Skip to main content

Large-Scale Chromatin Structure

  • Chapter
Genome Structure and Function

Part of the book series: NATO ASI Series ((ASHT,volume 31))

Abstract

Analysis of cellular ultrastructure currently is seriously handicapped by the lack of structural tools capable of visualizing macromolecular assemblies and organelles which extend over large subcellular volumes. This problem is particularly severe with regard to structural dissection of chromosome architecture in which a hierarchy of folding motifs give rise to linear compaction ratios tens of thousands to one for mitotic chromosomes and hundreds or thousands to one for interphase chromatids. Whereas analysis of the highest levels of chromosome folding requires tracing individual chromatids over at least several um distances, analysis of the lowest levels of chromatin folding requires a resolution of at least several nm. In practice, because of the extremely high DNA packing ratios, these different levels of chromosome folding are not easily isolated for separate, sequential structural determination. This is particularly true for mitotic chromosomes, in which the several nm spatial separation between larger units of chromatin folding is comparable to the spacing between lower levels of chromatin folding contained within these larger domains. Therefore direct identification within native chromosomes of structural motifs underlying the highest level of chromosome folding may first require the unambiguous tracing of the lower levels of chromatin folding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Daskal, Y.et al. (1976) Use of direct current sputtering for improved visualization of chromosome topology by scanning electron microscopy. Eap. Cell Res.100p. 204–212.

    Article  CAS  Google Scholar 

  2. Harrison, C.J.et al. (1982) High-resolution scanning electron microscopy of human metaphase chromosomes. J. Cell Sci.56p. 409–422.

    PubMed  CAS  Google Scholar 

  3. Marsden, M.P.F. and U.K. Laemmli. (1979) Metaphase chromosome structure: evidence for a radial loop model.Cell 17p. 849–858.

    Article  PubMed  CAS  Google Scholar 

  4. Stubblefield, E. and W. Wray. (1971) Architecture of the chinese hamster metaphase chromosome.Chromosoma 32p. 262–294.

    Article  PubMed  CAS  Google Scholar 

  5. Takayama, S. and H. Hiramatsu. (1993) Scanning electron microscopy of the centromeric region of L-cell chromosomes after treatment with Hoescht 33258 combined with 5-bromodeoxyuridine.Chromosomu 102p. 227–232.

    Article  CAS  Google Scholar 

  6. Rizzoli, R.et al. (1994) High.resolution detection of uncoated metaphase chromosomes by means of field emission scanning electron microscopy. Chromosoma 103p. 393–400.

    Article  PubMed  CAS  Google Scholar 

  7. Ris, H. (1981) Stereoscopic electron microscopy of chromosomes.Methods Cell Biol.,22p. 77–96.

    Article  PubMed  CAS  Google Scholar 

  8. Sedat, J. and L. Manuelidis. (1977) A direct approach to the structure of eukaryotic chromosomes.Cold Spring Hurbor Symp. Quant. BioL 42p. 331–350.

    Article  Google Scholar 

  9. Zatsepina, O.V., V.Y. Polyakow, and Y.S. Chentsov. (1983) Chromonema and chromomere-structural units of mitotic and interphase chromosomes.Chromosomu 88p. 91–97.

    Article  Google Scholar 

  10. Hao, S., M. Jiao, and B. Huang. (1990) Chromosome organization revealed upon the decondensation of telophase chromosomes in Allium.Chromosomu 99p. 371–378.

    Article  Google Scholar 

  11. Utsami, K.R. and T. Tanaka. (1975) Studies on the structure of chromosomes. 1. The uncoiling of chromosomes revealed by treatment with hypotonic solution.Cell Struct. Puna.,1p. 93–99.

    Article  Google Scholar 

  12. Bak, A.L. and J. Zeuthen. (1978) Higher order structure of mitotic chromosomes.Cold Spring Hurbor Symp. Quant. Biol.,42p. 367–377.

    Article  CAS  Google Scholar 

  13. Earnshaw, W.C. and U.K. Laemmli. (1983) Architecture of metaphase chromosomes and chromosome scaffolds.J. Cell BioL 96p. 84–93.

    Article  PubMed  CAS  Google Scholar 

  14. Iino, A. (1971) Observations on human somatic chromosomes treated with hyaluronidase.Cytogenetics 10p. 286–294.

    Article  PubMed  CAS  Google Scholar 

  15. Mullinger, A.M. and R.T. Johnson. (1980) Packing DNA into chromosomes.J. Cell Sri.,46p. 61–86.

    CAS  Google Scholar 

  16. Mullinger, A.M. and R.T. Johnson. (1983) Units of chromosome replication and packing.J. Cell Sci 64p. 179–193.

    PubMed  CAS  Google Scholar 

  17. Ohnuki, Y. (1968) Structure of chromosomes: 1. Morphological studies of the spiral structure of human somatic chromosomes.Chromosoma 25p. 402–428.

    Article  PubMed  CAS  Google Scholar 

  18. Okada, T.A. and D.E. Comings. (1979) Higher order structure of chromosomes.Chromosomu 72p. 114.

    Google Scholar 

  19. Paulson, J.R. and U.K. Laemmli. (1977) The structure of histone depleted chromosomes.Cell 12p. 817–828.

    Article  PubMed  CAS  Google Scholar 

  20. Paulson, J.R. (1989) Scaffold morphology in histone-depleted Hela metaphase chromosomes.Chromosomu 97p. 289–295.

    Article  CAS  Google Scholar 

  21. Adolph, K.W. (1980) Organization of chromosomes in mitotic Hela cells.Eap. Cell Res.,125p. 95–103.

    Article  CAS  Google Scholar 

  22. DuPraw, E.J. (1965) Macromolecular organization of nuclei and chromosomes: a folded fibre model based on whole mount electron microscopy.Nature 206p. 338–343.

    Article  PubMed  CAS  Google Scholar 

  23. Rattner, J.B. and C.C. Lin. (1985) Radial loops and helical coils coexist in metaphase chromosomes.Cell 42p. 291–296.

    Article  PubMed  CAS  Google Scholar 

  24. Stonington, O.G. and D.E. Pettijohn. (1971) The folded genome of Escherichia coli isolated in a proteinDNA-RNA complex.Proc. Nat. Acad. Sci. USA 68 p. 6–9.

    Article  PubMed  CAS  Google Scholar 

  25. Worcel, A. and E. Burgi. (1972) On the structure of the folded chromosome of Escherichia coli.J. Mol. BioL 71p. 127–147.

    Article  PubMed  CAS  Google Scholar 

  26. Kavenoff, R. and O.A. Ryder. (1976) Electron microscopy of membrane-free folded chromosomes from Escherichia coli.Chromosoma 55p. 13–26.

    Article  PubMed  CAS  Google Scholar 

  27. Benyajati, C. and A. Worcel. (1976) Isolation, characterization, and structure of the folded interphase genome of Drosophila melanogaster.Cell 9p. 393–407.

    Article  PubMed  CAS  Google Scholar 

  28. Lewis, C.D. and U.K. Laemmli. (1982) Higher order metaphase chromosome structure: evidence for metalloprotein interactions.Cell 29p. 171–181.

    Article  PubMed  CAS  Google Scholar 

  29. Mirkovich, J., S.M. Gasser, and U.K. Laemmli. (1988) Scaffold attachment of DNA loops on metaphase chromosomes.J. Mol. Biol.,200p. 101–109.

    Article  Google Scholar 

  30. Razin, S.V. (1996) Functional architecture of chromosomal DNA domains.Crit. Rev. in Eukaryotic Gene Expression 6p. 247–269.

    Article  CAS  Google Scholar 

  31. Strunnikov, A.V., V.L. Larionov, and D. Koshland. (1993) SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a ubiquitous family.J. Cell Biol.,123p. 1635–1648.

    Article  PubMed  CAS  Google Scholar 

  32. Saitoh, N.et al. (1994) ScII: An abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure. J. Cell Biol.127p. 303–318.

    Article  PubMed  CAS  Google Scholar 

  33. Hirano, T. and T.J. Mitchison. (1994) A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro.Cell 79p. 449–458.

    Article  PubMed  CAS  Google Scholar 

  34. Jeppesen, P. and H. Morten. (1985) Effects of sulphydryl reagents on the structure of dehistonized metaphase chromosomes.J. Cell Sci.,73p. 245–260.

    PubMed  CAS  Google Scholar 

  35. Hirano, T. and T.J. Mitchison. (1993) Topoisomerase II does not play a scaffolding role in the organization of mitotic chromosomes assembled in Xenopus egg extracts.J. Cell Biol.,120p. 601–612.

    Article  PubMed  CAS  Google Scholar 

  36. Earnshaw, W.C. and M.M.S. Heck. (1985) Localization of topoisomerase 2 in mitotic chromosomes.J. Cell Biol., 100, p. 1716–1725.

    Article  PubMed  CAS  Google Scholar 

  37. Swedlow, J.R., J.W. Sedat, and D.A. Agard. (1993) Multiple Chromosomal Populations of topoisomerase 2 detected in vivo by time-lapse, three-dimensional wide-field microscopy.Cell 73p. 97–108.

    Article  PubMed  CAS  Google Scholar 

  38. Uemura, T.et al. (1987) DNA topoisomerase Il is required for condensation and separation of mitotic chromosomes in S. pombe. Cell 50p. 917–925.

    Article  PubMed  CAS  Google Scholar 

  39. Adachi, Y., M. Luke, and U.K. Laemmli. (1991) Chromosome assembly in vitro: topoisomerase Il is required for condensation.Cell 64p. 137–148.

    Article  PubMed  CAS  Google Scholar 

  40. Belmont, A.S., J.W. Sedat, and D.A. Agard. (1987) A three-dimensional approach to mitotic chromosome structure: evidence for a complex hierarchical organization.J. Cell Biol.,105p. 77–92.

    Article  PubMed  CAS  Google Scholar 

  41. Harauz, G.et al. (1987) Three-dimensional reconstruction of a human metaphase chromosome from electron micrographs. Chromosome 95p. 366–374.

    Article  CAS  Google Scholar 

  42. Boy de la Tour, E. and U.K. Laemmli. (1988) The metaphase scaffold is helically folded: sister chromatids have predominately opposite helical handedness.Cell 55p. 937–944.

    Article  Google Scholar 

  43. Ohsumi, K., C. Katagiri, and T. Kishimoto. (1993) Chromosome condensation in Xenopus mitotic extracts without histone Hl.Science 262p. 2033–2035.

    Article  PubMed  CAS  Google Scholar 

  44. Alberts, B.et al. (1994) Molecular Biology of the Cell3rd ed. New York: Garland Publishing, Inc. 870–873.

    Google Scholar 

  45. Manuelidas, L. (1985) Individual interphase chromosome domains revealed by in situ hybridization.Hum. Genet.,71p. 288-.

    Article  Google Scholar 

  46. Cremer, T.et al. (1993) Role of chromosome territories in the functional compartmentalization of the cell nucleus, in Cold Spring Harbor Symposia on Quantitative BiologyCold Spring Harbor Laboratory Press: Cold Spring Harbor. p. 777–792.

    Google Scholar 

  47. Bischoff, A.et al. (1993) Differences of size and shape of active and inactive X-chromosome domains in human amniotic fluid cell nuclei. Microscopy Res. Tech.25p. 68–77.

    Article  CAS  Google Scholar 

  48. Skaer, R.J. and S. Whytock. (1977) Chromatin-like artifacts from nuclear sap.J. Cell Sci.,26p. 301–310.

    PubMed  CAS  Google Scholar 

  49. Skaer, R.J. and S. Whytock. (1976) The fixation of nuclei and chromosomes.J. Cell Sci.,20p. 221–231.

    PubMed  CAS  Google Scholar 

  50. Belmont, A.S.et al. (1989) Large-scale chromatin structural domains within mitotic and interphase chromosomes in vivo and in vitro. Chromosome 98p. 129–143.

    Article  CAS  Google Scholar 

  51. Bohrmann, B. and E. Kellenberger. (1994) Immunostaining of DNA in electron microscopy: an amplification and staining procedure for thin sections as alternative to gold labeling.J. Histochem. Cytochem.,42p. 635–643.

    Article  PubMed  CAS  Google Scholar 

  52. Olins, A.L.et al. (1989) Synthesis of a more stable osmium ammine electron-dense DNA stain. J. Histochem. Cytochem.37p. 395–398.

    Article  PubMed  CAS  Google Scholar 

  53. Mikhaylova, V.T. and D.V. Markov. (1994) An alternative method for preparation of Schiff-like reagent from osmium-ammine complex for selective staining of DNA on thin Lowicryl sections.J. Histochem. Cytochem.,42p. 1643–1649.

    Article  PubMed  CAS  Google Scholar 

  54. Vazqueznin, G.H., M. Biggiogera, and O.M. Echeverria. (1995) Activation of osmium ammine by S02-generating chemicals for EM Feulgen-type staining of DNA.Eur. J. Histochem.,39p. 101–106.

    CAS  Google Scholar 

  55. Robards, A.W. and A.J. Wilson, ed. (1993)Procedures in Electron Microscopy. John Wiley @ Sons: New York.

    Google Scholar 

  56. Belmont, A.S. and K. Bruce. (1994) Visualization of G1 chromosomes-a folded, twisted, supercoiled chromonema model of interphase chromatid structure.J. Cell Biol.,127p. 287–302.

    Article  PubMed  CAS  Google Scholar 

  57. Li, G., K. Bruce, and A.S. Belmont. (1995) Visualization of early stages of chromosome condensation: a folded chromonema model of mitotic chromosome structure.J. Cell Biol submitted.

    Google Scholar 

  58. Delaney, A. and A.S. Belmont. (1994) Deblurring of high tilt projections for EM tomography.Ultramicroscopy 56p. 319–335.

    Article  PubMed  CAS  Google Scholar 

  59. Basu, S. and A.S. Belmont. (1996) Serial section alignment with correction for nonlinear distortions.in preparation

    Google Scholar 

  60. Robinett, C., etal. (1994) Lac-op repressor detection of chromosome HSRs: visualization of extended chromonema fibers.MoL. BioL. Cell 5 (suppl)p. 3a.

    Google Scholar 

  61. Li, G., etal. (1995) Interphase dynamics of a late replicating, heterochromatic chromosome HSR.Mol. BioL. Cell.,6 (supplement), p. 71a.

    Google Scholar 

  62. Robinett, C.C.et al. (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol.in press, Dec.

    Google Scholar 

  63. MinshullJ.et al. (1996) Protein phosphatase 2A regulates MPF activity and sister chromatid cohesion in budding yeast. Current BioL in press, Dec.

    Google Scholar 

  64. Straight, A.F., etal. (1996) GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion.Current Biol.,in press, Dec.

    Google Scholar 

  65. Belmont, A.S., J.W. Sedat, D.A. Agard, unpublished data

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Belmont, A.S. (1997). Large-Scale Chromatin Structure. In: Nicolini, C. (eds) Genome Structure and Function. NATO ASI Series, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5550-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5550-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6338-8

  • Online ISBN: 978-94-011-5550-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics