Skip to main content

Idempotent (Asymptotic) Mathematics and the Representation Theory

  • Chapter
Asymptotic Combinatorics with Application to Mathematical Physics

Part of the book series: NATO Science Series ((NAII,volume 77))

Abstract

A brief introduction to Idempotent Mathematics is presented. Idempotent Mathematics can be treated as a result of a dequantization of the traditional Mathematics as the Planck constant tends to zero taking pure imaginary values. In the framework of Idempotent Mathematics some basic concepts and results of the theory of group representations (including some unexpected theorems of the Engel type) are discussed.

This work was supported by the RFBR grant 99-01-00196 and the Dutch Organization for Scientific Research (N.W.O.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maslov, V. P. (1987) On a new superposition principle for optimization problems, Russian Math. Surveys, 42, no. 3, 43–54.

    Article  ADS  MATH  Google Scholar 

  2. Litvinov, G. L. and Maslov, V. P. (1995) Correspondence principle for idempotent calculus and some computer applications, Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, (IHES/M/95/33); also in: [5], 420–443.

    Google Scholar 

  3. Kolokoltsov, V. N. and Maslov, V. P. (1997) Idempotent Analysis and Applications, Kluwer Acad. Publ., Dordrecht.

    MATH  Google Scholar 

  4. Litvinov, G. L., Maslov, V. P. and Shpiz, G. B. (2001) Idempotent functionals analysis: an algebraic approach, Mathematical Notes, 69, no. 5, 696–729; math.FA/0009128.

    Article  MathSciNet  MATH  Google Scholar 

  5. Gunawardena, J., ed. (1998) Idempotency, Publ. of the Newton Institute, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  6. Maslov, V. P. and SamborskiÄ­, S. N., eds. (1992) Idempotent Analysis, Providence, R.I. Amer. Math. Soc., Adv. Sov. Math., vol. 13.

    Google Scholar 

  7. Schrödinger, E. (1926) Quantization as an eigenvalue problem, Annalen der Physik, 364, 361–376, in German.

    Article  Google Scholar 

  8. Hopf, E. (1950) The partial differential equation ut + uux = μuxx, Comm. Pure Appl. Math., 3, 201–230.

    Article  MathSciNet  MATH  Google Scholar 

  9. Capuzzo Dolcetta, I. and Lions, P.-L., eds. (1997) Viscosity Solutions and Applications, in Springer Lecture Notes in Math., Vol. 1660.

    Google Scholar 

  10. Maslov, V. P. (1987) Méthodes opératorielles, Mir, Moscou.

    MATH  Google Scholar 

  11. Del Moral, P. (1997) A survey of Maslov optimization theory, in V. N. Kolokoltsov and V. P. Maslov, (Eds.) Idempotent Analysis and Applications, Kluwer Acad. Publ., Dordrecht.

    Google Scholar 

  12. Carré, B. A. (1971) An algebra for network routing problems, J. Inst. Math. Appl., 7, 273–294.

    Article  MathSciNet  MATH  Google Scholar 

  13. Feynman, R. and Hibbs, A. (1965) Quantum Mechanics and Path Integrals, Mc Graw-Hill, New York.

    MATH  Google Scholar 

  14. Nelson, E. (1973) Probability Theory and Euclidian Field Theory, Constructive Quantum Field Theory, vol. 25, Springer, Berlin.

    Google Scholar 

  15. Samborskiĭ, S. N. and Tarashchan, A. A. (1992) The Fourier transform and semirings of Pareto sets, in V. P. Maslov and S. N. Samborskiĭ(Eds.), Idempotent Analysis, Providence, R.I. Amer. Math. Soc., Adv. Sov. Math., vol. 13, 139–150.

    Google Scholar 

  16. Shpiz, G. B. (2000) A theorem on eigenvector in idempotent spaces, Doklady Mathematics, 62, no. 2 169–171.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Litvinov, G.L., Maslov, V.P., Shpiz, G.B. (2002). Idempotent (Asymptotic) Mathematics and the Representation Theory. In: Malyshev, V., Vershik, A. (eds) Asymptotic Combinatorics with Application to Mathematical Physics. NATO Science Series, vol 77. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0575-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0575-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0793-4

  • Online ISBN: 978-94-010-0575-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics