Skip to main content

Properties and Relations of Tableau and Connection Calculi

  • Chapter
Intellectics and Computational Logic

Part of the book series: Applied Logic Series ((APLS,volume 19))

  • 261 Accesses

Abstract

The connection or matings method (Andrews, 1981; Bibel, 1981; Bibel, 1987) and tableau calculi with connections like model elimination (Loveland, 1968) are related paradigms in automated deduction. While this is intuitively evident, the precise relations and differences have not been sufficiently investigated so far. In this paper, we give a thorough exposition of the two frameworks and illustrate that a careful analysis of the relations may lead to advances in automated deduction in general. We begin with a brief comparison of the inherent principles of both paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • P. Andrews. (1981). Theorem Proving via General Matings. Journal of the Association for Computing Machinery, 28 (2): 193–214.

    Article  Google Scholar 

  • O. W. Astrachan and M. E. Stickel. (1992). Caching and Lemmaizing in Model Elimination Theorem Provers. Proceedings of the 11th Conference on Automated Deduction (CADE-11), LNAI 607, pages 224–238, Springer.

    Google Scholar 

  • M. Baaz and A. Leitsch. (1992). Complexity of Resolution Proofs and Function Introduction. Annals of Pure and Applied Logic, 57: 181–215.

    Article  Google Scholar 

  • W. Bibel. (1981). On Matrices with Connections. Journal of the ACM, 28: 633–645.

    Article  Google Scholar 

  • W. Bibel. (1987). Automated Theorem Proving. Vieweg, second edition.

    Google Scholar 

  • M. Davis and H. Putnam. (1960). A Computing Procedure for Quantification Theory. Journal of the ACM, 7: 201–215.

    Article  Google Scholar 

  • M. Davis, G. Logemann, and D. Loveland. (1962). A Machine Program for Theorem Proving. Communications of the ACM, 5 (7): 394–397.

    Article  Google Scholar 

  • M. Fitting. (1996). First-Order Logic and Automated Theorem Proving,Springer, seconnd edition.

    Google Scholar 

  • O. Ibens and R. Letz. (1997). Subgoal Alternation in Model Elimination. In Proceedings of TABLEAUX’97,LNAI 1227, pages 201–215, Springer.

    Google Scholar 

  • R. Letz, J. Schumann, S. Bayerl, and W. Bibel. (1992). SETHEO: A High-Performance Theorem Prover. Journal of Automated Reasoning, 8 (2): 183–212.

    Article  Google Scholar 

  • R. Letz, K. Mayr, and C. Goller. (1994). Controlled Integration of the Cut Rule into Connection Tableaux Calculi. Journal of Automated Reasoning, 13: 297–337.

    Article  Google Scholar 

  • R. Letz. (1998). Clausal Tableaux. In W. Bibel, P. H. Schmitt, editors, Automated Deduction. A basis for applications,Vol. 1, pages 39–68, Kluwer.

    Google Scholar 

  • R. Letz. (1998). Using Matings for Pruning Connection Tableaux. In Proceedings of the 15th Conference on Automated Deduction (CADE-15),LNAI 1421, pages 381–396, Springer.

    Google Scholar 

  • R. Letz. (1999). First-order Tableau Methods. In M. D’Agostino, D. Gabbay, R. Hähnle, J. Posegga, editors, Handbook of Tableau Methods,pages 125–196, Kluwer.

    Google Scholar 

  • D. W. Loveland. (1968). Mechanical Theorem Proving by Model Elimination. Journal of the ACM, 15 (2): 236–251.

    Article  Google Scholar 

  • D. W. Loveland. (1978). Automated Theorem Proving: a Logical Basis. North-Holland.

    Google Scholar 

  • M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann, K. Mayr. (1997). SETHEO and ESETHEO. Journal of Automated Reasoning, 18: 237–246.

    Article  Google Scholar 

  • S.-J. Lee and D. Plaisted. (1992). Eliminating Duplication with the Hyper-Linking Strategy. Journal of Automated Reasoning, 9 (1): 25–42.

    Article  Google Scholar 

  • D. Prawitz. (1960). An Improved Proof Procedure. Theoria, 26: 102–139.

    Article  Google Scholar 

  • D. Prawitz. (1969). Advances and Problems in Mechanical Proof Procedures. Machine Intelligence, 4:59–71, Edinburgh U. Press.

    Google Scholar 

  • R. M. Smullyan. (1968). First-Order Logic. Springer.

    Google Scholar 

  • M. A. Stickel. (1988). A Prolog Technology Theorem Prover: Implementation by an Extended Prolog Compiler. Journal of Automated Reasoning, 4: 353–380.

    Article  Google Scholar 

  • A. Voronkov. (1998). Herbrand’s theorem, automated reasoning and semantic tableaux. In Proceedings of LICS-98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Letz, R. (2000). Properties and Relations of Tableau and Connection Calculi. In: Hölldobler, S. (eds) Intellectics and Computational Logic. Applied Logic Series, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9383-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9383-0_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5438-8

  • Online ISBN: 978-94-015-9383-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics