar 

  • Buckingham, A.C., Hall, M.S., and Chun, R.C. (1985) “Numerical Simulations of Compliant Material Response to Turbulent Flow,” AIAA J. 23, pp. 1046–1052.

    Article  ADS  Google Scholar 

  • Burton, T.E. (1974) “The Connection Between Intermittent Turbulent Activity Near the Wall of a Turbulent Boundary Layer with Pressure Fluctuations at the Wall,” Massachusetts Institute of Technology Report No. 70208–10, Cambridge, Massachusetts.

    Google Scholar 

  • Bushnell, D.M., and Moore, K.J. (1991) “Drag Reduction in Nature,” Annu. Rev. Fluid Mech. 23, pp. 65–79.

    Article  ADS  Google Scholar 

  • Bushnell, D.M., Hefner, J.N., and Ash, R.L. (1977) “Effect of Compliant Wall Motion on Turbulent Boundary Layers,” Phys. Fluids 20, no. 10, part II, pp. S31—S48.

    Article  Google Scholar 

  • Carpenter, P.W. (1988) “The Optimization of Compliant Surfaces for Transition Delay, in Turbulence Management and Relaminarisation, eds. H.W. Liepmann and R. Narasimha, pp. 305–313, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Carpenter, P.W. (1990) “Status of Transition Delay Using Compliant Walls,” in Viscous Drag Reduction in Boundary Layers, eds. D.M. Bushnell and J.N. Hefner, pp. 79–113, AIAA, Washington, D.C.

    Google Scholar 

  • Carpenter, P.W. (1993) “Optimization of Multiple-Panel Compliant Walls for Delay of Laminar-Turbulent Transition,” AIAA J. 31, pp. 1187–1188.

    Article  ADS  Google Scholar 

  • Carpenter, P.W. (1998) “Current Status of the Use of Wall Compliance for Laminar-Flow Control,” Exp. Thermal Fluid Sci. 16, pp. 133–140.

    Article  Google Scholar 

  • Carpenter, P.W., and Garrad, A.D. (1985) “The Hydrodynamic Stability of Flow over Kramer-Type Compliant Surfaces. Part 1. Tollmien—Schlichting Instabilities,” J. Fluid Mech. 155, pp. 465–510.

    Article  ADS  MATH  Google Scholar 

  • Carpenter, P.W., and Garrad, A.D. (1986) “The Hydrodynamic Stability of Flow over Kramer-Type Compliant Surfaces. Part 2. Flow-Induced Surface Instabilities,” J. Fluid Mech. 170, pp. 199–232.

    Article  ADS  MATH  Google Scholar 

  • Carpenter, P.W., Davies, C., and Lucey, A.D. (2000) “Hydrodynamics and Compliant Walls: Does the Dolphin have a Secret?,” Current Science 79, no. 6, pp. 758–765.

    Google Scholar 

  • Carpenter, P.W., Lucey, A.D., and Davies, C. (2001) “Progress on the Use of Compliant Walls for Laminar-Flow Control,” J. Aircraft 38, pp. 504–512.

    Article  Google Scholar 

  • Choi, K.-S., editor (1991) Recent Developments in Turbulence Management, Kluwer, Dordrecht, the Netherlands.

    MATH  Google Scholar 

  • Choi, K.-S., Yang X., Clayton B.R., Glover E.J., Atlar M., Semenov B.N., and Kulik V.M. (1997) “Turbulent Drag Reduction Using Compliant Surfaces,” Proc. R. Soc. Lond. A 453, 2229–2240.

    Article  ADS  MATH  Google Scholar 

  • Chu, H.H., and Blick, E.F. (1969) “Compliant Surface Drag as a Function of Speed,” J. Spacecraft Rockets 6, pp. 763–764.

    Article  ADS  Google Scholar 

  • Colley, A.J., Thomas, P.J., Carpenter, P.W., and Cooper, A.J. (1999) “An Experimental Study of Boundary-Layer Transition over a Rotating, Compliant Disk,” Phys. Fluids 11, pp. 3340–3352.

    Article  ADS  MATH  Google Scholar 

  • Cooper, A.J., Carpenter, P.W. (1995) “The Effects of Wall Compliance on Instability in Rotating Disc Flow,” AIAA Paper No. 95–2257, Washington, D.C.

    Google Scholar 

  • Cooper, A.J., Carpenter, P.W. (1997a) “The Stability of Rotating-Disc Boundary-Layer Flow over a Compliant Wall. Part 1. Type I and II Instabilities,” J. Fluid Mech. 350, pp. 231–259.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Cooper, A.J., Carpenter, P.W. (1997b) “The Stability of Rotating-Disc Boundary-Layer Flow over a Compliant Wall. Part 2. Absolute Instability,” J. Fluid Mech. 350, pp. 261–270.

    Article  MathSciNet  ADS  Google Scholar 

  • Cooper, A.J., Carpenter, P.W. (1997c) “The Effect of Wall Compliance on Inflexion Point Instability in Boundary Layers,” Phys. Fluids 9, pp. 468–470.

    Article  ADS  Google Scholar 

  • Daniel, A.P., Gaster, M., and Willis, G.J.K. (1987) “Boundary Layer Stability on Compliant Surfaces,” Final Report No. 35020, British Maritime Technology Ltd., Teddington, Great Britain.

    Google Scholar 

  • Davies, C., and Carpenter, P.W. (1997a) “Numerical Simulation of the Evolution of Tollmien-Schlichting Waves over Finite Compliant Panels,” J. Fluid Mech. 335, pp. 361–392.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Davies, C., and Carpenter, P.W. (1997b) “Instabilities in a Plane Channel Flow between Compliant Walls,” J. Fluid Mech. 352, pp. 205–243.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Dinkelacker, A. (1966) “Preliminary Experiments on the Influence of Flexible Walls on Boundary Layer Turbulence,” J. Sound Vibr. 4, pp. 187–214.

    Article  ADS  Google Scholar 

  • Dixon, A.E., Lucey, A.D., and Carpenter, P.W. (1994) “The Optimization of Viscoelastic Compliant Walls for Transition Delay,” AIAA J. 32, pp. 256–267.

    Article  ADS  MATH  Google Scholar 

  • Domaradzki, J.A., and Metcalfe, R.W. (1987) “Stabilization of Laminar Boundary Layers by Compliant Membranes,” Phys. Fluids 30, pp. 695–705.

    Article  ADS  Google Scholar 

  • Duncan, J.H. (1986) “The Response of an Incompressible, Viscoelastic Coating to Pressure Fluctuations in a Turbulent Boundary Layer,” J. Fluid Mech. 171, pp. 339–363.

    Article  ADS  Google Scholar 

  • Duncan, J.H. (1987) “A Comparison of Wave Propagation on the Surfaces of Simple Membrane Walls and Elastic Coatings Bounded by a Fluid Flow,” J. Sound Vibr. 119, pp. 565–573.

    Article  ADS  Google Scholar 

  • Duncan, J.H. (1988) “The Dynamics of Waves at the Interface between a Two-Layer Viscoelastic Coating and a Fluid Flow,” J. Fluids Structures 2, pp. 35–51.

    Article  ADS  Google Scholar 

  • Duncan, J.H., and Sirkis, J.S. (1992) “The Generation of Wave Patterns on Isotropic Coatings by Pressure Fluctuations in a Turbulent Boundary Layer,” J. Sound Vibr. 157, pp. 243–264.

    Article  ADS  MATH  Google Scholar 

  • Duncan, J.H., and Hsu, C.C. (1984) “The Response of a Two-Layer Viscoelastic Coating to Pressure Disturbances from a Turbulent Boundary Layer,” AIAA Paper No. 84–0535, New York.

    Google Scholar 

  • Duncan, J.H., Waxman, A.M., and Tulin, M.P. (1985) “The Dynamics of Waves at the Interface between a Viscoelastic Coating and a Fluid Flow,” J. Fluid Mech. 158, pp. 177–197.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Fischer, M.C., and Ash, R.L. (1974) “A General Review of Concepts for Reducing Skin Friction, Including Recommendations for Future Studies,” NASA Technical Memorandum No. X-2894, Washington, D.C.

    Google Scholar 

  • Fisher, D.H., and Blick, E.F. (1966) “Turbulent Damping by Flabby Skins,” J. Aircraft 3, pp. 163–164.

    Article  Google Scholar 

  • Fraser, L.A., and Carpenter, P.W. (1985) “A Numerical Investigation of Hydroelastic and Hydrodynamic Instabilities in Laminar Flows over Compliant Surfaces Comprising One or Two Layers of Viscoelastic Material,” in Numerical Methods in Laminar and Turbulent Flow, eds. C. Taylor et al., pp. 1171–1181, Pineridge Press, Swansea, Great Britain.

    Google Scholar 

  • Gad-el-Hak, M. (1986a) “Boundary Layer Interactions with Compliant Coatings: An Overview,” Appl. Mech. Rev. 39, pp. 511–524.

    Article  ADS  Google Scholar 

  • Gad-el-Hak, M. (1986b) “The Response of Elastic and Viscoelastic Surfaces to a Turbulent Boundary Layer,” J. Appl. Mech. 53, pp. 206–212.

    Article  ADS  Google Scholar 

  • Gad-el-Hak, M. (1987) “Compliant Coatings Research: A Guide to the Experimentalist,” J. Fluids Structures 1, pp. 55–70.

    Article  ADS  Google Scholar 

  • Gad-el-Hak, M. (1994) “Interactive Control of Turbulent Boundary Layers: A Futuristic Overview,” AIAA J. 32, pp. 1753–1765.

    Article  ADS  Google Scholar 

  • Gad-el-Hak, M. (1996a) “Compliant Coatings: A Decade of Progress,” Appl. Mech. Rev. 49, no. 10, part 2, pp. S1—S11.

    Google Scholar 

  • Gad-el-Hak, M. (1996b) “Modern Developments in Flow Control,” A ppl. Mech. Rev. 49, pp. 365–379.

    Article  Google Scholar 

  • Gad-el-Hak, M. (2000) Flow Control: Passive, Active, and Reactive Flow Management, Cambridge University Press, London, United Kingdom.

    Book  Google Scholar 

  • Gad-el-Hak, M. (editor) (2001) The MEMS Handbook, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Gad-el-Hak, M., Blackwelder, R.F., and Riley, J.J. (1984) “On the Interaction of Compliant Coatings with Boundary Layer Flows,” J. Fluid Mech. 140, pp. 257–280.

    Article  ADS  Google Scholar 

  • Garrad, A.D., and Carpenter, P.W. (1982) “A Theoretical Investigation of Flow-Induced Instabilities in Compliant Coatings,” J. Sound Vibr. 85, pp. 483–500.

    Article  ADS  MATH  Google Scholar 

  • Gaster, M. (1988) “Is the Dolphin a Red Herring?,” in Turbulence Management and Relaminarisation, eds. H.W. Liepmann and R. Narasimha, pp. 285–304, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Gray, J. (1936) “Studies in Animal Locomotion. VI. The Propulsive Powers of the Dolphin,” J. Exp. Biol. 13, pp. 192–199.

    Google Scholar 

  • Hansen, R.J., and Hunston, D.L. (1974) “An Experimental Study of Turbulent Flows over Compliant Surfaces,” J. Sound Vibr. 34, pp. 297–308.

    Article  ADS  Google Scholar 

  • Hess, D.E. (1990) “An Experimental Investigation of a Compliant Surface beneath a Turbulent Boundary Layer,” Ph.D. Dissertation, the Johns Hopkins University, Baltimore, Maryland.

    Google Scholar 

  • Hess, D.E., Peattie, R.A., and Schwarz, W.H. (1993) “A Nonintrusive Method for the Measurement of Flow-Induced Surface Displacement of a Compliant Surface,” Exp. Fluids 14, pp. 78–84.

    Article  Google Scholar 

  • Huerre, P., and Monkewitz, P.A. (1990) “Local and Global Instabilities in Spatially Developing Flows,” Annu. Rev. Fluid Mech. 22, pp. 473–537.

    Article  MathSciNet  ADS  Google Scholar 

  • Johnson, R.P. (1980) “Review of Compliant Coating Research of M. O. Kramer, RPJ Associates Technical Report No. RPJA-TR-0955–001, Palos Verdes Peninsula, California.

    Google Scholar 

  • Joslin, R.D., and Morris, P.J. (1992) “Effect of Compliant Walls on Secondary Instabilities in Boundary-Layer Transition,” AIAA J. 30, pp. 332–339.

    Article  ADS  MATH  Google Scholar 

  • Kaplan, R. E. (1964) “The Stability of Laminar Incompressible Boundary Layers in the Presence of Compliant Boundaries,” Sc.D. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts.

    Google Scholar 

  • Kramer, M.O. (1957) “Boundary-Layer Stabilization by Distributed Damping,” J. Aeronaut. Sci. 24, pp. 459–460.

    Google Scholar 

  • Kramer, M.O. (1960a) “Boundary-Layer Stabilization by Distributed Damping,” J. Aero/ Space Sci. 27, p. C9.

    Google Scholar 

  • Kramer, M.O. (1960b) “Boundary Layer Stabilization by Distributing Damping,” J. Am. Soc. Naval Engrs. 72, pp. 25–33.

    Article  Google Scholar 

  • Kramer, M.O. (1960c) “The Dolphin’s Secret,” New Scientist 7, 5 May, pp. 1118–1120.

    Google Scholar 

  • Kramer, M.O. (1961) “The Dolphin’s Secret,” J. Am. Soc. Nav. Engrs. 73, pp. 103–107.

    Google Scholar 

  • Kramer, M.O. (1962) “Boundary Layer Stabilization by Distributed Damping,” J. Am. Soc. Naval Engrs. 74, pp. 341–348.

    Article  Google Scholar 

  • Kramer, M.O. (1965) “Hydrodynamics of the Dolphin,” in Advances in Hydroscience, ed. V.T. Chow, vol. 2, pp. 111–130, Academic Press, New York.

    Google Scholar 

  • Kramer, M.O. (1969) “Die Widerstandsverminderung Schneller Unterwasserkörper Mittels Künstlicher Delphinhaut,” in Jahrbuch 1969 der Deutschen Gesellschaft für Luftund Raumfahrt, eds. H. Blenk and W. Schulz, pp. 1–9, Köln, Federal Republic of Germany.

    Google Scholar 

  • Landahl, M.T. (1962) “On the Stability of a Laminar Incompressible Boundary Layer over a Flexible Surface,” J. Fluid Mech. 13, pp. 609–632.

    Article  ADS  MATH  Google Scholar 

  • Landau, L.D., and Lifshitz, E.M. (1987) Fluid Mechanics, second edition, Pergamon Press, Oxford, Great Britain.

    MATH  Google Scholar 

  • Lang, T.G. (1963) “Porpoise, Whales, and Fish: Comparison of Predicted and Observed Speeds,” Naval Eng. J. 75, pp. 437–441.

    Article  Google Scholar 

  • Lee, T., Fisher, M., and Schwarz, W.H. (1993a) “Investigation of the Stable Interaction of a Passive Compliant Surface with a Turbulent Boundary Layer,” J. Fluid Mech. 257, pp. 373–401.

    Article  ADS  Google Scholar 

  • Lee, T., Fisher, M., and Schwarz, W.H. (1993b) “The Measurement of Flow-Induced Surface Displacement on a Compliant Surface by Optical Holographic Interferometry,” Exp. Fluids 14, pp. 159–168.

    Article  Google Scholar 

  • Lee, T., Fisher, M., and Schwarz, W.H. (1995) “Investigation of the Effects of a Compliant Surface on Boundary-Layer Stability,” J. Fluid Mech. 288, pp. 37–58.

    Article  ADS  Google Scholar 

  • Lee, T., Fisher, M., and Schwarz, W.H. (1997) “An Experimental Study of the Boundary-Layer Nonlinear Instability over Compliant Walls,” unpublished manuscript originally submitted to J. Fluid Mech..

    Google Scholar 

  • Lissaman, P.B.S., and Harris, G.L. (1969) “Turbulent Skin Friction on Compliant Surfaces,” AIAA Paper No. 69–164, New York.

    Google Scholar 

  • Looney, R.W., and Blick, E.F. (1966) “Skin Friction Coefficients of Compliant Surfaces in Turbulent Flow,” J. Spacecraft & Rockets 3, pp. 1562–1564.

    Article  ADS  Google Scholar 

  • Lucey, A.D., and Carpenter, P.W. (1993) “The Hydroelastic Stability of Three-Dimensional Disturbances of a Finite Compliant Panel,” J. Sound Vibr. 165, pp. 527–552.

    Article  ADS  MATH  Google Scholar 

  • Lucey, A.D., and Carpenter, P.W. (1995) “Boundary Layer Instability over Compliant Walls: Comparison between Theory and Experiment,” Phys. Fluids 7, pp. 2355–2363.

    Article  MathSciNet  ADS  Google Scholar 

  • McMichael, J.M., Klebanoff, P.S., and Meese, N.E. (1980) “Experimental Investigation of Drag on a Compliant Surface,” in Viscous Flow Drag Reduction, ed. G.R. Hough, pp. 410–438, AIAA, New York.

    Google Scholar 

  • McMurray, J.T., Metcalfe, R.W., and Riley, J.J. (1983) “Direct Numerical Simulations of Active Stabilization of Boundary Layer Flows,” Proc. Eighth Biennial Symp. on Turbulence, eds. J.L. Zakin and G.K. Patterson, paper no. 36, University of Missouri, Rolla, Missouri.

    Google Scholar 

  • Metcalfe, R.W. (1994) “Boundary Layer Control: a Brief Review, in Computational Fluid Dynamics ‘94, eds. J. Periaux and E. Hirschel, pp. 52–60, Wiley, New York.

    Google Scholar 

  • Metcalfe, R.W., Battistoni, F., Ekeroot, J., and Orszag, S.A. (1991) “Evolution of Boundary Layer Flow over a Compliant Wall during Transition to Turbulence,” in Proc. Boundary Layer Transition and Control Conference, pp. 36.1–36.14, Royal Aeronautical Society, Cambridge, Great Britain.

    Google Scholar 

  • Metcalfe, R.W., Rutland, C.J., Duncan, J.H., and Riley, J.J. (1986) “Numerical Simulations of Active Stabilization of Laminar Boundary Layers, AIAA J. 24, pp. 1494–1501.

    Article  ADS  MATH  Google Scholar 

  • Nisewanger, C.R. (1964) “Flow Noise and Drag Measurements of Vehicle with Compliant Coating,” U.S. Naval Ordnance Test Station Report No. 8518, NOTS No. TP-3510, China Lake, California.

    Google Scholar 

  • Orszag, S.A. (1979) “Prediction of Compliant Wall Drag Reduction,” NASA Contractor Report No. 3071, Washington, D.C.

    Google Scholar 

  • Puryear, F.W. (1962) “Boundary Layer Control: Drag Reduction by Use of Compliant Coatings,” David Taylor Model Basin Report No. 1668, Bethesda, Maryland.

    Google Scholar 

  • Rayleigh, Lord (1887) “On Waves Propagated along the Plane Surface of an Elastic Solid,” Proc. Lond. Math. Soc. XVII, pp. 4–11.

    Google Scholar 

  • Riley, J.J., Gad-el-Hak, M., and Metcalfe, R.W. (1988) “Compliant Coatings,” Annu. Rev. Fluid Mech. 20, pp. 393–420.

    Article  ADS  Google Scholar 

  • Ritter, H., and Messum, L.T. (1964) “Water Tunnel Measurements of Turbulent Skin Friction on Six Different Compliant Surfaces of 1 Ft Length,” British Admiralty Research Laboratory Report No. ARL/N4/GHY/9/7, ARL/G/N9, London, Great Britain.

    Google Scholar 

  • Ritter, H., and Porteous, J.S. (1964) “Water Tunnel Measurements of Skin Friction on a Compliant Coating,” British Admiralty Research Laboratory Report No. ARL/N3/ G/HY/9/7, London, Great Britain.

    Google Scholar 

  • Robinson, S.K. (1991) “Coherent Motions in the Turbulent Boundary Layer,” Annu. Rev. Fluid Mech. 23, pp. 601–639.

    Article  ADS  Google Scholar 

  • Sen, P.K., and Arora, D.S. (1988) “On the Stability of Laminar Boundary-Layer Flow over a Flat Plate with a Compliant Surface,” J. Fluid Mech. 197, pp. 201–240.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Smith, R.L., and Blick, E.F. (1966) “Skin Friction of Compliant Surfaces with Foamed Material Substrate,” J. Hydronautics 3, pp. 100–102.

    Google Scholar 

  • Spalart, P.R. (1988) “Direct Simulation of a Turbulent Boundary Layer up to Rθ = 1410,” J. Fluid Mech. 187, pp. 61–98.

    Article  ADS  MATH  Google Scholar 

  • Thomas, M.D. (1992a) “On the Resonant Triad Interaction in Flows over Rigid and Flexible Boundaries,” J. Fluid Mech. 234, pp. 417–442.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Thomas, M.D. (1992b) “On the Nonlinear Stability of Flows over Compliant Walls,” J. Fluid Mech. 239, pp. 657–670.

    Article  ADS  MATH  Google Scholar 

  • Willis, G.J.K. (1986) “Hydrodynamic Stability of Boundary Layers over Compliant Surfaces,” Ph.D. Thesis, University of Exeter, Exeter, Great Britain.

    Google Scholar 

  • Yeo, K.S. (1988) “The Stability of Boundary-Layer Flow over Single- and Multi-Layer Viscoelastic Walls,” J. Fluid Mech. 196, pp. 359–408.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Yeo, K.S. (1990) “The Hydrodynamic Stability of Boundary-Layer Flow over a Class of Anisotropic Compliant Walls,” J. Fluid Mech. 220, pp. 125–160, 1990.

    Article  Google Scholar 

  • Yeo, K.S. (1992) “The Three-Dimensional Stability of Boundary-Layer Flow over Compliant Walls, J. Fluid Mech. 238, pp. 537–577.

    Article  ADS  MATH  Google Scholar 

  • Yeo, K.S., and Dowling, A.P. (1987) “The Stability of Inviscid Flows over Passive Compliant Walls,” J. Fluid Mech. 183, pp. 265–292.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Gad-El-Hak, M. (2003). Drag Reduction Using Compliant Walls. In: Carpenter, P.W., Pedley, T.J. (eds) Flow Past Highly Compliant Boundaries and in Collapsible Tubes. Fluid Mechanics and Its Applications, vol 72. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0415-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0415-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6235-2

  • Online ISBN: 978-94-017-0415-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics