Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 102))

Abstract

Thermal barrier coatings (TBC’s) are used in a number of energy-related applications, such as protective layers in aero and land based gas turbine components at very high temperature.

In this paper we present a study on the relationship between the porosity and the microhardness in ZrO2 — 8 wt% Y2O3 thermal barrier coatings (TBC’s) prepared by atmospheric plasma spraying. in order to produce different porosities, with a variation along the cross section the plasma spraying parameters were varied during each deposition cycle.

The microhardness was measured with a Vickers indenter and 0.981 N load. The microhardness has been evaluated for coatings in as-sprayed condition and after annealing at 1100 °C during 100h. The results show a fast increase of the hardness after annealing.

Scanning Electron Microscopy (SEM) was used to acquire the micrographs from polished cross-sections for image analysis with appropriate software. Differences in grey levels allowed us to estimate porosity as well as the porosity profile through the thickness of the coating.

Absolute opened porosity was measured with a mercury porosimetry and by image analysis. The second technique was also used to estimate the porosity variation along the cross section. The variation of the microhardness with porosity for various coatings, and along the cross section for each coating is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Teixeira, V., Andritschky, M., (1993) Residual stress and corrosion in high-temperature ZrO2 coatings, High Temperature-High-Pressures, 25, 213–219.

    Google Scholar 

  2. Kih, J. S., Marzouk, H. A., Reucroft, P. J., (1995) Deposition and structural characterization of ZrO2 and yttria-stabilized ZrO2 films by chemical vapor deposition, Thin Solid Films, 254, 33–38.

    Article  Google Scholar 

  3. Guinebretiere, R., Soulestin, B., Douger, A., (1998) XRD and TEM study of heteroepitaxial growth of zirconia on magnesia single crystal, Thin Solid Films, 319, 197–201.

    Article  CAS  Google Scholar 

  4. Aita, C.R, Wiggins, M. D., Whig, R., Scanlan, C. M., (1996) Thermodynamics of tetragonal zirconia formation in nanolaminate film, J. Appl. Phys., 79(2), 1176–1178.

    Article  CAS  Google Scholar 

  5. Ji, Z., Haynes, J. A., Ferber, M. K., and Rigsbee, J. M., (2001) Metastable tetragonal zirconia formation and transformation in reactively sputter deposited zirconia coatings, Surf. Coat. Tech., 135(2-3), 109–117.

    Article  CAS  Google Scholar 

  6. Gao, P., Meng, L. J., Santos, M. P., Teixeira, V., Andritschky, M., (2000) Study of ZrO2-Y2O3 films prepared by if magnetron reactive sputtering, Thin Solid Films, 377-378, 32–36.

    Article  CAS  Google Scholar 

  7. Teixeira, V., Andritschky, M., Fischer, W., Buchkremer, H. P., Stöver, D., (1999) Effects of deposition temperature and thermal cycling on residual stress state in zirconia-based thermal barrier coatings. Surf. Coat. Tech., 120-121, 103–111.

    Article  CAS  Google Scholar 

  8. Jeanine T. DeMasi-Marcin, Dinesh K. Gupta, (1994) Protective coatings in the gas turbine engine, Surf. Coat. Tech., 68/69, 1–9.

    Article  Google Scholar 

  9. Schmidt-Zhang, P., Sandow, K.-P., Adolf, F., Göpel, W. and Guth, U., (2000) A novel thick film sensor for simultaneous O2 and NO monitoring in exhaust gases, Sensors and Actuators B: Chemical, 70(1-3), 25–29.

    Article  Google Scholar 

  10. Ghanashyam Krishna, M., Narasimha Rao, K. and Mohan, S., (1990) Structural and optical properties of zirconia thin films, Thin Solid Films, 193/194, 690–695.

    Article  Google Scholar 

  11. Vaβen, R., Stöver, D., (2001) Conventional and new materials for thermal barrier coatings, Functional Gradient Materais and Surface Layers Prepared by fine Particles Technology, Kluwer Academic Publishers, Netherlands, 199–216.

    Google Scholar 

  12. Teixeira, V., Andritschky, M., Fischer, W., Buchkremer, H. P., Stöver, D., (1999) Analysies of residual stresses in thermal barrier coatings, J. of Materials Processing Technology, 92-93, 209–216

    Article  Google Scholar 

  13. Funke, C., Mailand, J.C., Sieben, B., Vassen, R., Stover, D., (1997) Characterization of ZrO2-7 wt.% Y2O3 thermal barrier coatings with different porosities and FEM analysis of stress redistribution during thermal cycling of TBCs, Surf. Coat. Tech., 94-95, 106–111.

    Article  CAS  Google Scholar 

  14. Stöver, D., Funke, C., (1999) Directions of the development of thermal barrier coatings in energy applications, J. of Materials Processing Technology, 92-93, 195–202.

    Article  Google Scholar 

  15. Mailhot, K., Gitzhofer, F., Bodos, MI., (1998) Absolute coating porosity measurement using image analysis, Proceedings of the 15th International Thermal Spray Conference, 25-29 May, Nice, France, 917–922.

    Google Scholar 

  16. Abell, A. B., Willis, K. L., and Lange, D. A., (1999) Mercury Intrusion Porosimetry and Image Analysis of Cement-Based Materials, Journal of Colloid and Interface Science, 211(1), 39–44.

    Article  CAS  Google Scholar 

  17. Valent, T., (1997) Statistical evaluation of Vicker’s indentation test resultsfor thermally sprayed materials, Surf. Coat. Tech., 90, 14–20.

    Article  Google Scholar 

  18. Johner, G., Schweitzer, K. K., (1985) Flame ring testing of thermal barrier coatings and correlation with engine results, J. Vac. Sci. Technol., A3(6), 2516–2524.

    Google Scholar 

  19. Lech Pawlowski, Didier Lombard and Pierre Fauchais, (1985) Structure-thermal properties-relationship in plasma sprayed zirconia coatings, J. Vac. Sci. Technol., A3(6), 2494–2500.

    Google Scholar 

  20. Lin, C. K., and Berndt, C.C., (1993) Microhardness variations in thermally sprayed coatings, Proceedings of the 1993 National Thermal Spray Conference, Anaheim, CA, 7-11 June, 561–568.

    Google Scholar 

  21. Li, C.J., He, Y., Ohmuri, A., (1998) Characterization of structure of thermally sprayed coating, Proceedings of the 15th International Thermal Spray Conference, 25-29 May, Nice, France, 717–722.

    Google Scholar 

  22. Siebert, B., Funke, C., Vaαen, R., Stöver, D., (1999) Changes in porosity and young’s modulus due to sintering of plasma sprayed thermal barrier coatings, J. of Materials Processing Technology, 92-93, 217–223.

    Article  Google Scholar 

  23. Vaβen, R., Czech, N., Malléner, W., Stamm, W. and Stöver, D., (2001) Influence of impurity content and porosity of plasma-sprayed yttria-stabilized zirconia layers on the sintering behaviour, Surf. Coat. Tech, 141(2-3), 135–140.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Teixeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Portinha, A., Teixeira, V., Martins, J., Costa, M.F., Vassen, R., Stoever, D. (2003). Analysis of the Microhardness and the Porosity in Graded Thermal Barrier Coatings. In: Gogotsi, Y.G., Uvarova, I.V. (eds) Nanostructured Materials and Coatings for Biomedical and Sensor Applications. NATO Science Series, vol 102. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0157-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0157-1_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1321-8

  • Online ISBN: 978-94-010-0157-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics