Skip to main content

From Inanimate Macromolecules to the Animate Photocell

In Search of Thermal Protein Phase-Shifting

  • Conference paper

Abstract

“Glass-state” thermal proteins (TPs) yielded protocells when moistened (at 100 C, instantly on cooling; at 60 C, within 3 sec; at 20 C, within 3 min; and, at 4 C, within 24 h). The TPs were copolymers of: 20 amino acids (AAs) found in “true” proteins, or conjugated TPs (four types of TPs with DOPA, and one type of TP with glucose, lecithin, adenosine monophosphate, ferric ions, or phosphate ions); and, 18 equimolar AAs with-out aspartic or glutamic acids. The 20 AA copolymer TPs were formed at 180 C (6 h). The 18-AA TPs were formed at 20 C (1 and 5 yr). We infer: the time required to convert TPs (by phase-shifting; TP folding) to protocells is an acellular, “chemical life” process(es). We modified (Italics ours) the NASA definition: Life is a self-sustained chemical system (acellular, chemical life → protocellular, biological life) capable of undergoing Darwinian evolution. We infer AAs → TPs in micrometeorites. Melting micrometeoritic ice would convert TPs into protocells. Thus, such micrometeorites could be cosmozoa or panspermia (in the “glass state,” these could be called “litho-cosmozoa and litho-panspermia).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahn, P. and S. W. Fox. 1996. Thermal proteins +. Chemtech 26: 26–29.

    Google Scholar 

  2. Brinton, F. B., C. Engrand, D. P. Glavin, J. L. Bada, and M. Maurette. 1998. A search for extraterrestrial amino acids in carbonaceous Antarctic micrometeorites. Origin Life Evol. Biosphere 28:413–424.

    Article  ADS  Google Scholar 

  3. Clemett, S. J., X. D. F. Chillier, S. Gillette, R. N. Zare, M. Maurette, C. Engrand, and G, Kurat. 1998. Observation of indigenous polycyclic aromatic hydrocarbons in “giant” carbonaceous Antarctic micrometeorites. Origins Life Evol. Biosphere 28: 425–448.

    Article  ADS  Google Scholar 

  4. Cooper, G. W. and J. R. Cronin. 1995. Linear and cyclic aliphatic carboxamides of the Murchison meteorite: Hydrolyzable derivatives of amino acids and other carboxylic acids. Geochim. Cosmochim. Acta 59: 1003–1015.

    Article  ADS  Google Scholar 

  5. Fox, S. W. 1988. The Emergence of Life: Darwinian Evolution from the Inside. Basic Books, New York.

    Google Scholar 

  6. Fox, S. W., A. Pappelis, and R. Grubbs. 1998. The origin of mind. In Exobiology; Matter, Energy, and Information in the Origin and Evolution of Life in the Universe, J. Chela-Flores and F. Raulin, eds., Kluwer Academic Publishers, Dordrecht, pp. 87–92.

    Chapter  Google Scholar 

  7. Gladilin, K. L. and A. N. Suvorov. 1995. General evolutionary process and the origin of life. In Evolutionary Biochemistry and Related Areas of Physicochemical Biology, B. F. Poglazov, B. I. Kurganov, M. S. Kritsky, and K. L. Gladilin, eds., Bach Institute of Biochemistry and ANKO, Moscow, pp. 93–104.

    Google Scholar 

  8. Grubbs, R., S. W. Fox, A. Pappelis, J. Bozzola, and P.R. Bahn. 1998. Visually retracing the emergence of the evolvable protocell. Exobiology: Matter, Energy, and Information in the Origin and Evolution of Life in the Universe, J. Chela-Flores and F. Raulin, eds., Kluwer Academic Publishers, Dordrecht, pp. 103–106.

    Chapter  Google Scholar 

  9. Irvine, W. M. 1998. Extraterrestrial organic matter: A review. Origin Life Evol. Biosphere 28: 365–383.

    Article  ADS  Google Scholar 

  10. Joyce, J. 1994. Foreward. In Origin of Life: The Central Concepts, D. W. Deamer and G. R. Fleishaker, eds., Jones and Bartlett, Boston, p. xi.

    Google Scholar 

  11. Kolesnikov, M. P. 1991. Proteinoid microspheres and the process of prebiological photophosphorylation. Origin Life Evol. Biosphere 21: 31–37.

    Article  ADS  Google Scholar 

  12. Luisi, P. L. 1998. About various definitions of life. Origins Life Evol. Biosphere 28: 613–622.

    Article  ADS  Google Scholar 

  13. Maurette, M. 1998. Carbonaceous micrometeorites and the origin of life. Origin Life Evol. Biosphere 28:385–412.

    Article  ADS  Google Scholar 

  14. Pappelis, A. 1994. Domain Protolife: Link between molecular and biological evolution. American Chemical Society Symposium: Polyamino Acids, the Emergence of Life, an Industrial Applications, p. 6 (Abstr.).

    Google Scholar 

  15. Pappelis, A. 1997. Individualized Learning Program: Study Guide for History of Biology: Origin of Life. Southern Illinois University at Carbondale, Carbondale, 200 pp.

    Google Scholar 

  16. Pappelis, A. and S. W. Fox. 1995. Domain Protolife: The protocell theory. In Evolutionary Biochemistry and Related Areas of Physicochemical Biology, B. F. Poglazov, B. I. Kurganov, M. S. Kritsky, and K. L. Gladilin, eds., Bach Institute of Biochemistry and ANKO, Moscow, pp. 151–159.

    Google Scholar 

  17. Pappelis, A. and S. W. Fox. 1995. Domain Protolife: Protocells and metaprotocells within thermal protein matrices. In Chemical Evolution: Structure and Model of the First Cell, C. Ponnamperuma and J. Chela-Flores, eds., Kluwer Academic Publishers, Dordrecht, pp. 129–132.

    Chapter  Google Scholar 

  18. Pappelis, A. and S. W. Fox. 1996. Thermal Peptides as the initial genetic system. In Chemical Evolution: Physics of the Origin and Evolution of Life, J. Chela-Flores and F. Raulin, eds., Kluwer Academic Publishers, Dordrecht pp. 157–165.

    Chapter  Google Scholar 

  19. Pappelis, A., S. W. Fox, and M. Pappagiannis. 1994. Protocells and metaprotocells of the Protolife Kingdom. Transactions Illinois State Academy of Science 86: 57 (Abstr.).

    Google Scholar 

  20. Pappelis, A., S. W. Fox, R. Grubbs, and J. Bozzola. 1998. Animate protocells from inanimate thermal proteins: Visualization of the process. In Exobiology: Matter, Energy, and Information in the Origin and Evolution of Life in the Universe, J. Chela-Flores and F. Raulin, eds., Kluwer Academic Publishers, Dordrecht, pp. 195–198.

    Chapter  Google Scholar 

  21. Raulin-Cerceau, F., M.-C. Maurel, and J. Schneider. 1998. From panspermia to bioastronomy, the evolution of the hypothesis of universal life. Origins Life Evol. Biosphere 28: 597–612.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Pappelis, A., Bahn, P., Grubbs, R., Bozzola, J., Cohen, P. (2001). From Inanimate Macromolecules to the Animate Photocell. In: Chela-Flores, J., Owen, T., Raulin, F. (eds) First Steps in the Origin of Life in the Universe. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1017-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1017-7_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3883-6

  • Online ISBN: 978-94-010-1017-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics