Skip to main content

Flow-Induced Waves on Compliant Surfaces Subject to a Turbulent Boundary Layer

  • Conference paper
Flow Past Highly Compliant Boundaries and in Collapsible Tubes

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 72))

  • 488 Accesses

Abstract

In this paper, we are concerned with waves that form on a compliant surface when it is subjected to a turbulent flow. Two types of waves have been observed so far in the experiments: a fast travelling wave on nearly elastic surfaces, and a nearly stationary or slowly moving wave on surfaces with significant damping. In their incipient state, the fast waves have small amplitude and propagate at speeds ranging from 0.3ā€“0.5 times the freestream speed Uāˆž, whereas the slow waves (also termed static divergence waves) have large amplitude and move forward at speeds of less than 0.05Uāˆž . Details of these waves were recorded in experimental studies by Gad-el-Hak et al. (1984), Gad-el-Hak (1986) and Hansen et al. (1980). This paper discusses the progress that has been made in the theoretical modelling of these waves. Emphasis is given to the recent works and the new insight that they offer about unstable interaction between turbulent flow and compliant surface. Quasipotential flow approximations have been fairly successful in predicting some of the qualitative and quantitative aspects of the observed waves. However, the quasipotential models are reliant on the availability of accurate parameter inputs from other experiments or additional modelling for them to work well. In this regard, they are not self-sufficient for general application. The effects of viscosity and turbulence are needed to produce a complete and self-consistent model for the accurate prediction of onset wave conditions. While linear stability models are generally adequate for predicting onset flow velocities for the waves, nonlinear wave effects are necessary to explain the detailed features of the observed waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aleyev, Yu. G. 1977 Nekton. The Hague, W. Junk.

    BookĀ  Google ScholarĀ 

  • Balasubramanian, R. & Orszag, S. A. 1983 Numerical studies of laminar and turbulent drag reduction. NASA Contract Rep. 3669.

    Google ScholarĀ 

  • Benjamin, T. B. 1960 Effects of a flexible boundary on hydrodynamic stability. J. Fluid Mech. 6, 161.

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  • Benjamin, T. B. 1963 The three-fold classification of unstable disturbances in flexible surfaces bounding inviscid flows. J. Fluid Mech. 16, 436.

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Bers, A. 1983 Handbook of Plasma Physics. Chapter 3. North-Holland Publish Company.

    Google ScholarĀ 

  • Boggs, F. W. & Hahn, E. R. 1962 Performance of compliant skins in contact with high velocity flow in water. In Proc. 7 th Joint Army-Navy-Air Force Conf. On Elastomer Research and Development. San Francisco, U.S.A. Office of Naval Research 2, 443.

    Google ScholarĀ 

  • Briggs, R. J. 1964 Electron-Stream Interaction with Plasmas. Monograph No. 29, MIT Press. Cambridge, Massachusetts.

    Google ScholarĀ 

  • Bushnell, D. M., Hefner, J. N. & Ash, R. I. 1977 Effect of compliant wall motion on turbulent boundary layers. Phys. Fluids 20, S31.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Carpenter, P. W. & Gajjar, J. S. B. 1990 A general theory for two- and three-dimensional wall-mode instabilities in boundary layers over isotropic and anisotropic compliant walls. Theor. & Comput. Fluid Dyn. 1, 349.

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Carpenter, P. W. & Garrad, A. D 1986 The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part II. Flow-induced surface instabilities. J. Fluid Mech. 170, 199.

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Choi, K. S., Yang, X., Clayton, B. R., Glover, E. J., Atlar, M., Semenov, B. N. & Kulik, V. M. 1997 Turbulent drag reduction using compliant surfaces. Proc. Roy. Soc. Lond. A 453, 2229.

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Duncan, J. H. 1988 The dynamics of waves at the interface between a two-layer viscoelastic coating and a fluid flow. J. Fluids & Struct. 2, 35.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Duncan, J. H., Waxman, A. M. & Tulin, M. P. 1985 The dynamics of waves at the interface between a viscoelastic coating and a fluid flow. J. Fluid Mech. 158, 177.

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Evrensel, A. & Kalnins, A. 1988 Response of a compliant slab to viscous incompressible fluid flow. Trans. ASME, Ser. E: J. Appl. Mech. 55, 660.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Gad-El-Hak, M. 1986 The response of elastic and viscoelastic surfaces to a turbulent boundary. Trans. ASME, Ser. E: J. Appl. Mech. 53, 206.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Gad-El-Hak, M., Blackwelder, R. F. & Riley, J. J. 1984 On the interaction of compliant coatings with boundary-layer flow. J. Fluid Mech. 140, 257.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Hansen, R. J., Hunston, D. L., Ni, C. C. & Reischman, M. M. 1980 An experimental study of flowgenerated waves on a flexible surface. J. Sound & Vib. 68, 317.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Hou, J. T. 1996 The stability analysis of turbulent mean flow over a compliant wall. MEng. Thesis, National University of Singapore, Singapore.

    Google ScholarĀ 

  • Kendall, J. M. 1970 The turbulent boundary layer over a wall with progressive waves. J. Fluid Mech. 14, 259.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Kramer, M. O. 1960 Boundary layer stabilization by distributed damping. J. Am. Soc. Naval Engng. 73, 25.

    Google ScholarĀ 

  • Landahl, M. T. 1962 On the stability of laminar incompressible boundary layer over a flexible surface. J. Fluid Mech. 13, 609.

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Lee, T., Fisher, M. & Schwarz, W. H. 1993 Investigation of stable interaction of a passive compliant surface with a turbulent boundary layer. J. Fluid Mech. 257, 373.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Lucey, A. D., Cafolla, G. J., Carpenter, P. W. & Yang, M. 1997 The nonlinear hydroelastic behaviour of flexible walls. J. Fluid & Struct. 11, 717.

    ArticleĀ  Google ScholarĀ 

  • Mellor, G. L. & Gibson, D. M. 1966 Equilibrium turbulent boundary layers. J. Fluid Mech. 24, 225

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Reutov, V.P. & Rybushkina, G. V. 1998 Hydroelastic instability threshold in a turbulent boundary layer over a compliant coating. Phys. Fluids 10 (2), 417.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Reutov, V.P. & Rybushkina, G. V. 2000 Generation of nonlinear waves on a viscoelastic coating in a turbulent boundary layer. J. Appl. Mech. And Tech. Phys. 41 (6), 1003.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Reutov, V.P. & Troitskaya, Yu. I. 1995 On the nonlinear effects arising in the interaction of water waves with turbulent wind. Izv. Russ. Acad. Sci Atmos. Ocean. Phys. 31, 6. (English translation from Russian).

    Google ScholarĀ 

  • Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54, 263.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Riley, J. J., Gad-El-Hak, M. & Metcalfe, R. W. 1988 Compliant Coatings. Ann. Rev. Fluid Mech. 20, 393.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Semenov, B. N. & Semenova, A. V. 1998 Recent advances in interference analysis of compliant boundary actions on near-wall turbulence. In Proc. Intl. Symp. Seawater Drag Reduction. 22ā€“23 Jul. 1998, Newport, Rhodes Island, USA. 189.

    Google ScholarĀ 

  • White, F. M. 1991 Viscous Fluid Flow. McGraw-Hill.

    Google ScholarĀ 

  • Yeo, K. S. 1988 The stability of boundary-layer flow over single- and multi- layer viscoelastic walls. J. Fluid Mech. 196, 359.

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Yeo, K. S. 1990 The hydrodynamic stability of boundary-layer flow over a class of anisotropic compliant walls. J. Fluid Mech. 220, 125.

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Yeo, K. S. & Dowling, A. P. 1987 The stability of inviscid flow over passive compliant wall. J. Fluid Mech. 183, 265.

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Yeo, K. S., Khoo, B. C. & Zhao, H. Z. 1999 The convective and absolute instability of fluid flow over viscoelastic compliant layers. J. Sound & Vib. 223 (3), 379.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Yeo, K. S., Zhao, H. Z. & Khoo, B. C. 2001 Turbulent boundary layer over a compliant surface ā€” absolute and convective. J. Fluid Mech. 449, 141.

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Yeo, K.S. (2003). Flow-Induced Waves on Compliant Surfaces Subject to a Turbulent Boundary Layer. In: Carpenter, P.W., Pedley, T.J. (eds) Flow Past Highly Compliant Boundaries and in Collapsible Tubes. Fluid Mechanics and Its Applications, vol 72. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0415-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0415-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6235-2

  • Online ISBN: 978-94-017-0415-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics