Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 77))

  • 297 Accesses

Abstract

Let P be a parabolic subgroup of a semisimple complex Lie group G defined by a subset ∑ ⊂ ∏ of simple roots of G, and let E ϕ be a homogeneous vector bundle over the flag manifold M = G/P corresponding to a linear representationϕ of P. Using Bott’s theorem, we obtain sufficient conditions on ϕ in terms of the combinatorial structure of ∑ ⊂ ∏ for cohomology groups H q(M,ε ϕ) to be zero, where ε ϕ is the sheaf of holomorphic sections of E ϕ . In particular, we define two numbers d(P), (P) ℕ such that for any ϕ obtained by natural operations from a representation \(\tilde \varphi \) of dimension less than d(P) one has H q(M,ε ϕ) = 0 for 0 < q < (P). Applying this result to H 1(M,εϕϕ), we see that the vector bundle E ϕ, is rigid.

Partially supported by the RFBR grants 01-01-00709, 00-01-00705.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhiezer, D. N. (1995) Lie group actions in complex analysis, Vieweg & Sohn, Braunschweig.

    Book  MATH  Google Scholar 

  2. Bott, R. (1957) Homogeneous vector bundles, Ann. of Math. 66, no. 2, 203–248.

    Article  MathSciNet  MATH  Google Scholar 

  3. Forster, O. and Knorr, K. (1974) Über die Deformationen von Vektorraumbündeln auf kompakten komplexen Räumen, Math. Ann. 209, no. 4, 291–346.

    Article  MathSciNet  MATH  Google Scholar 

  4. Igonin, S. (in preparation) Homogeneous supermanifolds associated with Hermitian symmetric spaces.

    Google Scholar 

  5. Manin, Yu. I. Gauge field theory and complex geometry, Springer-Verlag, Berlin, 1988.

    MATH  Google Scholar 

  6. Onishchik, A. L. (1994) Topology of transitive transformation groups, Barth Verlag, Leipzig.

    MATH  Google Scholar 

  7. Onishchik, A. L. (1999) On the classification of complex analytic supermanifolds, Lobachevskii J. Math. 4 (1999), 47–70 (electronic).

    MathSciNet  MATH  Google Scholar 

  8. Palamodov, V. P. (1990) Deformations of complex spaces, Encycl. Math. Sci. 10 (1990), 105–194.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Igonin, S. (2002). Notes on Homogeneous Vector Bundles over Complex Flag Manifolds. In: Malyshev, V., Vershik, A. (eds) Asymptotic Combinatorics with Application to Mathematical Physics. NATO Science Series, vol 77. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0575-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0575-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0793-4

  • Online ISBN: 978-94-010-0575-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics