Skip to main content

Part of the book series: Mathematical Physics Studies ((MPST,volume 17))

  • 476 Accesses

Abstract

In this section we describe four models of quantum statistical mechanics, namely, the BCS (Bardeen -Cooper-Schrieffer) model of superconductivity, the Bogolyubov model of superfluidity, the model of Huang, Yang, and Luttinger, and the Peierls-Frohlich model. We employ the following scheme: First, we define model Hamiltonians for systems of particles contained in a bounded region (cube) ∧ with periodic boundary conditions and then pass to the thermodynamic limit and study the corresponding limiting model Hamiltonian. The procedure of limit transition is not justified; it enables one to determine the model Hamiltonian of an infinite system which is then studied rigorously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angelescu, N. A., Verbeure, A., and Zagrebnov, V. A. On Bogoliubov’s model of superfluidity, J. Phys. A, Math. Gen. (1992), 25, 3473–3491.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Araki, H. and Woods, E. J. Representations of the canonical commutation relation. Describing a nonrelativistic infinite free Bose gas, J. Math. Phys. (1963), 4, 637–662.

    Article  MathSciNet  ADS  Google Scholar 

  3. Araki, H. and Wyss, W. Representations of canonical anticommutation relations, Helv. Phys. Acta. (1964), 37, 136–159.

    MathSciNet  MATH  Google Scholar 

  4. Bardeen, J., Cooper, L. N., and Schrieffer, J. R. Microscopic theory of superconductivity, Phys. Rev. (1957), 106, 162– 164

    Article  MathSciNet  ADS  Google Scholar 

  5. Bardeen, J., Cooper, L. N., and Schrieffer, J. R.Theory of superconductivity, Phys. Rev. (1957), 108, 1175 –1204.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Belokolos, E. D. and Petrina, D. Ya. On a relationship between the methods of approximating Hamiltonian and finite zone integration, Teor. Mat. Fiz. (1984), 58, No. 1,61–71.

    Article  MathSciNet  Google Scholar 

  7. Billard, P. and Fano, G. An existence proof for the gap equation in the superconductivity theory, Comm. Math. Phys. (1968), 10, 274–219.

    MATH  Google Scholar 

  8. Bogolyubov, N. N. To the theory of superfluidity, Izv. Akad. Nauk SSSR., Ser. Fiz. (1947), 11, No. 1, 77–90.

    MathSciNet  Google Scholar 

  9. Bogolyubov, N. N. Selected Papers [in Russian], Vol. 2, Naukova Dumka, Kiev (1970), pp. 210–224.

    Google Scholar 

  10. Bogolyubov, N. N. On the Model Hamiltonian in the Theory of Superconductivity [in Russian], Preprint JINR, No. R-511, Dubna, 1960.

    Google Scholar 

  11. Bogolyubov, N. N. Selected Papers [in Russian], Vol. 3, Naukova Dumka, Kiev (1970), pp. 110–173.

    Google Scholar 

  12. Bogolyubov, N. N. Selected Papers [in Russian], Vol. 3, Naukova Dumka, Kiev (1970), pp. 174–243.

    Google Scholar 

  13. Bogolyubov, N. N. Quasiaverages in the Problems of Statistical Mechanics [in Russian], Preprint JINR, No. R-1451, Dubna, 1963.

    Google Scholar 

  14. Bogolyubov, N. N., Zubarev, D. N., and Tserkovnikov, Yu. A. An asymptotically exact solution for the model Hamiltonian in the theory of superconductivity, Zh. Eksper. Teoret. Fiz. (1960), 39, issue 1, 120–129.

    Google Scholar 

  15. Bogolyubov, N. N. (jr.) A Method for Investigating Model Hamiltonians [in Russian], Nauka, Moscow, 1974.

    Google Scholar 

  16. Bogolyubov, N. N. (jr.), Brankov, J. G., Zagrebnov, V. A., Kurbatov, A. M., and Tonchev, N. S. Method of Approximating Hamiltonian in Statistical Physics [in Russian], Izd. Bolgar. Akad. Nauk, Sofia, 1981.

    Google Scholar 

  17. Bratelli, O. and Robinson, D. Operator Algebras and Quantum Statistical Mechanics, Springer, New York-Heidelberg-Berlin, 1979.

    Google Scholar 

  18. Dell’Antonio, G. F. Structure of the algebras of some free systems, Comm. Math. Phys. (1968), 9, 81–116.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Emch, G. Algebraic Methods in Statistical Mechanics and Quantum Field Theory [Russian translation], Mir, Moscow, 1976.

    Google Scholar 

  20. Fannes, M., Spohn H., and Verbeure A. Equilibrium states for mean field models, J. Math. Phys. (1980), 21, 355 –358.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Haag, R. The mathematical Structure of the Bardeen-Cooper-Schrieffer Model, Nuovo Cimento(1962),25,287.

    Article  MathSciNet  MATH  Google Scholar 

  22. Hepp, K. and Lieb, H. Equilibrium statistical mechanics of matter interacting with the quantized radiation field, Phys. Rev. A. (1973), 8, 2517.

    Article  MathSciNet  ADS  Google Scholar 

  23. Hepp, K. and Lieb, H. On the superradiant phase transition for molecules in a quantized radiation field: The Dicke maser model, Ann. Phys. (1973), 76, 360.

    Article  MathSciNet  ADS  Google Scholar 

  24. Huang, K., Yang, C. N., and Luttinger, J. M. Imperfect Bose gas with hard-sphere interaction, Phys. Rev. (1957), 105, 776.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Hunziker, W. On the spectra of Schrödinger multiparticle Hamiltonians, Helv. Phys. Acta. (1966), 39, 451–462.

    MathSciNet  MATH  Google Scholar 

  26. Ginibre, J. On the asymptotic exactness of the Bogoliubov approximation for many boson systems, Comm. Math. Phys. (1968), 8, 26 –51.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. GoderisD., VerbeureA., and Vets P. Relaxation of the Dicke maser model, J. Math. Phys. (1987), 28, 2250–2253.

    Article  MathSciNet  ADS  Google Scholar 

  28. Gredzhuk, V. I. Justification of the method of approximating Hamiltonian in Bogolyubov’s theory of superfluidity, Dokl. Ukr. Akad. Nauk (1992), No. 1, 58–62.

    Google Scholar 

  29. Petrina, D. Ya. On Hamiltonians in quantum statistics and a model Hamiltonian in the theory of superconductivity, Teor. Mat. Fiz. (1970), 4, 394.

    Article  MathSciNet  MATH  Google Scholar 

  30. Petrina, D. Ya. Exactly Solvable Models of Quantum Statistical Mechanics, Preprint 18/1992,Politecnico di Torino, Torino, 1992.

    Google Scholar 

  31. Petrina, D. Ya. and Yatsyshin, V. P. On a model Hamiltonian in the theory of superconductivity, Teor. Mat. Fiz. (1972), 10, 283.

    Article  Google Scholar 

  32. Reed, M. and Simon, B. Methods of Modern Mathematical Physics, Vols. 1–4, Academic Press, New York-London, 1972, 1975, 1978, 1979.

    MATH  Google Scholar 

  33. Van den Berg, M., Lewis, J. T., and Pule, J. V. The Large Deviation Principle and Some Models of an Interacting Boson Gas, Comm. Math. Phys. (1988), 118, 61–85.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Van Winter, C. Theory of finite systems of particles. I, Mat.-Fys. Skr. Danske Vid. Selsk. (1964), 1,1–60.

    Google Scholar 

  35. Zagrebnov, V. A., Brankov, J. G., and Tonchev N. S. A rigorous result for the systems interacting with boson field, Dokl. Akad. Nauk SSSR (1975), 225, 71–73.

    MathSciNet  Google Scholar 

  36. Zhislin, S. M. Investigation of the spectrum of the Schrödinger operator for a many-particle system, Trudy Mosk. Mat. Obshch. (1960), 9, 61 –128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Petrina, D.Y. (1995). Exactly Solvable Models. In: Mathematical Foundations of Quantum Statistical Mechanics. Mathematical Physics Studies, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0185-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0185-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4083-9

  • Online ISBN: 978-94-011-0185-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics