Skip to main content

Functional divergence in protein (family) sequence evolution

  • Chapter
Origin and Evolution of New Gene Functions

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 10))

Abstract

As widely used today to infer ‘:function’, the homology search is based on the neutral theory that sites of greatest functional significance are under the strongest selective constraints as well as lowest evolutionary rates, and vice versa. Therefore, site-specific rate changes (or altered selective constraints) are related to functional divergence during protein (family) evolution. In this paper, we review our recent work about this issue. We show a great deal of functional information can be obtained from the evolutionary perspective, which can in turn be used to facilitate high throughput functional assays. The emergence of evolutionary functional genomics is also indicated. The related software DIVERGE can be obtained form http://xgul.zool.iastate.edu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Casari, G., C. Sander & A. Valencia, 1995. A method to predict functional residues in proteins. Nat. Struct. Biol. 2: 171–178.

    Article  PubMed  CAS  Google Scholar 

  • Clark, A.G., 1994. Invasion and maintenance of a gene duplication. Proc. Natl. Acad. Sci. USA 91: 2950–2954.

    Article  PubMed  CAS  Google Scholar 

  • Dermitzakis, E.T. & A.G. Clark, 2001. Differential selection after duplication in mammalian developmental genes. Mol. Biol. Evol. 18: 557–562.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, W.M. & E. Markowitz, 1970. An improved method for determining codon variability in a gene and its application to the rate of fixation of mutations in evolution. Biochem. Genet. 4: 579–593.

    Article  PubMed  CAS  Google Scholar 

  • Force, A., M. Lynch, F.B. Pickett, A. Amores, Y.L. Yan & J. Postlethwait, 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151: 1531–1545.

    PubMed  CAS  Google Scholar 

  • Fryxell, K.J., 1996. The coevolution of gene family trees. Trends Genet. 12: 364–369.

    Article  PubMed  CAS  Google Scholar 

  • Gaucher, E.A., M.M. Miyamoto & S.A. Benner, 2001. Function-structure analysis of proteins using covarion-based evolutionary approaches: Elongation factors. PNAS 98: 548–552.

    Article  PubMed  CAS  Google Scholar 

  • Golding, G.B. & A.M. Dean, 1998. The structural basis of molecular adaptation. Mol. Biol. Evol. 15: 355–369.

    Article  PubMed  CAS  Google Scholar 

  • Gu, X., 1999. Statistical methods for testing functional divergence after gene duplication. Mol. Biol. Evol. 16: 1664–1674.

    Article  PubMed  CAS  Google Scholar 

  • Gu, X., 2001. Maximum-likelihood approach for gene family evolution under functional divergence. Mol. Biol. Evol. 18: 453–464.

    Article  PubMed  CAS  Google Scholar 

  • Gu, X. & K. Vander Velden, 2002. DIVERGE: phylogeny-based analysis for functional-structural divergence of a protein family. Bioinformatics (in press).

    Google Scholar 

  • Gu, J., Y. Wang & X. Gu, 2002. Evolutionary analysis for functional divergence of Jak protein kinase domains and tissue-specific genes. J. Mol. Evol. (in press).

    Google Scholar 

  • Hughes, A.L., 1994. The evolution of functionally novel proteins after gene duplication. Proc. R. Soc. Lond. B Biol. Sci. 256: 119–124.

    Article  CAS  Google Scholar 

  • Jordan, K., G.R. Bishop & D.S. Gonzalez, 2001. Sequence and structural aspects of functional diversification in class I-mannosidase evolution. Bioinformatics 17: 965–976.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Knudsen, B. & M. Miyamoto, 2001. A likelihood ratio test for evolutionary rate shifts and functional divergence among proteins. PNAS 98: 14512–14517.

    Article  PubMed  CAS  Google Scholar 

  • Landgraf, R., D. Fischer & D. Eisenberg, 1999. Analysis of heregulin symmetry by weighted evolutionary tracing. Protein Eng. 12:943–951.

    Article  PubMed  CAS  Google Scholar 

  • Li, W.H., 1983. pp. 14–37 in Evolution of Genes and Proteins, M. Nei & R.K. Keohn. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Lichtarge, O., H.R. Bourne & R.E. Cohen, 1996. An evolutionary trace method defines binding surfaces common to protein families. J. Mol. Biol. 257: 342–358.

    Article  PubMed  CAS  Google Scholar 

  • Livingstone, C.D. & G.J. Barton, 1996. Identification of functional residues and secondary structure from protein multiple sequence alignment. Meth. Enzymol. 266: 497–512.

    Article  PubMed  CAS  Google Scholar 

  • Lockhart, P.J., M.A. Steel, A.C. Barbrook, D.H. Huson, M.A. Charleston & C.J. Howe, 1998. A covariotide model explains apparent phylogenetic structure of oxygenic photosynthetic lineages. Mol. Biol. Evol. 15: 1183–1188.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, P., P. Forterre & H. Philippe, 1999. The root of the tree of life in the light of the covarion model. J. Mol. Evol. 49: 496–508.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto, M.M. & W.M. Fitch, 1995. Testing the covarion hypothesis of molecular evolution. Mol. Biol. Evol. 12: 503–513.

    PubMed  CAS  Google Scholar 

  • Naylor, G.J. & M. Gerstein, 2000. Measuring shifts in function and evolutionary opportunity using variability profiles: a case study of the globins. J. Mol. Evol. 51: 223–233.

    PubMed  CAS  Google Scholar 

  • Nei, M., X. Gu & T. Sitnikova, 1997. Evolution by the birth-and-death process in multigene families of the vertebrate immune system. PNAS 94: 7799–7806.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, S., 1970. Evolution by Gene Duplication. Springer-Verlag, Berlin.

    Google Scholar 

  • Pollock, D., W.R. Taylor & N. Goldman, 1999. Coevolving protein residues: maximum likelihood identification and relationship to structure. J. Mol. Biol. 287: 187–198.

    Article  PubMed  CAS  Google Scholar 

  • Rotonda, J., D.W. Nicholson, K.M. Fazil, M. Gallant, Y. Gareau, M. Labelle, E.P. Peterson, D.M. Rasper, R. Ruel, J.P. Vaillancourt, N.A. Thornberry & J.W. Becker, 1996. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat. Struct. Biol. 7:619–625.

    Article  Google Scholar 

  • Saitou, N. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Suzuki, Y. & T. Gojobori, 1999. A method for detecting positive selection at single amino acid sites. Mol. Biol. Evol. 16: 1315–1328.

    Article  PubMed  CAS  Google Scholar 

  • Tsunoyama, K. & T. Gojobori, 1998. Evolution of nicotinic acetylcholine receptor subunits. Mol. Biol. Evol. 15: 518–527.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y. & X. Gu, 2000. Evolutionary patterns of gene families generated in the early stage of vertebrates. J. Mol. Evol. 51: 88–96.

    PubMed  CAS  Google Scholar 

  • Wang, Y & X. Gu, 2001. Functional divergence in the caspase gene family and altered functional constraints: statistical analysis and prediction. Genetics 158: 1311–1320.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Long

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gu, X. (2003). Functional divergence in protein (family) sequence evolution. In: Long, M. (eds) Origin and Evolution of New Gene Functions. Contemporary Issues in Genetics and Evolution, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0229-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0229-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3982-6

  • Online ISBN: 978-94-010-0229-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics