Skip to main content

Scope and limitations for application of selectivity in oxidation potential-controlled leaching of metal sulphides

  • Chapter
Book cover Hydrometallurgy ’94

Abstract

Generally in the sulphate system, oxidative leaching of metal sulphides is not conducive to selectivity, due to the unselective oxidation of sulphide to elemental sulphur or to sulphate. However, in the chloride system, the ability to control the redox potential at a lower level on account of the stability of the cupric / cuprous ion species, permits the selective dissolution with respect to copper, of metals such as Pb, Ni, Zn, Fe by means of cupric chloride, according to the metathesis reaction, provided that the sulphide mineral is thermodynamically unstable under the conditions of leaching.

In the case of easily oxidisable sulphides, such as the components of copper matte or leadsulphide, under the oxidation potential conditions, at which cuprous sulphide is converted to cupric sulphide, according to the reaction:CUS + CuCl2 → CuS + 2 CuCl, selectivity of leaching of metals (Me) in respect to copper can be achieved, according to the simplified metathesis reaction MeS + CuCl2 → MeCl2 + CuS

Thereby, the cupric/cuprous chloride leach solution can be regenerated from the covellite formed by oxidation with CI2 or HC1 and O2.

In the case of a matte, the selective leaching and regeneration occur simultaneously, according to the overall reaction: Cu2S.MeS + Cl2 → 2CuS + MeCl2

In the case of less easily oxidisable sulphide minerals, selectivity of leaching of metals with regard to copper can still be achieved by the metathesis reaction at elevated temperature. The oxidation of sulphide to sulphate is prevented by maintaining a high cuprous to cupric ratio in the chloride solution. An industrial application is the Falconbridge chlorine leach process for copper-nickel matte. Based on investigations, potential applications were identified in the field of complex or bulk metal sulphide concentrate treatment, copper-lead matte processing and also chemical converting.

The application of selectivitiy principle in sulphide leaching provides environmental benefits, since the sulphide itself is used for separation and the sulphur is brought in an environmental compatible form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leroy J. L., Lenoir P. J. and Escoyez L. E., Lead Smelter Operation at N. V. Metallurgie Hoboken SA., in: Extractive Metallurgy of Lead and Zinc, Cotterill C. H. and Cigan J. M., TMS-AIME, (1970), chap. 28, pp. 824–852

    Google Scholar 

  2. Franckaerts A., Optimisation of the Lead-Sinter Plant and Blast-Furnace Operations at Metallurgie Hoboken-Overpelt, TMS-AIME Paper No. A86-53, (1986)

    Google Scholar 

  3. Thornhill P. G., Wigstöl E. and Van Weert G., J.O.M., 23, (July, 1971), pp. 13–18

    Google Scholar 

  4. Stensholt E. O., Zachariasen H. and Lund J. H., Falconbridge Chlorine Leach Process, in: Extraction Metallurgy′85, IMM, London, (Sept. 1985), Trans. IMM, C, V5, (1986), pp. 10–16

    Google Scholar 

  5. Lai R. and Nicol J. H., The BHAS Copper Leach Plant, TMS-AIME Paper No. A87-1, (1987)

    Google Scholar 

  6. Meadows N. E. and Valenti M., The BHAS Copper-Lead Matte Treatment Plant, Proc. of Non-ferrous Smelting Symposium, Port Pirie, S A., (Sept. 1989), pp. 155–157

    Google Scholar 

  7. Au-Yeung S. C. F. and Bolton G. L., Iron Control in Processes developed at Sherritt Gordon Mines, Proc. 16th Annual Hydrometallurgical Meeting of CIM, in: Iron Control in Hydrometallurgy, 19, (1986), chap. 6, pp. 131–151

    Google Scholar 

  8. Berezowsky R. M. G. S., Collins M. J., Kerfoot D. G. E. and Torres N., The Commercial Status of Pressure Leaching Technology, J.O.M., (February, 1991), pp. 9–15

    Google Scholar 

  9. Dutrizac J. E., The Leaching of Sulphide Minerals in Chloride Media, Hydrometallurgy, 29, (1992), pp. 1–45

    Article  Google Scholar 

  10. Zunkel A. D., Cuprex Metal Extraction Process (CMEP) Ready for Commercial Application, Engineering and Mining Journal, (December 1993), pp. 32-ff.

    Google Scholar 

  11. Hoffmann J. E., Winning Copper via Chloride Chemistry — An Elusive Technology, J.O.M., (August, 1991), pp. 48–49

    Google Scholar 

  12. Collins D. N., et al., Role of Chloride Hydrometallurgy in Processing of Complex (Massive) Sulphide Ores, in: P. M. J. Gray, et al. (Editors), Sulphide Deposits — Their Origin and Processing, IMM, London, (1990), pp. 233–254

    Chapter  Google Scholar 

  13. Craigen W. J. S., et al., Evaluation of the CANMET Ferric Chloride Leach Process (FCL) for the Treatment of Complex Base-Metal Ores, in: P. M. J. Gray, et al. (Editors), Sulphide Deposits — Their Origin and Processing, IMM, London, (1990), pp. 255–269

    Chapter  Google Scholar 

  14. Peters E., Direct Leaching of Sulfides, Chemistry and Applications, Metallurgical Trans. B, Vol 7B, (Dec. 1976), pp. 505–517

    Article  Google Scholar 

  15. Ferreira R. C. H., High Temperature E-pH Diagrams for the System S-H2O, CU-S-H2O and Fe-S-H2O, in: Leaching and Reduction in Hydrometallurgy, Ed. Burkin A. R., IMM, (1975), pp. 67–83

    Google Scholar 

  16. Enadimsa — Técnicas Reunidas S.A., Estudio Económico de un nuevo Procedimiento Industrial de Beneficio de Minerales Piríticos Complejos, Informe no. ITR/JM-4515/021/1978, Madrid, (Dec. 1978)

    Google Scholar 

  17. Druckard W. J., Canterford J. H., Dyson N. F., et al., Oxygen Pressure Leaching of a Bulk Flotation Concentrate from a Complex Cu-Pb-Zn Sulphide Ore, Non-ferrous Smelting Symposium, Port Pirie, S A., (September 1989), pp. 111–117

    Google Scholar 

  18. Dawson P., Acid Pressure Oxidation of Sulfide Flotation Concentrates, TMS-AIME Paper No A86-8,(1986)

    Google Scholar 

  19. Kuhn M. C, Arbiter N., Kling H., Anaconda’s Arbiter Process for Copper, C.I.M. Bulletin, 67, (Febr. 1974), pp. 62–73

    Google Scholar 

  20. Peters E., The Physical Chemistry of Hydrometallurgy, in: International Symposium on Hydrometallurgy, TMS-AIME, Chicago, (1973), chap. 10, pp. 205–228

    Google Scholar 

  21. Gerlach J., Pawlek F., Rödel R. et al, Der Einfluß des Gitteraufbaus von Metallverbindungen auf ihre Laugbarkeit, Erzmetall, Bd. 25, (1972), H. 9, pp. 448–453

    Google Scholar 

  22. Daiger K., Gerlach J., Zur Kinetik der direkten Laugung Sulfidischer Erze, Erzmetall, Bd. 35, (1982), H.12, pp. 609–611

    Google Scholar 

  23. Holdich R. G., Broadbent C. P., Investigation of the Dissolution of Pyrite in Copper (II) Chloride Solutions, in: Extraction Metallurgy ′85, IMM, London, (1985), pp. 645–658

    Google Scholar 

  24. Mukherjee T. K., Hubli R. C, Gupta C. K., A Cupric Chloride-Oxygen Leach Process for a Nickel-Copper Sulphide Concentrate, Hydrometallurgy 15, (1985), pp. 25–32

    Article  Google Scholar 

  25. Guy S., Broadbent C. P., Laugung eines komplexen Cu/Zn/Pb-Erzes mit Kupfer(II)-Chlorid, Aufbereitungstechnik, Nr. 9, (1983), pp. 539–547

    Google Scholar 

  26. Guy S., Broadbent C. P., Lawson G. S., et al., Cupric Chloride Leaching of a Complex Copper/Zinc/Lead Ore, Hydrometallurgy, 10, (1983), pp. 243–255

    Article  Google Scholar 

  27. Greig J. A., Oxidative Chloride Leaching of Sulphide Concentrates, in: Separation Processes in Hydrometallurgy, Ed. Davis G. A., (1987), pp. 35–48

    Google Scholar 

  28. Everett P. K., The Dextec Lead Process, in: Hydrometallurgy — Research, Development and Plant Practice, Ed. Osseo-Asure K., Miller J. D., TMS-AIME, New York, (1982), pp. 165–176

    Google Scholar 

  29. Filmer A. O., Briggs G. G., Recovery of Lead from Mixed Sulphide Concentrates, MINTEK 50 Symposium, Johannesburg, (1984)

    Google Scholar 

  30. Bonan M., Demarthe J. M., Renon H., et al, Chalcopyrite Leaching by CuC12 in Strong NaCl Solutions, Metallurgical Transactions B, Vol 12 B, (June 1981), pp. 269–274

    Article  Google Scholar 

  31. Muir D. M., Senanayaki G., Principles and Applications of Strong Salt Solutions to Mineral Chemistry, in: Extraction Metallurgy ′85, IMM, (1985)

    Google Scholar 

  32. Muir D. M., Ritcey G. M., Canterford J. H., Recent Developments in Chloride Hydrometallurgy, in: Symposium on Extractive Metallurgy, Aus. IMM, (Nov. 1984), pp. 153–161

    Google Scholar 

  33. Peters E., Applications of Chloride Hydrometallurgy to Treatment of Sulphide Minerals, in: Proc. on Chloride Hydrometallurgy, Benelux Metallurgie, Brussels (Sept. 1977), pp. 1–36

    Google Scholar 

  34. Canterford J. H., Chloride Hydrometallurgy — Its Future Potential, Chemeca ′83, The Eleventh Australian Conference on Chemical Engineering, Paper 2C, Brisbane, (Sept. 1983), pp. 73–82

    Google Scholar 

  35. Edmiston K.J., An Update on Chloride Hydrometallurgical Processes for Sulphide Concentrates, SME-AIME, Paper No 84–114, (1984)

    Google Scholar 

  36. Stensholt E. O., Zachariasen H., Lund J. H. and Thornhill P. G., Recent Improvements in the Falconbridge Nickel Refinery, in: Proceedings of Symposium on Extractive Metallurgy of Nickel, Cobalt, TMS-AIME, Phoenix, Az, (Jan. 1988), pp. 403–412

    Google Scholar 

  37. Dutrizac J. E., Chen T. T., The Effect of Elemental Sulphur Reaction Product on the Leaching of Galena in Ferric Chloride Media, Metallurgical Transactions B, Vol 21 B, (Dec 1990), pp. 935–943

    Article  Google Scholar 

  38. Dahms J., Gerlach J., Pawlek F., Beitrag zur Drucklaugung von Kupfersulfiden, Erzmetall, Bd. 20, (1967), H. 5, pp. 203–208

    Google Scholar 

  39. Kametani H., Aoki A., Potential-pH-Diagramme für das Spurstein / Digenit / Covellit-SO4-H2O Suspensionssystem bei 90°C, Erzmetall, Bd 29, (1976), H. 9, pp. 394–402

    Google Scholar 

  40. Johnson R. D., Miller I. B., Meadows N. E., Ricketts N. J., Oxygen Treatment of Sulphidic Materials at Atmospheric Pressure in an Acid Chloride-Sulphate Lixiviant, Proc. of Non-Ferrous Smelting Symposium, Port Pirie, S.A., (Sept. 1989), pp. 163–166

    Google Scholar 

  41. Cheng C. Y., Lawson F., The Leaching of Synthetic Chalcocite and Covellite in Oxygenated Acidic Sulphate-Chloride Solutions, Proc. of Non-Ferrous Smelting Symposium, Port Pirie, S.A., (Sept. 1989), pp. 167–174

    Google Scholar 

  42. Clevenger G. W., Pepple G. W., US Pat. 4, 384, 890, (May 24, 1983), Cupric Chloride Leaching of Copper Sulphides

    Google Scholar 

  43. Duyvesteyn W. C, et al., The Escondida Process for Copper Concentrates, in: Proc. of the Paul E. Queneau International Symposium, Extractive Metallurgy of Copper, Nickel and Cobalt, Denver, Co, 1993

    Google Scholar 

  44. Unpublished results of investigations by the author.

    Google Scholar 

  45. McGauley P. J., Roberts E. S., US Pat. 2, 568, 963, (Sept. 25,1951)

    Google Scholar 

  46. Yamada M., (Dowa Mining), Jap. Pat. 49-123926, (Nov. 27, 1974), Process for the Recovery of Copper

    Google Scholar 

  47. O’Neill C. E., Illis A., Huggins D. A., US Pat. 3, 616, 331, (Oct. 26, 1971), Recovery of Nickel and Copper from Sulfides

    Google Scholar 

  48. Johnson R. K., Coltrinari E. L., US Pat. 3, 957, 602, (May 18,1976), Recovery of Copper from Chalcopyrite Utilizing Copper Sulfate Leach

    Google Scholar 

  49. McKay D. R., Parker E. G., US Pat. 4, 024, 218, (May 17, 1977), Process for Hydrometallurgical Upgrading

    Google Scholar 

  50. Swinkels G. M., et al., The Sherritt Gordon — Cominco Copper Process — Part I: The Process, CIM Bulletin, (February 1978), pp. 105–121

    Google Scholar 

  51. Renken H. C, Zegers T. W., US Pat. 3, 655, 538, (Apr. 11,1972), Process for Electrowinning Zinc from Sulfide Concentrates

    Google Scholar 

  52. Collier D., et al, Comparative Economics of Sulphate-Based Hydrometallurgical Processes for the Treatment of Complex Sulphide Ores, Extraction Metallurgy ′85, IMM, London, Sept. 1985, pp. 997–1014

    Google Scholar 

  53. Bartlett R. W., et al, A Process for Enriching Chalcopyrite Concentrates, in: Metallurgical Reactor Design and Kinetics, Ed. Bautista, et al, TMS-AIME, 1986, pp. 227–246

    Google Scholar 

  54. Bartlett R. W., Copper Super-Concentrates-Processing, Economics, and Smelting, EDP-Proceed-ings ′92, TMS-Annual Meeting, San Diego, Ca., March 1992

    Google Scholar 

  55. Goens D. N., Can. Pat. 1, 065, 615, (Jun. 11, 1979), Hydrometallurgical Purification Process

    Google Scholar 

  56. Piret N. L., Höpper M., Kudelka H., US Pat. 4, 260, 588, (Apr. 7, 1981), Production of Sulphidic Copper Concentrates

    Google Scholar 

  57. Shirts M. B., et al., Aqueous Reduction of Chalcopyrite Concentrate with Metals, US Bureau of Mines RI-7953,1974

    Google Scholar 

  58. Hackl R., et al., Reverse Leaching of Chalcopyrite, in: Proceedings of International Conference Copper ′87, Viña del Mar, Chile, (1987), pp. 181–200

    Google Scholar 

  59. Sohn H.-J., et al., Reduction of Chalcopyrite with SO2 in the Presence of Cupric Ions, J.O.M., (Nov. 1980), pp. 18–22

    Google Scholar 

  60. Sequeira C. A. C, Electrochemical Reductive Conversion of Chalcopyrite with SO2, in: EMC ′91: Non-Ferrous Metallurgy — Present and Future, Elsevier, 1991, pp. 219–228

    Google Scholar 

  61. Hougen L. R., US Pat. 3, 880, 653 (Apr. 29, 1975), Chlorine Leach Process

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Piret, N.L., Castle, J.F. (1994). Scope and limitations for application of selectivity in oxidation potential-controlled leaching of metal sulphides. In: Hydrometallurgy ’94. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1214-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1214-7_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4532-2

  • Online ISBN: 978-94-011-1214-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics