Skip to main content

Promises and Limitations of Functional Expansions in Nonlinear Model-Based Control

  • Chapter
  • 1231 Accesses

Part of the book series: NATO ASI Series ((NSSE,volume 353))

Abstract

The application of functional expansion (FEx) models for the analysis and control of nonlinear processes is reviewed. Nonlinear analysis tools analogous to the linear pole/zero and frequency response concepts are presented, as well as the concept of a nonlinearity measure. FEx model-based controllers are developed based on the internal model control structure. Strengths and weaknesses of the methods are discussed, and the developed concepts are applied to a simulation example.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Allgöwer. Definition and computation of a nonlinear measure. IFAC NOLCOS, 1:279–284, 1995.

    Google Scholar 

  2. F. Allgöwer. Definition and Computation of a Nonlinearity Measure and Application to Appoximate I/O-Linearization. Technical Report Nr. 95-1, Universität Stuttgart, 1995.

    Google Scholar 

  3. F. Allgöwer and F. Doyle. Nonlinear process control — Which way to the promise land? In Proceedings of CPC V, 1995.

    Google Scholar 

  4. R. Aris and N. R. Amundson. An analysis of chemical reactor stability and control. Chem. Engng. Sci., 7:121, 1958.

    Article  CAS  Google Scholar 

  5. A. Batigün, K. R. Harris, and A. Palazoğlu. Studies on the dynamics of nonlinear processes via functional expansions: I. Solution to nonlinear ODEs. Chem. Eng. Sci., 52:3183–3195, 1997.

    Article  Google Scholar 

  6. B. Bequette. Nonlinear control of chemical processes: A review. Ind. Eng. Chem. Res., 30:1391–1413, 1991.

    Article  CAS  Google Scholar 

  7. S. A. Billings and K. M. Tsang. Spectral analysis for nonlinear systems, part i: Parametric nonlinear spectral analysis. Mech. Sys. Sig. Proc, 3:319–339, 1989.

    Article  Google Scholar 

  8. S. A. Billings and K. M. Tsang. Spectral analysis for nonlinear systems, part ii: Interpretation of nonlinear frequency response functions. Mech. Sys. Sig. Proc, 3:341–359, 1989.

    Article  Google Scholar 

  9. S. Boyd and L. Chua. Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans. Cir. Sys., CAS-32:1150–1161, 1985.

    Article  Google Scholar 

  10. S. Can and A. Unal. Transfer functions for nonlinear systems via Fourier-Borel transforms. Technical Report 100034, NASA, 1988.

    Google Scholar 

  11. F. Doyle, B. A. Ogunnaike, and R. K. Pearson. Nonlinear model-based control using second-order Volterra models. Automatica, 31:697, 1995.

    Article  Google Scholar 

  12. C. G. Economou, M. Morari, and B. O. Palsson. Internal model control. 5. Extension to nonlinear systems. Ind. Eng. Chem. Process Des. Dev., 25:403–411, 1986.

    Article  CAS  Google Scholar 

  13. M. Fliess, M. Lamnabhi, and F. Lamnabhi-Lagarrigue. An algebraic approach to nonlinear functional expansions. IEEE Trans. Cir. Sys., CAS-30:554–567, August 1983.

    Article  Google Scholar 

  14. C. E. Garcia, D. M. Prett, and M. Morari. Model predictive control: Theory and practice — a survey. Automatica, 25(3):335–48, 1989.

    Article  Google Scholar 

  15. K. R. Harris, A. Batigün, and A. Palazoğlu. Studies on the dynamics of nonlinear processes via functional expansions: II. Forced dynamic responses. Chem. Eng. Sei., 52:3197–3207, 1997.

    Article  CAS  Google Scholar 

  16. K. R. Harris, M. C. Colantonio, and A. Palazoğlu. Nonlinearity measures via functional expansions. Presented at the 1997 Annual AIChE Meeting, Los Angeles, CA, 1997.

    Google Scholar 

  17. K. R. Harris and A. Palazoğlu. Control of MIMO nonlinear systems via functional expansions. In Proceedings of the 1997 ACC, 1997.

    Google Scholar 

  18. K. R. Harris and A. Palazoğlu. Model-based control of nonlinear processes via functional expansions. In Proceedings of the 1997 ECC, 1997.

    Google Scholar 

  19. M. A. Henson and D. E. Seborg. An internal model control strategy for nonlinear systems. AIChE Journal, 37:1065, 1991.

    Article  CAS  Google Scholar 

  20. E. Hernandez and Y. Arkun. Study of the control-relevant properties of backprop-agation neural network models of nonlinear dynamical systems. Computers Chem. Engng., 16:227–240, 1992.

    Article  CAS  Google Scholar 

  21. R. A. Hirschorn. Invertibility of multivariable nonlinear control systems. IEEE Trans. Auto. Control, AC-24:855, 1979.

    Article  Google Scholar 

  22. K. Kowalski and W Steeb. Nonlinear Dynamical Systems and Carleman Linearization. World Scientific, New Jersey, 1991.

    Book  Google Scholar 

  23. B. R. Maner, F. J. Doyle, B. A. Ogunnaike, and R. K. Pearson. Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models. Automatica, 32:1285–1301, 1996.

    Article  Google Scholar 

  24. M. Morari and E. Zafiriou. Robust Process Control. Prentice Hall, New Jersey, 1989.

    Google Scholar 

  25. E. P. Nahas, M. A. Henson, and D. E. Seborg. Nonlinear internal model control strategy for neural network models. Computers Chem. Engng., 16:1039–1057, 1992.

    Article  CAS  Google Scholar 

  26. A. H. Nayfeh. Introduction to Perturbation Techniques. John Wiley and Sons, New York, 1981.

    Google Scholar 

  27. L. F. Razón and R. A. Schmitz. Multiplicities and instabilities in chemical reaction systems — a review. Chem. Engng. Sci., 42:1005, 1987.

    Article  Google Scholar 

  28. M. Schetzen. The Volterra and Wiener Theories of Nonlinear Systems. John Wiley and Sons, New York, 1980.

    Google Scholar 

  29. A. M. Shaw, F. J. Doyle, and J. S. Schwaber. A dynamic neural network approach to nonlinear process modeling. Computers Chem. Engng., 21:371–385, 1997.

    Article  CAS  Google Scholar 

  30. A. J. Stack and F. J. Doyle. Application of a control-law nonlinearity measure to the chemical reactor analysis. AIChE J., 43:425–39, 1997.

    Article  CAS  Google Scholar 

  31. M. Vidyasagar. Nonlinear Systems Analysis. Prentice-Hall, New Jersey, 1993.

    Google Scholar 

  32. Q. Zheng and E. Zafiriou. Identification of MIMO Volterra series and application to FCC unit. In Proceedings of the 1996 IFAC, San Francisco, CA, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Harris, K.R., Palazoğlu, A. (1998). Promises and Limitations of Functional Expansions in Nonlinear Model-Based Control. In: Berber, R., Kravaris, C. (eds) Nonlinear Model Based Process Control. NATO ASI Series, vol 353. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5094-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5094-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6140-7

  • Online ISBN: 978-94-011-5094-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics