Skip to main content

Calcium Channel Signaling in Astrocytes

  • Chapter
Calcium Antagonists

Part of the book series: Medical Science Symposia Series ((MSSS,volume 3))

Abstract

It has been known for more than a century that the brain contains not only neurons but also non-neuronal cells. Most of the non-neuronal cells belong to the two glial cell types, oligodendrocytes and astrocytes. In many species, including man, they vastly outnumber neurons (1). At the beginning of this century several attempts were made to study the role(s) of glial cells. Many theories were suggested but little solid evidence was obtained, leading Ramon and Cajal (2) to the visionary conclusion that the functions of glial cells were unknown and would remain so for a long time to come, because no methodologies were available to study these functions. With the remarkable development in electrophysiological techniques during the following decades, neuronal characteristics were elucidated in ever greater detail, whereas the possibility of a major role of glial cells in brain function was more or less disregarded. This situation began to change in the 1950s. With the aid of histological techniques it was shown that oligodendrocytes synthesize myelin and that radial glial cells (immature astrocytes) serve a guiding role during neuronal migration. Purified samples of either neurons or glial cells were first obtained by Hyden (3), using microdissection; subsequently, neurons and different types of glial cells were prepared by centrifugation or culturing techniques. Another development of decisive importance for the interest in glial cell studies was the development of microelectrodes which made it possible to demonstrate huge alterations in extracellular concentrations of cations (primarily potassium and calcium) during both normal function of the CNS and pathological states, e.g., seizures, hypoglycemia, and ischemia. This new knowledge paved the way for the concept that neurons and astrocytes share a common extracellular space, sheltered behind the bloodbrain barrier and, in conjunction, regulate the local concentration of neuroactive compounds like potassium ions and glutamate. Finally, the development of patch-clamp techniques to study ion channels and of imaging techniques to determine intracellular concentrations (activities) of calcium (4) and, more recently, of sodium and potassium in visually selected individual cells and/or microareas of cells, are as well suited to measure characteristics of glial cells as of neutrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pope A. (1978): In: Dynamic Properties of Glia Cells, edited by E. Schoffeniels, G. Franck, L. Hertz and D.B. Tower pp. 13–20. Pergamon, Oxford.

    Google Scholar 

  2. Ramon Y. and Cajal S. (1909): Histologie du Systeme Nerveux de l’Homme et des Vertebres vol. 1, p. 246. Paris.

    Google Scholar 

  3. Hyden H. (1959): Nature, 184: 433–435.

    Article  PubMed  CAS  Google Scholar 

  4. Tsien R.W. (1988): TINS, 11: 419–424.

    PubMed  CAS  Google Scholar 

  5. Walz W. (1989): Prog. Neurobiol., 33: 309–333.

    Article  PubMed  CAS  Google Scholar 

  6. Barres B.A., Chun L.L.Y. and Corey D.P. (1990): Annu. Rev. Neurosci., 13: 441–474.

    Article  PubMed  CAS  Google Scholar 

  7. Janis R.A., Silver P.J. and Triggle D.J. (1987): Adv. Drug Res., 16: 309–591.

    CAS  Google Scholar 

  8. Hertz L., Bender A.S., Woodbury D. and White S.A. (1989): J. Neurosci. Res., 22: 209–215.

    Article  PubMed  CAS  Google Scholar 

  9. Cantor E.H., Kennessey A., Semenuk G. and Spector S. (1984): Proc. Natl. Acad. Sci. USA, 81: 1549–1552.

    Article  PubMed  CAS  Google Scholar 

  10. Bender A. and Hertz L. (1985): Eur. J. PharmacoL, 110: 287–288.

    Article  PubMed  CAS  Google Scholar 

  11. Code W.E. and Hertz L. (1989): Can. J. Anaesth., 36: S151.

    Google Scholar 

  12. Bender A.S. and Hertz L. (1987): J. Neurosci Res., 18: 366–372.

    Article  PubMed  CAS  Google Scholar 

  13. Code W.E., White H.S. and Hertz L. (1991): N.Y. Acad. Sci., 625: 430–432.

    Article  CAS  Google Scholar 

  14. White H.S., Skeen G., Howell M.C. and Litzinger M.A. (1991): Trans. Am. Soc. Neurochem., 22(1): 101.

    Google Scholar 

  15. Enkvist M.O., Holopainen I. and Akerman K.E. (1989): Glia, 2: 397–402.

    Article  PubMed  CAS  Google Scholar 

  16. Salm A.K., Lerea L., Castros H. and McCarthy K.D. (1990): In: Differentiation and Functions of Glial Cells, edited by G. Levi pp. 275–288. Alan R. Liss, New York.

    Google Scholar 

  17. Cornell-Bell A.H., Finkbeiner S.M., Cooper M.S. and Smith S.J. (1990): Science, 247: 470–473.

    Article  PubMed  CAS  Google Scholar 

  18. Neary J.T., Van Breemen C., Laskey R., Blicharska, Norenberg L.-O.B. and Norenberg M.D. (1991): Ann. N.Y. Acad. Sci., USA, 603: 473–475.

    Article  Google Scholar 

  19. Arbones L., Picatoste F. and Garcia (1990): Mol. Pharmacol., 37: 921–927.

    PubMed  CAS  Google Scholar 

  20. Hof P.R., Pascale E. and Magistretti P.J. (1988): J. Neurosci., 8: 1922–1928.

    PubMed  CAS  Google Scholar 

  21. Ibrahim M.Z.M. (1975): Adv. Anat. Cell Biol., 52: 5–89.

    Google Scholar 

  22. Pfeiffer B., Elmer K., Roggendorf W., Reinhart P.H. and Hamprecht B. (1990): Histochemistry, 94: 73–80.

    Article  PubMed  CAS  Google Scholar 

  23. Subbarao K. and Hertz L. (1990): Brain Res., 536: 220–226.

    Article  PubMed  CAS  Google Scholar 

  24. Magistretti P.J. (1988): Diabete & Metabolisme, 14: 237–246.

    CAS  Google Scholar 

  25. Kaufman E.E. and Driscoll (1990): Trans. Amer. Soc. Neurochem., 21: 289.

    Google Scholar 

  26. Hertz L. (1990): In: Molecular Aspects of Development and Aging in the Nervous System, edited by A. Privat, E. Giacobini, P. Timiras and A. Vernadakis pp. 227–243, Plenum, New York.

    Google Scholar 

  27. Meier E., Hertz L. and Schousboe A. (1990): Neurochem. Int., 19: 1–15.

    Article  Google Scholar 

  28. Quandt, F.N. and MacVicar B.A. (1986): Neuroscience, 19: 29–41.

    Article  PubMed  CAS  Google Scholar 

  29. Nowak L., Ascher P. and Berwald-Netter Y. (1987): J. Neurosci, 7: 101–109.

    PubMed  CAS  Google Scholar 

  30. Miller R.J. (1987): Science, 235: 46–52.

    Article  PubMed  CAS  Google Scholar 

  31. Hertz L. (1989); In: Regulatory Mechanisms of Neurons to Vessel Communication in Brain, edited by S. Govoni, F. Battaini and M.S. Mangoni pp. 271–305. Springer, Heidelberg.

    Book  Google Scholar 

  32. Hertz L., Code W.E., Shokeir O., Shargool M., Woodbury D.M. and White M.S.: In: Neuroglia, edited by A. Roitbak (in press). Tbilisi, Georgia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hertz, L., Code, W.E. (1993). Calcium Channel Signaling in Astrocytes. In: Godfraind, T., Paoletti, R., Govoni, S., Vanhoutte, P.M. (eds) Calcium Antagonists. Medical Science Symposia Series, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1725-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1725-8_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4756-2

  • Online ISBN: 978-94-011-1725-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics