Skip to main content

Risk Factors for Cardiovascular Disease and the Endothelium

  • Chapter
Book cover Multiple Risk Factors in Cardiovascular Disease

Part of the book series: Medical Science Symposia Series ((MSSS,volume 12))

  • 270 Accesses

Abstract

Studies on the pathogenesis and the development of hypertension and chronic vascular disease have for a long time concentrated on the disturbed contractility or an increased proliferation propensity of smooth muscle cells [1,2]. More recent work has extended the pathophysiological considerations to other cell systems of the vessel wall which have been recognized to be involved in the pathogenesis of chronic vascular diseases [3,4]. It has become more and more apparent that the endothelium plays a crucial role in the regulation of the vessel wall under physiological and pathological conditions [5]. Endothelial cell functions regulate the homeostasis of the vascular wall. Healthy endothelium is antiadhesive, regulates the permeability of the endothelial cell layer, and secretes vasorelaxant substances such as NO. Risk factors such a hypertension, hyperglycemia, and hyperlipidemia damage the endothelial cells and increase cell permeability and adhesiveness. They also decrease NO production and may lead to the expression of vasoconstrictive and proliferative substances such as endothelin. In the following text the effects of the risk factors hypertension, hypercholesterolemia, and hyperglycemia on certain aspects of endothelial cell function will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkow B. Physiological aspects of primary hypertension. Physiol Rev 1982; 62: 347–504.

    PubMed  CAS  Google Scholar 

  2. Gordon D, Reidy MA, Benditt EP, Schwartz SM. Cell proliferation in human coronary arteries. Proc Natl Acad Sci USA 1990; 87: 4600–4604.

    Article  PubMed  CAS  Google Scholar 

  3. Schwartz CJ, Valente AJ, Sprague EA. A modem view of atherogenesis. Am J Cardiol 1993; 71 (6): 21–29.

    Article  Google Scholar 

  4. Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990. Nature 1993; 362: 801–9.

    Article  PubMed  CAS  Google Scholar 

  5. Lüscher TF, Vanhoutte PM. The endothelium: Modulator of cardiovascular function. Boca Raton, Florida: CRC Press; 1990.

    Google Scholar 

  6. McCarron RM, Wang L, Siren AL, Spatz M, Hallenbeck JM. Monocyte adhesion to cerebromicrovascular endothelial cells derived from hypertensive and normotensive rats. Am J Physiol 1994; 267 (6Pt2): H2491–97.

    PubMed  CAS  Google Scholar 

  7. McCarron RM, Wang L, Siren AL, Spatz M, Hallenbeck JM. Adhesion molecules on normotensive and hypertensive rat brain endothelial cells. Proc Soc Exp Biol Med 1994; 205 (3): 257–62.

    PubMed  CAS  Google Scholar 

  8. Suzuki H, Schmid Schonbein GW, Suematsu M, et al. Impaired leukocyte-endothelial cell interaction in spontaneously hypertensive rats. Hypertension 1994; 24 (6): 719–27.

    Article  PubMed  CAS  Google Scholar 

  9. Kerenyi T, Lehmann R, Voss B, Jellinek H. Changes of DNA-acridine orange binding in monocytes and endothelial cells of hypertensive arteries. Exp Mol Pathol 1991; 54 (3): 230–41.

    Article  PubMed  CAS  Google Scholar 

  10. Blann AD, Tse W, Maxwell SJ, Waite MA. Increased levels of the soluble adhesion molecule E-selectin in essential hypertension. J Hypertens 1994; 12 (8): 925–28.

    Article  PubMed  CAS  Google Scholar 

  11. Alexander RW. Theodore Cooper Memorial Lecture. Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: A new perspective. Hypertension 1995; 25 (2): 155–61.

    Article  PubMed  CAS  Google Scholar 

  12. Haller H, Park JK, Dragun D, Lippoldt A, Luft FC. Leukocyte infiltration and ICAM-1 expression in two-kidney one-clip hypertension. Nephrol Dial Transpl 1997; 12: 899–903.

    Article  CAS  Google Scholar 

  13. Haller H, Park JK, Distler A, Luft FC. Increased phorbolester-induced vasoconstriction in SHR is due to endothelial dysfunction. Hypertens Res 1994; 17: 193–97.

    Article  CAS  Google Scholar 

  14. Haller H, Schaberg T, Lindschau C, Quass P, Lode H, Distler A. Endothelin increases intracellular free calcium, protein phosphorylation and O2-production in human alveolar macrophages. Am J Physiol 1991; 261: L723–13.

    Google Scholar 

  15. Tagami M, Kubota A, Nara Y, Yamori Y. Detailed disease processes of cerebral pericytes and astrocytes in stroke-prone SHR. Clin Exp Hypertens A 1991; 13 (5): 1069–75.

    Article  PubMed  CAS  Google Scholar 

  16. Nag S. Cerebral endothelial mechanisms in increased permeability in chronic hypertension. Adv Exp Med Biol 1993; 331: 263–66.

    Article  PubMed  CAS  Google Scholar 

  17. Tedgui A, Merval R, Esposito B. Albumin transport characteristics of rat aorta in early phase of hypertension. Circ Res 1992; 71 (4): 932–42.

    Article  PubMed  CAS  Google Scholar 

  18. Nag S. Role of the endothelial cytoskeleton in blood-brain-barrier permeability to protein. Acta Neuropathol Berl 1995; 90 (5): 454–60.

    Article  PubMed  CAS  Google Scholar 

  19. Pedrinelli R, Giampietro O, Carmassi F, et al. Microalbuminuria and endothelial dysfunction in essential hypertension [see comments]. Lancet 1994; 344 (8914): 14–18.

    Article  PubMed  CAS  Google Scholar 

  20. Schwartz CJ, Valente AJ, Sprague EA. A modern view of atherogenesis. Am J Cardiol 1993; 71(6): 21–29.

    Article  Google Scholar 

  21. Esposito C, Gerlach H, Brett J, Stern D, Vlassara H. Endothelial receptor-mediated binding of glucose-modified albumin is associated with increased monolayer permeability and modulation of cell surface coagulant properties. J Exp Med 1989; 170: 1387–1407.

    Article  PubMed  CAS  Google Scholar 

  22. Stout RW, Bierman EL, Ross R Effect of insulin on the proliferation of cultured primate arterial smooth muscle cells. Circ Res 1975; 36: 319–27.

    Article  PubMed  CAS  Google Scholar 

  23. King GL, Goodman AD, Buzney S, Moses A, Kahn CR. Receptors and growth-promoting effects of insulin and insulin-like growth factors on cells from bovine retinal capillaries and aorta. J Clin Invest 1985; 75: 1028–36.

    Article  PubMed  CAS  Google Scholar 

  24. Weinstein R, Stemerman MB, Maciag T. Hormonal requirements for growth of arterial smooth muscle cells in vitro: An endocrine approach to atherosclerosis. Science 1981; 212: 818–20.

    Article  PubMed  CAS  Google Scholar 

  25. Capron L, Jarnet J, Kazandjian S, Housset E. Growth-promoting effects of diabetes and insulin on arteries: An in vivo study of rat aorta. Diabetes 1986; 35: 973–78.

    Article  PubMed  CAS  Google Scholar 

  26. Stout RW. Insulin and atheroma. 20-yr perspective. Diabetes Care 1990; 13: 631–54.

    Article  PubMed  CAS  Google Scholar 

  27. Shultz PJ, Raij L. Endogenously synthesized nitric oxide prevents endotoxin-induced glomerular thrombosis. J Clin Invest 1990; 90: 1718–25.

    Article  Google Scholar 

  28. Lorenzi M, Cagliero E. Pathobiology of endothelial and other vascular cells in diabetes mellitus; Call for data. Diabetes 1991; 40: 653–59.

    Article  PubMed  CAS  Google Scholar 

  29. Steiner G. Diabetes and atherosclerosis: An overview. Diabetes 1981; 30 (Suppl.2): 1–7.

    PubMed  CAS  Google Scholar 

  30. Cagliero E, Maiello M, Boeri D, Roy S, Lorenzi M. Increased expression of basement membrane components in human endothelial cells cultured in high glucose. J Clin Invest 1988; 82: 735–38.

    Article  PubMed  CAS  Google Scholar 

  31. Kannel WB, McGee DL. Diabetes and glucose tolerance as risk factors for cardiovascular disease: The Framingham study. Diabetes Care 1979; 241: 2035–38.

    CAS  Google Scholar 

  32. Group, T. D. C. a. C. T. R. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329: 599–606.

    Google Scholar 

  33. Tooke JE. Microvascular function in human diabetes. A physiological perspective. Diabetes 1995; 44: 721–26.

    Article  PubMed  CAS  Google Scholar 

  34. Wardle EN. Vascular permeability in diabetics and implications for therapy. Diabetes Res Clin Pract 1994; 23: 135–39.

    Article  PubMed  CAS  Google Scholar 

  35. Nannipieri M, Rizzo L, Rapuano A, Pilo A, Penno G, Navalesi R. Increased transcapillary escape rate of albumin in microalbuminuric type II diabetic patients. Diabetes Care 1995; 18 (1): 1–9.

    Article  PubMed  CAS  Google Scholar 

  36. Sander B, Larsen M, Engler C, Lund Andersen H, Parving HH. Early changes in diabetic retinopathy: Capillary loss and blood-retina barrier permeability in relation to metabolic control. Acta Ophthalmol Copenh. 1994; 72 (5): 553–59.

    Article  PubMed  CAS  Google Scholar 

  37. Yamashita T, Mimura K, Umeda F, Kobayashi K, Hashimoto T, Nawata H. Increased transendothelial permeation of albumin by high glucose concentration. Metabolism 1995; 44 (6): 739–44.

    Article  PubMed  CAS  Google Scholar 

  38. Williams B. Glucose-induced vascular smooth muscle dysfunction: The role of protein kinase C. J Hypertens 1995; 13: 477–86.

    Article  PubMed  CAS  Google Scholar 

  39. Derubertis FR, Craven PA. Activation of protein kinase C in glomerular cells in diabetes. Mechanisms and potential links to the pathogenesis of diabetic glomerulopathy. Diabetes 1994; 43: 1–8.

    Article  PubMed  CAS  Google Scholar 

  40. Williams B, Tsai P, Schrier RW. Glucose-induced downregulation of angiotensin II and arginine vasopressin receptors in cultured rat aortic vascular smooth muscle cells. Role of protein kinase C. J Clin Invest 1992; 90: 1992–99.

    Article  PubMed  CAS  Google Scholar 

  41. Haller H, Baur E, Quass P. High glucose concentrations and protein kinase C isoforms in vascular smooth muscle cells. Kidney Ira 1995; 47: 1057–67.

    Article  CAS  Google Scholar 

  42. Lum H, Malik AB. Regulation of vascular endothelial barrier function. Am J Physiol 1994; 267: L223–L241.

    PubMed  CAS  Google Scholar 

  43. Lynch JJ, Ferro TJ, Blumenstock FA, Brockenauer AM, Malik AB. Increased endothelial albumin permeability mediated by protein kinase C activation. J Clin Invest 1990; 85: 1991–98.

    Article  PubMed  CAS  Google Scholar 

  44. Haller H, Ziegler W, Lindschau C, Luft FC. Endothelial cell tyrosine kinase receptor and G- protein coupled receptor activation involves distinct protein kinase C isoforms. Arterioscl Thromb Vasc Biol 1996; 16: 678–86.

    Article  PubMed  CAS  Google Scholar 

  45. Johnson A, Phillips P, Hocking D, Tsan MF, Ferro T. Protein kinase inhibitor prevents pulmonary edema in response to H2O2. Am J Physiol 1989; 256: H1012–H1022.

    PubMed  CAS  Google Scholar 

  46. Siflinger-Birnboim A, Goligorsky MS, del Vecchio PJ, Malik AB. Activation of protein kinase C pathway contributes to hydrogen peroxide induced increase in endothelial cell permeability. Lab Invest 1992; 67: 24–30.

    PubMed  CAS  Google Scholar 

  47. Northover AM, Northover BJ. 1994. Lectin-induced increase in microvascular permeability to colloidal carbon in vitro may involve protein kinase C activation. Agents Actions 1994; 41: 136–39.

    Article  PubMed  CAS  Google Scholar 

  48. Fassano A, Fiorentini C, Donelli G, et al. Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization, in vitro. J. Clin. Invest 195; 96: 710–20.

    Google Scholar 

  49. Tesmafariam B, Brown ML, Cohen RA. Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. J Clin Invest 1991; 87: 1643–48.

    Article  Google Scholar 

  50. Studer RK, Craven PA, DeRubertis FR. Role for protein kinase C in the mediation of increased fibronectin accumulation by mesangial cells grown in high-glucose medium. Diabetes 1993; 42: 118–26.

    Article  PubMed  CAS  Google Scholar 

  51. Fumo P, Kuncio GS, Ziyadeh FN. PKC and high glucose stimulate collagen alpha 1(W) transcriptional activity in a reporter mesangial cell line. Am J Physiol 1994; 267: F632–F638.

    PubMed  CAS  Google Scholar 

  52. Simionescu M, Simionescu N. Functions of the endothelial cell surface Annu Rev Physiol 1986; 48: 279–304.

    Article  CAS  Google Scholar 

  53. Schar, RE, Harker LA. Thrombosis and atherosclerosis: Regulatory role of interactions among blood components and endothelium. Blut 1987; 55: 131.

    Article  Google Scholar 

  54. Springer TA. The sensation and regulation of interactions with the extracellular environment: The cell biology of lymphocyte adhesion receptors. Annu Rev Cell Biol 1990; 6: 359–402.

    Article  PubMed  CAS  Google Scholar 

  55. DiCorleto PE, Chisolm GM. Participation of the endothelium in the development of the atherosclerotic plaque. Prog Lipid Res 1986; 25: 365–374.

    Article  PubMed  CAS  Google Scholar 

  56. Gerrity RG. The role of monocyte in atherogenesis. 1. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol 1981; 103: 181–90.

    PubMed  CAS  Google Scholar 

  57. Cybulsky MI, Gimbrone MJ. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 1991; 251 (4995): 788–91.

    Article  PubMed  CAS  Google Scholar 

  58. Li H, Cybulsky MI, Gimbrone MJ, Libby P. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. ArteriosclerThromb 1993; 13 (2): 197–204.

    Article  Google Scholar 

  59. Libby P, Hansson GK. Involvement of the innnune system in human atherogenesis: Current knowledge and unanswered questions. Lab Invest 1991; 64: 5–15.

    PubMed  CAS  Google Scholar 

  60. Alderson LM, Endemann G, Lindsey S, Pronczuk A, Hoover RI, Hayes KC. LDL enhances monocyte adhesion to endothelial cells in vitro. Am J Pathol 1986; 123: 334–41.

    PubMed  CAS  Google Scholar 

  61. Frostegard J, Haegerstrand A, Gidlund M, Nilsson J. Biologically modified LDL increases the adhesive properties of endothelial cells. Atherosclerosis 1991; 90: 119–26.

    Article  PubMed  CAS  Google Scholar 

  62. Kume N, Cybulsky Ml, Gimbrone MJ. Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest 1992; 90 (3): 1138–44.

    Article  PubMed  CAS  Google Scholar 

  63. Haller H, Schaper D, Philipp S, Distler A. LDL induces surface expression of adhesion molecules ICAM-1 and VCAM on endothelial cells via the activation of protein kinase C. J Am Soc Nephrol 1992; 3: 456.

    Google Scholar 

  64. Gilcrease MZ, Hoover RL. Examination of monocyte adherence to endothelium under hyperglycemic conditions. Am J Pathol 1991; 139: 1089–97.

    PubMed  CAS  Google Scholar 

  65. DiCorleto PE. Cellular mechanisms of atherogenesis. Am J Hypertens 1993; 6: 314S–318S.

    Article  PubMed  CAS  Google Scholar 

  66. Schaberg T, Rau M, Kaiser D, Fassbender M, Lode H, Haller H. Increased number of alveolar macrophages expressing adhesion molecules of the leukocyte adhesion molecule family in smoking subjects: Association with cell-binding ability and superoxide anion production. Am Rev Respir Dis 1992; 146: 1287–93.

    PubMed  CAS  Google Scholar 

  67. Vlassara H, Brownlee M, Monogue K, Dinarello CA, Pasagian A. Cachectin/TNF and IL-1 induced by glucose-modified proteins: Role in normal tissue remodeling. Science 1988; 240: 1546–48.

    CAS  Google Scholar 

  68. Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications N Engl J Med 1988; 318: 1315–21.

    Article  PubMed  CAS  Google Scholar 

  69. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol: Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989; 320: 915–24.

    Article  PubMed  CAS  Google Scholar 

  70. Gerrity RG. The role of monocyte in atherogenesis. 1. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol 1981; 103: 181–90.

    PubMed  CAS  Google Scholar 

  71. Schwartz CJ, Valente AJ, Sprague EA. A modem view of atherogenesis. Am J Cardiol 1993; 71 (6): 21–29.

    Article  Google Scholar 

  72. Cybulsky MI, Gimbrone MJ. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 1991; 251 (4995): 788–91.

    Article  PubMed  CAS  Google Scholar 

  73. Li H, Cybulsky MI, Gimbrone MJ, Libby P. An atherogemc diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler Thromb 1993; 13 (2): 197–204.

    Article  PubMed  Google Scholar 

  74. Libby P, Hansson GK. Involvement of the immune system in human atherogenesis: current knowledge and unanswered questions. Lab Invest 1991; 64: 5–15.

    PubMed  CAS  Google Scholar 

  75. Alderson LM, Endemann G, Lindsey S, Pronczuk A, Hoover RI, Hayes KC. LDL enhances monocyte adhesion to endothelial cells in vitro. Am J Pathol 1986; 123: 334–41.

    PubMed  CAS  Google Scholar 

  76. Berliner JA, Territo MC, Sevanian A, et al Minimally modified LDL stimulates monocyte endothelial interactions. J Clin Invest 1990; 85: 1260–67.

    Article  PubMed  CAS  Google Scholar 

  77. Rostegard J, Haegerstrand A, Gidlund M, Nilsson J. Biologically modified LDL increases the adhesive properties of endothelial cells. Atherosclerosis 1991; 90: 119–26.

    Article  Google Scholar 

  78. Kume N, Cybulsky MI, Gimbrone MJ. Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest 1992; 90 (3): 1138–44.

    Article  PubMed  CAS  Google Scholar 

  79. Haller H, Rieger M, Kuhlmann M, Philipp S, Distler A, Luft FC. LDL increases (Ca++)i in human endothelial cells and augments thrombin-induced cell signalling. J Lab Clin Med 1994; 124: 708–14.

    PubMed  CAS  Google Scholar 

  80. Haller H, Schaper D, Ziegler W, Kuhlmann M, Distler A, Luft FC. LDL induces surface expression of vascular adhesion molecule (VCAM) on endothelial cells via activation of protein kinase C. Hypertension 1995; 25: 511–16.

    Article  PubMed  CAS  Google Scholar 

  81. Mai M, Geiger H, Hilgers KF, Veelken R, Mann JFE, Luft FC. Early interstitial changes in hypertension-induced renal injury. Hypertension 1993; 22: 754–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haller, H. (1998). Risk Factors for Cardiovascular Disease and the Endothelium. In: Gotto, A.M., Lenfant, C., Paoletti, R., Catapano, A.L., Jackson, A.S. (eds) Multiple Risk Factors in Cardiovascular Disease. Medical Science Symposia Series, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5022-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5022-4_36

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6108-7

  • Online ISBN: 978-94-011-5022-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics