Skip to main content

Stiffness Modeling of Robotic Manipulator with Gravity Compensator

  • Conference paper
  • First Online:
Computational Kinematics

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 15))

Abstract

The paper focuses on the stiffness modeling of robotic manipulators with gravity compensators. The main attention is paid to the development of the stiffness model of a spring-based compensator located between sequential links of a serial structure. The derived model allows us to describe the compensator as an equivalent non-linear virtual spring integrated in the corresponding actuated joint. The obtained results have been efficiently applied to the stiffness modeling of a heavy industrial robot of the Kuka family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Company, O., Pierrot, F., Fauroux, J.-C.: A method for modeling analytical stiffness of a lower mobility parallel manipulator. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA 2005), pp. 3232–3237 (2005)

    Google Scholar 

  2. Alici, G., Shirinzadeh, B.: Enhanced stiffness modeling, identification and characterization for robot manipulators. Proc. IEEE Trans. Robot. 21, 554–564 (2005)

    Article  Google Scholar 

  3. Tyapin, I., Hovland, G.: Kinematic and elastostatic design optimization of the 3-DOF Gantry-Tau parallel kinamatic manipulator. Model. Ident. Control 30, 39–56 (2009)

    Article  Google Scholar 

  4. Yi, B.-J., Freeman, R.A.: Geometric analysis antagonistic stiffness redundantly actuated parallel mechanism. J. Rob. Syst. 10(5), 581–603 (1993)

    Article  MATH  Google Scholar 

  5. Meggiolaro, M.A., Dubowsky, S., Mavroidis, C.: Geometric and elastic error calibration of a high accuracy patient positioning system. Mech. Mach. Theory 40, 415–427 (2005)

    Article  MATH  Google Scholar 

  6. Kövecses, J., Angeles, J.: The stiffness matrix in elastically articulated rigid-body systems. Multibody Sys. Dyn. 18(2), 169–184 (2007)

    Article  MATH  Google Scholar 

  7. Salisbury, J.: Active stiffness control of a manipulator in Cartesian coordinates. In: Proceedings of the 19th IEEE Conference on Decision and, Control, pp. 87–97 (1980)

    Google Scholar 

  8. Klimchik, A., Bondarenko, D., Pashkevich, A., Briot, S., Furet, B.: Compensation of tool deflection in robotic-based Milling. In: Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2012), pp. 113–122 (2012)

    Google Scholar 

  9. Quennouelle, C., Gosselin, C.M.: Instantaneous kinemato-static model of planar compliant parallel mechanisms. Proceedings of ASME International Design Engineering Technical Conferences, In (2008)

    Google Scholar 

  10. Pashkevich, A., Klimchik, A., Chablat, D., Wenger, Ph.: Accuracy improvement for stiffness modeling of parallel manipulators. In: Proceedings of 42nd CIRP Conference on Manufacturing Systems, CD-proceedings (p. 8), Grenoble (2009)

    Google Scholar 

  11. Takesue, N., Ikematsu, T., Murayama, H., Fujimoto, H.: Design and prototype of variable gravity compensation mechanism (VGCM). J. Robot. Mech. 23(2), 249–257 (2011)

    Google Scholar 

  12. De Luca, A., Flacco, F.: A PD-type regulator with exact gravity cancellation for robots with flexible joints. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation, pp. 317–323.

    Google Scholar 

Download references

Acknowledgments

The work presented in this paper was partially funded by the ANR, France (Project ANR-2010-SEGI-003-02-COROUSSO) and Project ANR ROBOTEX. The authors also thank Fabien Truchet, Guillaume Gallot, Joachim Marais and Sbastien Garnier for their great help with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandr Klimchik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Klimchik, A., Caro, S., Wu, Y., Chablat, D., Furet, B., Pashkevich, A. (2014). Stiffness Modeling of Robotic Manipulator with Gravity Compensator. In: Thomas, F., Perez Gracia, A. (eds) Computational Kinematics. Mechanisms and Machine Science, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7214-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7214-4_21

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7213-7

  • Online ISBN: 978-94-007-7214-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics