Skip to main content

Evolution by gene duplication revisited: differentiation of regulatory elements versus proteins

  • Chapter
Origin and Evolution of New Gene Functions

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 10))

  • 472 Accesses

Abstract

For evolution by gene duplication, differentiation of both regulatory elements and proteins is important. Particularly the former is thought to have large effects on morphological evolution, since differential expression of genes is essential for development. In this report, recent knowledge on regulatory elements is reviewed that is relevant to the population genetics aspects of gene duplication. Regulatory elements usually consist of multiple binding sites of two or more transcription factors. The amount of gene product is quantitatively regulated, and is thought to be subject to stabilizing selection. The intensity of stabilizing selection depends upon the level of constraint imposed by regulatory networks. Gene duplication has significant effects on stabilizing selection via perturbation of gene expression. It is pointed out that constraints coming from regulatory networks are most important for survival of duplicate genes, and that both drift and selection are at work in the process of acquisition of new gene expression and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amores, A., A. Force, T.-L. Yan, L. Joly, C. Amemiya, A. Fritz, R.K. Ho, J. Langeland, V. Prince, Y.-L. Wang, M. Westerfield, M. Ekker & J.H. Postlethwait, 1998. Zebrafish hox clusters and vertebrate genome evolution. Science 282: 1711–1714.

    Article  PubMed  CAS  Google Scholar 

  • Aparicio, S., K. Hawker, A. Cottage, Y Mikawa, L. Zuo, B. Venkatesh, E. Chen, R. Kumlauf & S. Brenner, 1997. Organization of the Fugu rubripes Hox clusters: evidence for continuing evolution of vertebrate Hox complexes. Nat. Gene. 16: 79–83.

    Article  CAS  Google Scholar 

  • Carroll, S.B., J.K. Grenier & S.D. Weatherbee, 2001. From DNA to Diversity. Blackwell Science, Maiden, MA.

    Google Scholar 

  • Clark, A., 1994. Invasion and maintenance of a gene duplication. Proc. Natl. Acad. Sci. USA, 91: 2950–2954.

    Article  PubMed  CAS  Google Scholar 

  • Courseaux, A. & J.-L. Nahon, 2001. Birth of two chimera genes in the hominidae lineage. Science 291: 1293–1297.

    Article  PubMed  CAS  Google Scholar 

  • Creighton, T.E. & N.J. Darby, 1989. Functional evolutionary divergence of proteolytic enzymes and their inhibitors. Trends Bioch. Sci. 14: 319–324.

    Article  CAS  Google Scholar 

  • Davidson, E.H., 2001. Genomic Regulatory Systems. Academic Press, San Diego, CA.

    Google Scholar 

  • Gerhart, J. & M. Kirschner, 1997. Cells, Embryos, and Evolution. Blackwell Science, Maiden, MA.

    Google Scholar 

  • Hedrick, P.W., 2000. Genetics of Populations. Jones and Bartlett, Sudbury, MA 2nd edn.

    Google Scholar 

  • Hood, L., J.H. Campbell & S.C.R. Elgin, 1975. The organization, expression and evolution of antibodies and other multigene families. Annu. Rev. Genet. 9: 305–353.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, A., 1999. Adaptive Evolution of Genes and Genomes. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Ingram, V.M., 1963. The Hemoglobins in Genetics and Evolution. Columbia University Press, Columbia, USA.

    Google Scholar 

  • International Human Genome Sequencing Consortium, 2001. Initial sequencing and analysis of the human genome. Nature 409: 860–921.

    Article  Google Scholar 

  • Jacob, F., 1977. Evolution and tinkering. Science 196: 1161–1166.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, H., S.P. Mason, A.-L. Barabasi & Z.N. Oltvai, 2001. Lethality and centrality in protein networks. Nature 411: 41–42.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M. & T. Ohta, 1969. The average number of generations until fixation of a mutant gene in a finite population. Genetics 61:763–771.

    PubMed  CAS  Google Scholar 

  • Li, W.-H., 1997. Molecular Evolution. Sinauer Associates, Sunderland, USA.

    Google Scholar 

  • Long, M., W. Wang & J. Zhang, 1999. Origin of new genes and source for N-terminal domain of the chimerical gene, jingwei, in Drosophila. Gene 238: 135–141.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, M.Z., C. Bergman, N.H. Patel & M. Kreitman, 2000. Evidence for stabilizing selection in a eukaryotic enhancer element. Nature 403: 564–567.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M. & J.S. Conery, 2000. The evolutionary fate and consequences of duplicate genes. Science 290: 1151–1155.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M. & A. Force, 2000. The probability of duplicate gene preservation by subfunctionalization. Genetics 154: 459–473.

    PubMed  CAS  Google Scholar 

  • Mackay, T.F.C., 1995. The genetic basis of quantitative variation: numbers of sensory bristles of Drosophila melanogaster as a model system. Trends Genet. 11: 464–470.

    Article  PubMed  CAS  Google Scholar 

  • Mackay, T.F.C. & C.H. Langley, 1990. Molecular and phen-otypic variation in the achaete-scute region of Drosophila melanogaster. Nature 348: 64–66.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, T., 1972. Population size and rate of evolution. J. Mol. Evol. 1:305–314.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, T., 1980. Evolution and variation of multigene families. Lecture Notes in Biomathematics, Springer, Berlin, vol. 37.

    Google Scholar 

  • Ohta, T., 1987. Simulating evolution by gene duplication. Genetics 115:207–213.

    PubMed  CAS  Google Scholar 

  • Ohta, T., 1988. Further simulation studies on evolution by gene duplication. Evolution 42: 375–386.

    Article  Google Scholar 

  • Ohta, T., 1994. On hypervariability at the reactive centre of proteolytic enzymes and their inhibitors. J. Mol. Evol. 39: 614–619.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, T. & H. Tachida, 1990. Theoretical study of near neutrality. I. Heterozygosity and rate of mutant substitution. Genetics 126: 219–229.

    PubMed  CAS  Google Scholar 

  • Piatigorsky, J., 1984. Lens crystallins and their gene families. Cell 38: 620–621.

    Article  PubMed  CAS  Google Scholar 

  • Rosa, R.d., R.R. Grenier, T. Andreeva, C.E. Cook, A. Adoutte, M. Akam, S.B. Carroll & G. Balavoine, 1999. Hox genes in brachiopods and priapulids and protostome evolution. Nature 399: 772–776.

    Article  PubMed  CAS  Google Scholar 

  • Rouquier, S., S. Taviaux, B J. Trask, V. Brand-Arpon, G.v.d. Engh, J. Demaille & D. Giorgi, 1998. Distribution of olfactory receptor genes in the human genome. Nat. Genet. 18: 243–250.

    Article  PubMed  CAS  Google Scholar 

  • Shubin, N., C. Tabin & S.B. Carroll, 1997. Fossils, genes and the evolution of animal limbs. Nature 388: 639–648.

    Article  PubMed  CAS  Google Scholar 

  • Smith, N.G.C., R. Knight & L.D. Hurst, 1999. Vertebrate genome evolution: a slow shuffle or a big bang? BioEssays 21: 697–703.

    Article  PubMed  CAS  Google Scholar 

  • Ventor, J.C. et al, 2001. The human genome. Science 291: 1304–1351.

    Article  Google Scholar 

  • Wagner, A., 1999. Redundant gene functions and natural selection. J. Evol. Biol. 12: 1–16.

    Article  Google Scholar 

  • Walsh, J.B., 1995. How often do duplicated genes evolve new functions? Genetics 139: 421–428.

    PubMed  CAS  Google Scholar 

  • White, R.J., 2001. Gene Transcription. Blackwell Science, Maiden, MA.

    Google Scholar 

  • Williams, J.A., S.W. Paddock, K. Vorwerk & S.B. Carroll, 1994. Organization of wing formation and induction of a wing-patterning gene at the dorsal/ventral compartment boundary. Nature 368: 299–305.

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl, E., 1994. Molecular pathways to parallel evolution. I. Gene Nexuses and their morphological correlates. J. Mol. Evol. 39: 661–678.

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl, E., 2001. Intrinsically driven changes in gene interaction complexity. I. The spontaneous growth of regulatory complexes. J. Mol. Evol. 53: 539–554.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Long

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ohta, T. (2003). Evolution by gene duplication revisited: differentiation of regulatory elements versus proteins. In: Long, M. (eds) Origin and Evolution of New Gene Functions. Contemporary Issues in Genetics and Evolution, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0229-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0229-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3982-6

  • Online ISBN: 978-94-010-0229-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics