Skip to main content
  • 711 Accesses

Summary

The impact of climatic changes on summer cauliflower production in northern Europe has been assessed using a dynamic crop simulation model. The sensitivity of the model to changes in temperature, global radiation and atmospheric CO2 concentration was analyzed using historical weather data from several sites in Europe. Effects of varying the transplanting date and plant density were also studied.

Model simulations indicate that increasing atmospheric CO2 concentration may decrease the risk of loose heads in cauliflower. Higher CO2 concentrations may also enable a higher plant density than is currently used without detrimental effects on curd size and quality. Temperature was found to strongly affect the timing of cauliflower production, whereas the quality in terms of curd density is determined by a wider range of environmental conditions. In the model curd density is affected mainly by the balance between the source of and sink for assimilates. Plant density, atmospheric CO2 concentration and temperature were found to be the most important variables affecting the source-sink balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atherton, J.G., D.J. Hand and C.A. Williams (1987), ‘Curd initiation in the cauliflower (Brassica oleracea var. Botrytis L.)’, In: Manipulation of flowering, Butterworths, London, pp. 133–145.

    Google Scholar 

  • Barrow, E. (1993), ‘Future scenarios of climate change for Europe’, In: The effect of climate change on agricultural and horticultural potential in Europe, Environmental Change Unit, University of Oxford, pp. 11–39.

    Google Scholar 

  • Booij, R. (1990), ‘Development of cauliflower and its consequences for cultivation’, PhD thesis, Agricultural University Wageningen, Wageningen.

    Google Scholar 

  • Goudriaan, J., H.H. van Laar, H. van Keulen and W. Louwerse (1985), Photosynthesis, CO, and plant production. In: Wheat growth and modelling, NATO ASI Ser., Series A: Life sciences. Vol 86. Plenum Press, New York, pp. 107–122.

    Google Scholar 

  • Houghton, J.T., G.J. Jenkins and J.J. Ephraums (1990), ‘Climate Change: The IPPC Scientific Assessment’, Cambridge University Press, Cambridge.

    Google Scholar 

  • Morison, J.I.L. and R.M. Gifford (1984a), ‘Plant growth and water use with limited water supply in high CO2 concentations. I. Leaf area, water use and transpiration’, Aust. J. Plant Physiol., 11, 361–374.

    Article  Google Scholar 

  • Morison, J.I.L. and R.M. Gifford (1984b), ‘Plant growth and water use with limited water supply in high CO, concentations. II. Plant dry weight, partitioning and water use efficiency’, Aust. J. Plant Physiol., 11, 375–384.

    Article  Google Scholar 

  • Olesen, J.E., E. Friis and K. Grevsen (1993), ‘Simulated effects of climatic change on vegetable crop production in Europe’, In: The effect of climate change on agricultural and horticultural potential in Europe, Environmental Change Unit, University of Oxford, pp. 177–200.

    Google Scholar 

  • Rietveld, M.R. (1978), ‘A new method for estimating the regression coefficients in the formula relating solar radiation to sunshine’, Agric. Meteorol., 19, 243–252.

    Article  Google Scholar 

  • Salter, P.J. (1961), ‘The irrigation of early summer cauliflower in relation to stage of growth, plant spacing and nitrogen level’, J. hort. Sci., 36, 241–253.

    Google Scholar 

  • Spitters, C.J.T., H. van Keulen and D.W.G. Kraalingen (1989), ‘A simple and universal crop growth simulator: SUCROS87’, In: Simulation and systems management in crop protection, Pudoc, pp. 147–181.

    Google Scholar 

  • Versteeg, M.N. and H. van Keulen (1986), ‘Potential crop production prediction by some simple calculation methods, as compared with computer simulations’, Agric. Syst., 19, 249–272.

    Article  Google Scholar 

  • Wiebe, H.-J. (1972a), ‘Wirkung von Temperatur und Licht auf Wachstum und Entwicklung von Blumenkohl. I. Dauer der Jugendphase für die Vernalisation’, Gartenbauwissenschaft, 37, 165–178.

    Google Scholar 

  • Wiebe, H.-J. (1972b), ‘Wirkung von Temperatur und Licht auf Wachstum und Entwicklung von Blumenkohl. II. Optimale Vernalisationstemperatur und Vernalisationsdauer’, Gartenbauwissenschaft, 37, 293–303.

    Google Scholar 

  • Wiebe, H.-J. (1973), ‘Wirkung von Temperatur und Licht auf Wachstum und Entwicklung von Blumenkohl. IV. Kopfbildungsphase’, Gartenbauwissenschaft, 38, 263–280.

    Google Scholar 

  • Wiebe, H.-J. and H. Krug (1974), ‘Wirkung der Temperatur auf Qualität und Erntedauer von Blumenkohl’, Gemüse, 10, 34–37.

    Google Scholar 

  • Wurr, D.C.E., J.M. Akehurst and T.H. Thomas (1981), ‘A hypothesis to explain the relationship between low-temperature treatment, gibberillin activity, curd initiation and maturity in cauliflower’, Sci. Hort., 15, 321–330.

    Article  Google Scholar 

  • Wurr, D.C.E., J.R. Fellows R.W.P. and Hiron (1990), ‘The influence of field environmental conditions on the growth and development of four cauliflower cultivars’, J. hart. Sci., 65, 565–572.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Olesen, J.E., Grevsen, K. (1994). Simulation of Effects of Climatic Change on Cauliflower Production. In: Grasman, J., van Straten, G. (eds) Predictability and Nonlinear Modelling in Natural Sciences and Economics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0962-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0962-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4416-5

  • Online ISBN: 978-94-011-0962-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics