Skip to main content

Protein Binding Interfaces and Their Binding Hot Spot Prediction: A Survey

  • Chapter
  • First Online:
Bioinformatics for Diagnosis, Prognosis and Treatment of Complex Diseases

Part of the book series: Translational Bioinformatics ((TRBIO,volume 4))

  • 1780 Accesses

Abstract

In living organisms, genes are the blueprints or library, specifying instructions for building proteins. Proteins constitute the bulk of cells. Proteins mutual binding and interactions play a vital role in numerous functions and activities, such as signal transduction, enzymatic reactions, immunoreactions and inter-cellular communications. This survey provides basic knowledge of proteins and protein binding. First, we describe proteins’ fundamental elements, structures and functions. In Sect. 5.2, we present concepts related to protein binding and interactions. In Sect. 5.3, we explain why protein binding interfaces have a uneven distribution of binding free energy. In the Sects. 5.4 and 5.5, we explain why protein interfaces are complicated and how the current studies deal with this difficult problem. In Sect. 5.6, we present an overview on methods to model and predict binding free energy of protein interactions. Section 5.7 concludes this survey with a summary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assi SA, Tanaka T, Rabbitts TH, Fernandez-Fuentes N. PCRPi: presaging critical residues in protein interfaces, a new computational tool to chart hot spots in protein interfaces. Nucl Acids Res. 2010;38(6).

    Google Scholar 

  • Bahadur RP, Chakrabarti P, Rodier F, Janin J. Dissecting subunit interfaces in homodimeric proteins. Proteins. 2003;53(3):708–19.

    Article  PubMed  CAS  Google Scholar 

  • Bahadur RP, Chakrabarti P, Rodier F, Janin J. A dissection of specific and non-specific protein–protein interfaces. J Mol Biol. 2004;336(4):943–55.

    Article  PubMed  CAS  Google Scholar 

  • Benedix A, Becker CM, de Groot BL, Caflisch A, Bockmann RA. Predicting free energy changes using structural ensembles. Nat Methods. 2009;6(1):3–4.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Naim A. On the driving forces for protein–protein association. J Chem Phys. 2006;125(2):24901.

    Article  PubMed  Google Scholar 

  • Bernauer J, Bahadur RP, Rodier F, Janin J, Poupon A. DiMoVo: a Voronoi tessellation-based method for discriminating crystallographic and biological protein–protein interactions. Bioinformatics. 2008;24:652–8.

    Article  PubMed  CAS  Google Scholar 

  • Bernauer J, Poupon A, Aze J, Janin J. A docking analysis of the statistical physics of protein–protein recognition. Phys Biol. 2005;2:1–2.

    Article  Google Scholar 

  • Bogan Andrew A, Thorn Kurt S. Anatomy of hot spots in protein interfaces. J Mol Biol. 1998;280(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  • Bouvier B, Griinberg R, Nilges M, Cazals F. Shelling the Voronoi interface of protein–protein complexes reveals patterns of residue conservation, dynamics, and composition. Proteins. 2009;76(3):677–92.

    Article  PubMed  CAS  Google Scholar 

  • Bradford James R, Westhead David R. Improved prediction of protein–protein binding sites using a support vector machines approach. Bioinformatics. 2005;21(8):1487–94.

    Article  PubMed  CAS  Google Scholar 

  • Carugo O, Argos P. Protein–protein crystal-packing contacts. Protein Sci. 1997;6(10):2261–3.

    Article  PubMed  CAS  Google Scholar 

  • Castro MJM, Anderson S. Alanine point-mutations in the reactive region of bovine pancreatic trypsin inhibitor: effects on the kinetics and thermodynamics of binding to β-trypsin and a-chymotrypsin. Biochemistry. 1996; 11435–11446.

    Google Scholar 

  • Cazals F, Proust F, Bahadur RP, Janin J. Revisiting the Voronoi description of protein–protein interfaces. Protein Sci. 2006;15(9):2082–92.

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti P, Janin J. Dissecting protein–protein recognition sites. Proteins. 2002;47(3):334–43.

    Article  PubMed  CAS  Google Scholar 

  • Cho K, Kim D, Lee D. A feature-based approach to modeling protein–protein interaction hot spots. Nucl Acids Res. 2009;37(8):2672–87.

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Janin J. Principles of protein–protein recognition. Nature. 1975;256:705–8.

    Article  PubMed  CAS  Google Scholar 

  • Clackson T, Wells J. A hot spot of binding energy in a hormone-receptor interface. Science. 1995;267:383–6.

    Article  PubMed  CAS  Google Scholar 

  • Conte LL, Chothia C, Janin J. The atomic structure of protein–protein recognition sites. J Mol Biol. 1999;285(5):2177–98.

    Article  PubMed  Google Scholar 

  • Cunningham BC, Wells JA. High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science. 1989;244(4908):1081–5.

    Article  PubMed  CAS  Google Scholar 

  • Daar IO, Artymiuk PJ, Phillips DC, Maquat LE. Human triose- phosphate isomerase deficiency: a single amino acid substitution results in a thermolabile enzyme. Proc Natl Acad Sci USA. 1986;83(20):7903–7.

    Article  PubMed  CAS  Google Scholar 

  • Darnell SJ, Legault L, Mitchell JC. KFC server: interactive forecasting of protein interaction hot spots. Nucl Acids Res. 2008.

    Google Scholar 

  • Darnell SJ, Page D, Mitchell JC. An automated decision-tree approach to predicting protein interaction hot spots. Proteins. 2007;36:W265–9.

    Google Scholar 

  • Davis FP, Sali A. PIBASE: a comprehensive database of structurally defined protein interfaces. Bioinformatics. 2005;21(9):1901–7.

    Article  PubMed  CAS  Google Scholar 

  • De S, Krishnadev O, Srinivasan N, Rekha N. Interaction preferences across protein–protein interfaces of obligatory and non-obligatory components are different. BMC Struct Biol. 2005;5:15.

    Article  PubMed  Google Scholar 

  • Del Sol A, O’Meara P. Small-world network approach to identify key residues in protein–protein interaction. Proteins. 2005;58:672–82.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Recio J. Prediction of protein binding sites and hot spots. Wiley Interdisc Rev Comput Mol Sci. 2011, 1–19.

    Google Scholar 

  • Fischer TB, Arunachalam KV, Bailey D, Mangual V, Bakhru S, Russo R, Huang D, Paczkowski M, Lalchandani V, Ramachandra C, Ellison B, Galer S, Shapley J, Fuentes E, Tsai J. The binding interface database (BID): a compilation of amino acid hot spots in protein interfaces. Bioinformatics. 2003;19(11):1453–4.

    Article  PubMed  CAS  Google Scholar 

  • Fischer TB, Holmes JB, Miller IR, Parsons JR, Tung L, Hu JC, Tsai J. Assessing methods for identifying pair-wise atomic contacts across binding interfaces. J Struct Biol. 2006;153(2):103–12.

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Wang R, Lai L. Structure-based method for analyzing protein–protein interfaces. J Mol Model. 2004;10:44–54.

    Article  PubMed  CAS  Google Scholar 

  • Glaser F, Steinberg DM, Vakser IA, Ben-Tal N. Residue frequencies and pairing preferences at protein–protein interfaces. Proteins. 2001;43(2):89–102.

    Article  PubMed  CAS  Google Scholar 

  • Gong S, Park C, Choi H, Ko J, Jang I, Lee J, Bolser DM, Donghoon O, Kim DS, Bhak J. A protein domain interaction interface database: InterPare. BMC Bioinform. 2005;6:207.

    Article  Google Scholar 

  • Gouda H, Kuntz ID, Case DA, Kollman PA. Free energy calculations for theophylline binding to an RNA aptamer: Comparison of MM-PBSA and thermodynamic integration methods. Biopolymers. 2003;68(1):16–34.

    Article  PubMed  CAS  Google Scholar 

  • de Groot B, van Aalten D, Scheek R, Amadei A, Vriend G, Berendsen H. Prediction of protein conformational freedom from distance constraints. Proteins. 1997;29(2):240–51.

    Article  PubMed  Google Scholar 

  • Grosdidier S, Recio JF. Identification of hot-spot residues in protein–protein interactions by computational docking. BMC Bioinformatics. 2008;9(1):447.

    Article  PubMed  Google Scholar 

  • Guerois R, Nielsen JE, Serrano L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1,000 mutations. J Mol Biol. 2002;320(2):369–87.

    Article  PubMed  CAS  Google Scholar 

  • Guney E, Tuncbag N, Keskin O, Grsoy A. HotSprint: database of computational hot spots in protein interfaces. Nucl Acids Res. 2008;36:662–6.

    Article  Google Scholar 

  • Halperin I, Wolfson H, Nussinov R. Protein–protein interactions: coupling of structurally conserved residues and of hot spots across interfaces. Implications for docking. Structure. 2004;12(6):1027–38.

    Article  PubMed  CAS  Google Scholar 

  • Headd JJ, Ban YEA, Brown P, Edelsbrunner H, Vaidya M, Rudolph J. Protein–protein interfaces: properties, preferences, and projections. J Proteome Res. 2007;6(7):2576–86.

    Article  PubMed  CAS  Google Scholar 

  • Hubbard SJ, Thornton JM. ‘NACCESS’, computer program. Technical report, Department of Biochemistry Molecular Biology, University College London, 1993.

    Google Scholar 

  • Huo S, Massova I, Kollman PA. Computational alanine scanning of the 1:1 human growth hormone-receptor complex. J Comput Chem. 2001;23:15–27.

    Article  Google Scholar 

  • Janin J. Elusive affinities. Proteins. 1995; 30–39.

    Google Scholar 

  • Janin J. Specific versus non-specific contacts in protein crystals. Nat Struct Biol. 1997;4:973–4.

    Article  PubMed  CAS  Google Scholar 

  • Janin J, Rodier F. Protein-protein interaction at crystal contacts. Proteins. 1995;23(4):580–7.

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Thornton JM. Principles of protein–protein interactions. Proc Natl Acad Sci USA. 1996;93(1):13–20.

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Thornton JM. Analysis of protein–protein interaction sites using surface patches. J Mol Biol. 1997;272(1):121–32.

    Article  PubMed  CAS  Google Scholar 

  • Keskin O, Ma B, Nussinov R. Hot regions in protein–protein interactions: the organization and contribution of structurally conserved hot spot residues. J Mol Biol. 2005;345(5):1281–94.

    Article  PubMed  CAS  Google Scholar 

  • Keskin O, Tsai CJ, Wolfson H, Nussinov R. A new, structurally nonredundant, diverse data set of protein–protein interfaces and its implications. Protein Sci. 2004;13(4):1043–55.

    Article  PubMed  CAS  Google Scholar 

  • Kollman P. Free energy calculations: applications to chemical and biochemical phenomena. Chem Rev. 1993;93(7):2395–417.

    Article  CAS  Google Scholar 

  • Korkin D, Davis FP, Sali A. Localization of protein-binding sites within families of proteins. Protein Sci. 2005;14(9):2350–60.

    Article  PubMed  CAS  Google Scholar 

  • Kortemme T, Baker D. A simple physical model for binding energy hot spots in protein–protein complexes. Proc Natl Acad Sci USA. 2002;99(22):14116–21.

    Article  PubMed  CAS  Google Scholar 

  • Kortemme T, Kim DE, Baker D. Computational alanine scanning of protein–protein interfaces. Sci STKE. 2004;2004(219).

    Google Scholar 

  • Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157(1):105–32.

    Article  PubMed  CAS  Google Scholar 

  • Larsen TA, Olson AJ, Goodsell DS. Morphology of protein–protein interfaces. Structure. 1998;6(4):421–7.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence MC, Colman PM. Shape complementarity at protein/protein interfaces. J Mol Biol. 1993;234(4):946–50.

    Article  PubMed  CAS  Google Scholar 

  • Lefevre F, Remy MH, Masson JM. Alanine-stretch scanning mutagenesis: a simple and efficient method to probe protein structure and function. Nucl Acids Res. 1997;25(2):447–8.

    Article  PubMed  CAS  Google Scholar 

  • Li J, Liu Q. ‘Double water exclusion’: a hypothesis refining the O-ring theory for the hot spots at protein interfaces. Bioinformatics. 2009;25(6):743–50.

    Article  PubMed  CAS  Google Scholar 

  • Li X, Keskin O, Ma B, Nussinov R, Liang J. Protein–protein interactions: hot spots and structurally conserved residues often locate in complemented pockets that pre-organized in the unbound states: implications for docking. J Mol Biol. 2004;344(3):781–95.

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Li J. Geometrically centered region: a “wet” model of protein binding hot spots not excluding water molecules. Proteins. 2010;78(16):3304–16.

    Article  PubMed  CAS  Google Scholar 

  • Lise S, Archambeau C, Pontil M, Jones DT. Prediction of hot spot residues at protein–protein interfaces by combining machine learning and energy-based methods. BMC Bioinform. 2009;10(1):365.

    Article  Google Scholar 

  • Lise S, Buchan D, Pontil M, Jones DT. Predictions of hot spot residues at protein–protein interfaces using support vector machines. PLoS ONE. 2011;6(2):e16774.

    Google Scholar 

  • Liu Q, Li J. Propensity vectors of low-ASA residue pairs in the distinction of protein interactions. Proteins. 2009;78(3):589–602.

    CAS  Google Scholar 

  • Liu Q, Li J. Protein binding hot spots and the residue–residue pairing preference: a water exclusion perspective. BMC Bioinform. 2010;11(1):244.

    Article  Google Scholar 

  • Lukman S, Sim K, Li J, Chen YPP. Interacting amino acid preferences of 3D pattern pairs at the binding sites of transient and obligate protein complexes. In APBC, p.69–78 (2008).

    Google Scholar 

  • Ma B, Elkayam T, Wolfson H, Nussinov R. Protein–protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proc Natl Acad Sci. 2003;100(10):5772–7.

    Article  PubMed  CAS  Google Scholar 

  • Mintseris J, Weng Z. Atomic contact vectors in protein–protein recognition. Proteins. 2003;53(3):629–39.

    Article  PubMed  CAS  Google Scholar 

  • Mintz S, Peleg AS, Wolfson HJ, Nussinov R. Generation and analysis of a protein–protein interface data set with similar chemical and spatial patterns of interactions. Proteins. 2005;61(1):6–20.

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa Sanzo, Jernigan Robert L. Residue–residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J Mol Biol. 1996;256:623–44.

    Article  PubMed  CAS  Google Scholar 

  • Moont G, Gabb HA, Sternberg MJ. Use of pair potentials across protein interfaces in screening predicted docked complexes. Proteins. 1999;35(3):364–73.

    Article  PubMed  CAS  Google Scholar 

  • Moreira IS, Fernandes PA, Ramos MJ. Hot spots—a review of the protein–protein interface determinant amino-acid residues. Proteins. 2007;68(4):803–12.

    Article  PubMed  CAS  Google Scholar 

  • Murzin A, Brenner S, Hubbard T, Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995;247:536–40.

    PubMed  CAS  Google Scholar 

  • Neuvirth H, Raz R, Schreiber G. ProMate: a structure based prediction program to identify the location of protein–protein binding sites. J Mol Biol. 2004;338(1):181–99.

    Article  PubMed  CAS  Google Scholar 

  • Nooren IMA, Thornton JM. Diversity of protein–protein interactions. EMBO J. 2003;22(14):3486–92.

    Article  PubMed  CAS  Google Scholar 

  • Ofran Y, Rost B. Analysing six types of protein–protein interfaces. J Mol Buol. 2003;325(2):377–87.

    Article  CAS  Google Scholar 

  • Ofran Y, Rost B. Protein-protein interaction hotspots carved into sequences. PLoS Comput Bio. 2007;3(7).

    Google Scholar 

  • Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM. CATH: a hierarchic classification of protein domain structures. Structure (London, England: 1993). 1997;5(8):1093–108.

    Article  CAS  Google Scholar 

  • Ponstingl H, Henrick K, Thornton JM. Discriminating between homodimeric and monomeric proteins in the crystalline state. Proteins. 2000;41(1):47–57.

    Article  PubMed  CAS  Google Scholar 

  • Ponstingl H, Kabir T, Thornton JM. Automatic inference of protein quaternary structure from crystals. J Appl Crystallogr. 2003;36(5):1116–22.

    Article  CAS  Google Scholar 

  • Poupon A. Voronoi and Voronoi-related tessellations in studies of protein structure and interaction. Curr Opin Struct Biol. 2004;14(2):233–41.

    Article  PubMed  CAS  Google Scholar 

  • Preissner R, Goede A, Frommel C. Dictionary of interfaces in proteins (DIP) data bank of complementary molecular surface patches. J Mol Biol. 1998;280:535–50.

    Article  PubMed  CAS  Google Scholar 

  • Saha RP, Bahadur RP, Chakrabarti P. In terresidue contacts in proteins and protein–protein interfaces and their use in characterizing the homodimeric interface. J Proteome Res. 2005; 4:1600–1609.

    Google Scholar 

  • Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web server: an online force field. Nucl Acids Res. 2005, 33(Web Server issue).

    Google Scholar 

  • Thorn KS, Bogan AA. ASEdb: a database of alanine mutations and their effects on the free energy of binding in protein interactions. Bioinformatics. 2001;17(3):284–5.

    Article  PubMed  CAS  Google Scholar 

  • Tsai CJ, Lin SL, Wolfson HJ, Nussinov R. A dataset of protein–protein interfaces generated with a sequence-order-independent comparison technique. J Mol Biol. 1996;260(4):604–20.

    Article  PubMed  CAS  Google Scholar 

  • Tsai CJ, Lin SL, Wolfson HJ, Nussinov R. Studies of protein–protein interfaces: a statistical analysis of the hydrophobic effect. Protein Sci. 1997;6(1):53–64.

    Article  PubMed  CAS  Google Scholar 

  • Tsai CJ, Xu D, Nussinov R. Protein folding via binding and vice versa. Fold Des. 1998;3(4):R71–80.

    Article  PubMed  CAS  Google Scholar 

  • Tuncbag N, Gursoy A, Keskin O. Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics. 2009;25(12):1513–20.

    Article  PubMed  CAS  Google Scholar 

  • Tuncbag N, Kar G, Keskin O, Gursoy A, Nussinov R. A survey of available tools and web servers for analysis of protein–protein interactions and interfaces. Brief Bioinform. 2009;10:217–32.

    Article  PubMed  CAS  Google Scholar 

  • Tuncbag N, Salman FS, Keskin O, Gursoy A. Analysis and network representation of hotspots in protein interfaces using minimum cut trees. Proteins: Struct, Funct, Bioinf. 2010;78(10):2283–94.

    Article  CAS  Google Scholar 

  • Valdar WSJ, Thornton JM. Conservation helps to identify biologically relevant crystal contacts. J Mol Biol. 2001; 313(2):399–416.

    Google Scholar 

  • Wells JA. Systematic mutational analyses of protein–protein interfaces. Methods Enzymol. 1991;202:390–411.

    Article  PubMed  CAS  Google Scholar 

  • Xia JF, Zhao XM, Song J, Huang DS. APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility. BMC Bioinform. 2010;11(1):174.

    Article  Google Scholar 

  • Yan C, Wu F, Jernigan RL, Dobbs D, Honavar V. Characterization of protein–protein interfaces. Protein J. 2008;27(1):59–70.

    Article  PubMed  CAS  Google Scholar 

  • Young L, Jernigan RL, Covell DG. A role for surface hydrophobicity in protein–protein recognition. Protein Sci. 1994;3(5):717–29.

    Article  PubMed  CAS  Google Scholar 

  • Zengjian H, Ma B, Wolfson H, Nussinov R. Conservation of polar residues as hot spots at protein interfaces. Proteins: Struct, Funct, Bioinf. 2000;39(4):331–42.

    Article  Google Scholar 

  • Zhang C, Vasmatzis G, Cornette JL, DeLisi C. Determination of atomic desolvation energies from the structures of crystallized proteins. J Mol Biol. 1997;267(20):707–26.

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Domingues FS, Sommer I, Lengauer T. NOXclass: prediction of protein–protein interaction types. BMC Bioinformatics. 2006;7:27.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is partly funded by an Australia Research Council Discovery Project (DP130102124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Liu, Q., Li, J. (2013). Protein Binding Interfaces and Their Binding Hot Spot Prediction: A Survey. In: Shen, B. (eds) Bioinformatics for Diagnosis, Prognosis and Treatment of Complex Diseases. Translational Bioinformatics, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7975-4_5

Download citation

Publish with us

Policies and ethics