Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 77))

Abstract

In the context of uniform random mappings of an n-element set to itself, Aldous and Pitman (1994) established a functional invariance principle, showing that many n → ∞ limit distributions can be described as distributions of suitable functions of reflecting Brownian bridge. To study non-uniform cases, in this paper we formulate a sampling invariance principle in terms of iterates of a fixed number of random elements. We show that the sampling invariance principle implies many, but not all, of the distributional limits implied by the functional invariance principle. We give direct verifications of the sampling invariance principle in two successive generalizations of the uniform case, to p-mappings (where elements are mapped to i.i.d. non-uniform elements) and P-mappings (where elements are mapped according to a Markov matrix). We compare with parallel results in the simpler setting of random trees.

Research supported in part by N.S.F. Grants DMS-9970901 and DMS-0071448

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldous, D. J. and Pitman, J. (2002) Two recursive decompositions of Brownian bridge related to the asymptotics of random mappings, Technical Report 595, Dept. Statistics, U.C. Berkeley, 2002.

    Google Scholar 

  2. Aldous, D. J. (1985) Self-intersections of random walks on discrete groups, Math. Proc. Cambridge Philos. Soc., 98, 155–177.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Aldous, D. J. (1990) A random tree model associated with random graphs, Random Structures Algorithms, 1 383–402.

    Article  MathSciNet  MATH  Google Scholar 

  4. Aldous, D. J. (1993) The continuum random tree III, Ann. Probab., 21, 248–289.

    Article  MathSciNet  MATH  Google Scholar 

  5. Aldous, D. J. (1997) Brownian excursions, critical random graphs and the multiplicative coalescent, Ann. Probab., 25, 812–854.

    Article  MathSciNet  MATH  Google Scholar 

  6. Aldous, D. J., Miermont, G. and Pitman, J. (in preparation) Limit distributions for non-uniform random mappings, involving Brownian bridge and inhomogeneous continuum random trees.

    Google Scholar 

  7. Aldous, D. J. and Pitman, J. (1994) Brownian bridge asymptotics for random mappings, Random Structures Algorithms, 5, 487–512.

    Article  MathSciNet  MATH  Google Scholar 

  8. Aldous, D. J. and Pitman, J. (1999) A family of random trees with random edge lengths, Random Structures Algorithms, 15, 176–195.

    Article  MathSciNet  MATH  Google Scholar 

  9. Aldous, D. J. and Pitman, J. (2000) Inhomogeneous continuum random trees and the entrance boundary of the additive coalescent, Probab. Th. Rel. Fields, 118, 455–482.

    Article  MathSciNet  MATH  Google Scholar 

  10. Baron, G., Drmota, M. and Mutafchiev, L. (1996) Predecessors in random mappings, Combin. Probab. Comput., 5, no. 4 317–335.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bennies, J. and Pitman, J. (2001) Asymptotics of the Hurwitz binomial distribution related to mixed Poisson Galton-Watson trees, Combinatorics, Probability and Computing, 10, 203–211.

    Article  MathSciNet  MATH  Google Scholar 

  12. Berg, S. and Mutafchiev, L. (1990) Random mappings with an attracting center: Lagrangian distributions and a regression function, J. Appl. Probab., 27, 622–636.

    Article  MathSciNet  MATH  Google Scholar 

  13. Bertoin, J. and Pitman, J. (1994) Path transformations connecting Brownian bridge, excursion and meander, Bull. Sci. Math. (2), 118 147–166.

    MathSciNet  MATH  Google Scholar 

  14. Biane, P., Pitman, J. and Yor, M. (2001) Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions, Bull. Amer. Math. Soc., 38, 435–465.

    Article  MathSciNet  MATH  Google Scholar 

  15. Biane, P. and Yor, M. (1987) Valeurs principales associees aux temps locaux Browniens, Bull. Sci. Math. (2), 111 23–101.

    MathSciNet  MATH  Google Scholar 

  16. Billingsley, P. (1999) Convergence of Probability Measures, Wiley, second edition.

    Book  MATH  Google Scholar 

  17. Burtin, Y. D. (1980) On a simple formula for random mappings and its applications, J. Appl. Probab., 17, 403–414.

    Article  MathSciNet  MATH  Google Scholar 

  18. Camarri, M. and Pitman, J. (2000) Limit distributions and random trees derived from the birthday problem with unequal probabilities, Electron. J. Probab., 5, paper 2, 1–18.

    MathSciNet  Google Scholar 

  19. Cremers, H. and Kadelka, D. (1986) On weak convergence of integral functions of stochastic processes with applications to processes taking paths in L(p,E), Stochastic Process. Appl., 21, 305–317.

    Article  MathSciNet  MATH  Google Scholar 

  20. Drmota, M. and Gittenberger, B. (1997) On the profile of random trees, Random Structures and Algorithms, 10, 421–451.

    Article  MathSciNet  MATH  Google Scholar 

  21. Duquesne, T. (2000) A limit theorem for the contour process of conditioned Galton-Watson trees, Unpublished.

    Google Scholar 

  22. Duquesne, T. and Le Gall, J.-F. (2001) Random trees, Levy processes and spatial branching processes, Technical Report DMA-01-23, Ecole Normale Superieure.

    Google Scholar 

  23. Durrett, R. Probability: theory and examples, Duxbury Press, Belmont, CA, second edition, 1996.

    Google Scholar 

  24. Ethier, S. N. and Kurtz, T. G. (1986) Markov Processes: Characterization and Convergence, Wiley, New York.

    MATH  Google Scholar 

  25. Frieze, A. M. (1985) On the value of a random minimum spanning tree problem, Discrete Appl. Math., 10, 47–56.

    Article  MathSciNet  MATH  Google Scholar 

  26. Le Gall, J.-F. (1993) The uniform random tree in a Brownian excursion, Probab. Th. Rel. Fields, 96, 369–384.

    Article  MATH  Google Scholar 

  27. Gittenberger, B. and Louchard, G. (1999) The Brownian excursion multidimensional local time density, J. Appl. Probab., 36, 350–373.

    Article  MathSciNet  MATH  Google Scholar 

  28. Gittenberger, B. and Louchard, G. (2000) On the local time density of the reflecting Brownian bridge, J. Appl. Math. Stochastic Anal., 13, 125–136.

    Article  MathSciNet  MATH  Google Scholar 

  29. Grinblat, L. S. (1976) A limit theorem for measurable random processes and its applications, Proc. Amer. Math. Soc., 61, 371–376.

    Article  MathSciNet  Google Scholar 

  30. Harris, B. (1993) A survey of the early history of the theory of random mappings, in Probabilistic methods in discrete mathematics (Petrozavodsk, 1992), VSP, Utrecht, 1–22.

    Google Scholar 

  31. Jansons, K. M. (1997) The distribution of the time spent by a standard excursion above a given level, with applications to ring polymers near a discontinuity potential, Elect. Comm. in Probab., 2, 53–58.

    MathSciNet  MATH  Google Scholar 

  32. Jaworski, J. (1984) On a random mapping (T,Pj), J. Appl. Probab., 21, 186–191.

    Article  MathSciNet  MATH  Google Scholar 

  33. Kingman, J. F. C. (1978) The representation of partition structures, J. London Math. Soc., 18, 374–380.

    Article  MathSciNet  MATH  Google Scholar 

  34. Kolchin, V. F. (1986) Random Mappings, Optimization Software, New York, (Translation of Russian original).

    MATH  Google Scholar 

  35. Le Gall, J. F. and Le Jan, Y. (1998) Branching processes in Lévy processes: the exploration process, Ann. Probab., 26, 213–252.

    Article  MathSciNet  MATH  Google Scholar 

  36. Levy, P. (1939) Sur certains processus stochastiques homogènes. Compositio Math., 7, 283–339.

    MathSciNet  MATH  Google Scholar 

  37. Lyons, R. and Peres, Y. (in press) Probability on Trees and Networks, Cambridge University Press.

    Google Scholar 

  38. Marckert, J.-F. and Mokkadem, A. (2001) The depth first processes of Galton-Watson trees converge to the same Brownian excursion, Univ. de Versailles.

    Google Scholar 

  39. Mutafchiev, L. R. (1993) Random mappings and trees: relations between asymptotics of moments of certain characteristics, in Probabilistic methods in discrete mathematics (Petrozavodsk, 1992), VSP, Utrecht, 353–365.

    Google Scholar 

  40. Mutafchiev, L. R. (1987) On random mappings with a single attracting centre, J. Appl. Probab., 24, 258–264.

    Article  MathSciNet  MATH  Google Scholar 

  41. Mutafciev, L. (1983) Probability distributions and asymptotics for some characteristics of random mappings, in W. Grossman et al. (Eds.), Proc. 4th Pannonian Symp. on Math. Statist.,227–238.

    Google Scholar 

  42. O’Cinneide, C. A. and Pokrovskii, A. V. (2000) Nonuniform random transformations, Ann. Appl. Probab., 10, no. 4, 1151–1181.

    MathSciNet  MATH  Google Scholar 

  43. Pitman, J. (1999) Brownian motion, bridge, excursion and meander characterized by sampling at independent uniform times, Electron. J. Probab., 4, paper 11, 1–33.

    MathSciNet  Google Scholar 

  44. Pitman, J. (1999) The SDE solved by local times of a Brownian excursion or bridge derived from the height profile of a random tree or forest, Ann. Probab., 27, 261–283.

    Article  MathSciNet  MATH  Google Scholar 

  45. Pitman, J. (2001) Random mappings, forests and subsets associated with Abel-Cayley-Hurwitz multinomial expansions, Séminaire Lotharingien de Combinatoire, issue 46:45; http://www.mat.univie.ac.at/~slc/.

    Google Scholar 

  46. Pitman, J. and Yor, M. (1997) The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator, Ann. Probab., 25, 855–900.

    Article  MathSciNet  MATH  Google Scholar 

  47. Ross, S. M. (1981) A random graph, J. Appl. Probab., 18, 309–315.

    Article  MathSciNet  MATH  Google Scholar 

  48. Stepanov, V. E. (1971) Random mappings with a single attracting center, Theory Probab. Appl., 16, 155–162.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aldous, D., Pitman, J. (2002). Invariance Principles for Non-Uniform Random Mappings and Trees. In: Malyshev, V., Vershik, A. (eds) Asymptotic Combinatorics with Application to Mathematical Physics. NATO Science Series, vol 77. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0575-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0575-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0793-4

  • Online ISBN: 978-94-010-0575-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics