Skip to main content

Molecular-Genetic Testing in Hepatocellular Carcinoma and Its Premalignant Conditions

  • Chapter
  • First Online:
Molecular Pathology and Diagnostics of Cancer

Abstract

Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and the third most common cause of malignancy-associated death. Presently there are relatively few molecular genetic testing directly performed on HCC. However, many molecular genetic tests are performed on conditions that increase the risk for HCC or modify drug treatments for conditions that increase HCC risk, including hepatitis B and C, hemochromatosis, and interleukin-28b testing. Here we review the common molecular diagnostic genetic tests associated with HCC diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917

    PubMed  CAS  Google Scholar 

  2. Forner A, Llovet JM, Bruix J (2012) Hepatocellular carcinoma. Lancet 379:1245–1255

    PubMed  Google Scholar 

  3. Bosetti C, Levi F, Boffetta P, Lucchini F, Negri E, La Vecchia C (2008) Trends in mortality from hepatocellular carcinoma in Europe, 1980–2004. Hepatology 48:137–145

    PubMed  Google Scholar 

  4. Qiu D, Katanoda K, Marugame T, Sobue T (2009) A Joinpoint regression analysis of long-term trends in cancer mortality in Japan (1958–2004). Int J Cancer 124:443–448

    PubMed  CAS  Google Scholar 

  5. Chen CJ, Yang HI, Su J, Jen CL, You SL, Lu SN, Huang GT, Iloeje UH (2006) Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 295:65–73

    PubMed  CAS  Google Scholar 

  6. Chang MH, Chen CJ, Lai MS, Hsu HM, Wu TC, Kong MS, Liang DC, Shau WY, Chen DS (1997) Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group. N Engl J Med 336:1855–1859

    PubMed  CAS  Google Scholar 

  7. Papatheodoridis GV, Lampertico P, Manolakopoulos S, Lok A (2010) Incidence of hepatocellular carcinoma in chronic hepatitis B patients receiving nucleos(t)ide therapy: a systematic review. J Hepatol 53:348–356

    PubMed  CAS  Google Scholar 

  8. MacDonald DC, Nelson M, Bower M, Powles T (2008) Hepatocellular carcinoma, human immunodeficiency virus and viral hepatitis in the HAART era. World J Gastroenterol 14:1657–1663

    PubMed  Google Scholar 

  9. Kew MC (2009) Hepatic iron overload and hepatocellular carcinoma. Cancer Lett 286:38–43

    PubMed  CAS  Google Scholar 

  10. Santos PC, Krieger JE, Pereira AC (2012) Molecular diagnostic and pathogenesis of hereditary hemochromatosis. Int J Mol Sci 13:1497–1511

    PubMed  CAS  Google Scholar 

  11. Strachan AS (1929) Hemosiderosis and hemochromatosis in South African natives with a comment on the aetiology of hemochromatosis. M.D. thesis, University of Glasgow, Glasgow

    Google Scholar 

  12. Shackelford RE, Kaufmann WK, Paules RS (2000) Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med 28:1387–1404

    PubMed  CAS  Google Scholar 

  13. Gordeuk VR, McLaren CE, MacPhail AP, Deichsel D, Bothwell TH (1996) Associations of iron overload in Africa and hepatocellular carcinoma and tuberculosis. Blood 87:3470–3476

    PubMed  CAS  Google Scholar 

  14. Trichopoulos D, Bamia C, Lagiou P et al (2011) Hepatocellular carcinoma risk factors and disease burden in a European cohort: a nested case–control study. J Natl Cancer Inst 103:1686–1695

    PubMed  Google Scholar 

  15. Bravi F, Bosetti C, Tavani A, Bagnardi V, Gallus S, Negri E, Franceschi S, La Vecchia C (2007) Coffee drinking and hepatocellular carcinoma risk: a meta-analysis. Hepatology 46:430–435

    PubMed  Google Scholar 

  16. Yu MC, Yuan JM (2004) Environmental factors and risk for hepatocellular carcinoma. Gastroenterology 127:S72–S78

    PubMed  CAS  Google Scholar 

  17. Chuang SC, La Vecchia C, Boffetta P (2009) Liver cancer: descriptive epidemiology and risk factors other than HBV and HCV infection. Cancer Lett 286:9–14

    PubMed  CAS  Google Scholar 

  18. Pietrangelo A (2004) Hereditary hemochromatosis – a new look at an old disease. N Engl J Med 350:2383–2397

    PubMed  CAS  Google Scholar 

  19. Bradbear RA, Bain C, Siskind V, Schofield FD, Webb S, Axelsen EM, Halliday JW, Bassett ML, Powell LW (1985) Cohort study of internal malignancy in genetic hemochromatosis and other chronic non- alcoholic liver diseases. J Natl Cancer Inst 75:81–84

    PubMed  CAS  Google Scholar 

  20. Strohmeyer G, Niederau C, Stremmel W (1988) Survival and causes of death in hemochromatosis. Observations in 163 patients. Ann N Y Acad Sci 526:245–257

    PubMed  CAS  Google Scholar 

  21. Bacon BR (2012) Hemochromatosis: discovery of the HFE gene. Mo Med 109:133–136

    PubMed  Google Scholar 

  22. Adams PC, Speechley M, Kertesz AE (1991) Long-term survival analysis inhereditary hemochromatosis. Gastroenterology 101:368–372

    PubMed  CAS  Google Scholar 

  23. Zhang H, Zhai Y, Hu Z, Wu C, Qian J et al (2010) Genome-wide association study identifies 1p36.22 as a new susceptibility locus for hepatocellular carcinoma in chronic hepatitis B virus carriers. Nat Genet 42:755–758

    PubMed  CAS  Google Scholar 

  24. Chan KY, Wong CM, Kwan JS et al (2011) Genome-wide association study of hepatocellular carcinoma in Southern Chinese patients with chronic hepatitis B virus infection. PLoS One 6:e28798

    PubMed  CAS  Google Scholar 

  25. Clifford RJ, Zhang J, Meerzaman DM, Lyu MS et al (2010) Genetic variations at loci involved in the immune response are risk factors for hepatocellular carcinoma. Hepatology 52:2034–2043

    PubMed  CAS  Google Scholar 

  26. Tanabe KK, Lemoine A, Finkelstein DM, Kawasaki H et al (2008) Epidermal growth factor gene functional polymorphism and the risk of hepatocellular carcinoma in patients with cirrhosis. JAMA 299:53–60

    PubMed  CAS  Google Scholar 

  27. Hassan MM, Spitz MR, Thomas MB et al (2009) The association of family history of liver cancer with hepatocellular carcinoma: a case–control study in the United States. J Hepatol 50:334–341

    PubMed  Google Scholar 

  28. Sakamoto M, Effendi K, Masugi Y (2010) Molecular diagnosis of multistage hepatocarcinogenesis. Jpn J Clin Oncol 40:891–896

    PubMed  Google Scholar 

  29. International Consensus Group for Hepatocellular Neoplasia (2009) Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology 49:658–664

    Google Scholar 

  30. Hoshida Y, Villanueva A, Kobayashi M et al (2008) Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med 359:1995–2004

    PubMed  CAS  Google Scholar 

  31. Dong H, Ge X, Shen Y, Chen L et al (2009) Gene expression profile analysis of human hepatocellular carcinoma using SAGE and LongSAGE. BMC Med Genomics 2:5

    PubMed  Google Scholar 

  32. Yang J, Seol SY, Leem SH et al (2011) Genes associated with recurrence of hepatocellular carcinoma: integrated analysis by gene expression and methylation profiling. J Korean Med Sci 26:1428–1438

    PubMed  CAS  Google Scholar 

  33. Evans CG, Chang L, Gestwicki JE (2010) Heat shock protein 70 (hsp70) as an emerging drug target. J Med Chem 53:4585–4602

    PubMed  CAS  Google Scholar 

  34. Garrido C, Gurbuxani S, Ravagnan L, Kroemer G (2001) Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 286:433–442

    PubMed  CAS  Google Scholar 

  35. Helmbrecht K, Zeise E, Rensing L (2000) Chaperones in cell cycle regulation and mitogenic signal transduction: a review. Cell Prolif 33:341–365

    PubMed  CAS  Google Scholar 

  36. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103

    PubMed  CAS  Google Scholar 

  37. Rohde M, Daugaard M, Jensen MH, Helin K, Nylandsted J, Jaattela M (2005) Members of the heat- shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev 19:570–582

    PubMed  CAS  Google Scholar 

  38. Sliutz G, Karlseder J, Tempfer C, Orel L, Holzer G, Simon MM (1996) Drug resistance against gemcitabine and topotecan mediated by constitutive hsp70 overexpression in vitro: implication of quercetin as sensitiser in chemotherapy. Br J Cancer 74:172–177

    PubMed  CAS  Google Scholar 

  39. Seo JS, Park YM, Kim JI, Shim EH, Kim CW, Jang JJ, Kim SH, Lee WH (1996) T cell lymphoma in transgenic mice expressing the human Hsp70 gene. Biochem Biophys Res Commun 218:582–587

    PubMed  CAS  Google Scholar 

  40. Chuma M, Sakamoto M, Yamazaki K et al (2003) Expression profiling in multistage hepatocarcinogenesis: identification of HSP70 as a molecular marker of early hepatocellular carcinoma. Hepatology 37(1):198–207

    PubMed  CAS  Google Scholar 

  41. Di Tommaso L, Franchi G, Park YN et al (2007) Diagnostic value of HSP70, glypican 3, and glutamine synthetase in hepatocellular nodules in cirrhosis. Hepatology 45:725–734

    PubMed  Google Scholar 

  42. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 23:302–305

    Google Scholar 

  43. Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M (2004) Stem cells and cancer; the polycomb connection. Cell 118:409–418

    PubMed  CAS  Google Scholar 

  44. Dimri GP, Martinez JL, Jacobs JJ, Keblusek P, Itahana K, Van Lohuizen M et al (2002) The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res 62:4736–4745

    PubMed  CAS  Google Scholar 

  45. Glinsky GV (2007) Stem cell origin of death-from-cancer phenotypes of human prostate and breast cancers. Stem Cell Rev 3:79–93

    PubMed  CAS  Google Scholar 

  46. Wang H, Pan K, Zhang HK, Weng DS, Zhou J, Li JJ, Huang W, Song HF, Chen MS, Xia JC (2008) Increased polycomb-group oncogene Bmi-1 expression correlates with poor prognosis in hepatocellular carcinoma. J Cancer Res Clin Oncol 134:535–541

    PubMed  CAS  Google Scholar 

  47. Li DW, Tang HM, Fan JW, Yan DW, Zhou CZ, Li SX, Wang XL, Peng ZH (2010) Expression level of Bmi-1 oncoprotein is associated with progression and prognosis in colon cancer. J Cancer Res Clin Oncol 136:997–1006

    PubMed  CAS  Google Scholar 

  48. Wu Z, Min L, Chen D, Hao D, Duan Y, Qiu G, Wang Y (2011) Overexpression of BMI-1 promotes cell growth and resistance to cisplatin treatment in osteosarcoma. PLoS One 6:e14648

    PubMed  CAS  Google Scholar 

  49. Effendi K, Mori T, Komuta M, Masugi Y, Du W, Sakamoto M (2010) Bmi-1 gene is upregulated in early-stage hepatocellular carcinoma and correlates with ATP-binding cassette transporter B1 expression. Cancer Sci 101:666–672

    PubMed  CAS  Google Scholar 

  50. Liaw SH, Kuo I, Eisenberg D (1995) Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site. Protein Sci 4:2358–2365

    PubMed  CAS  Google Scholar 

  51. Reitzer LJ, Wice BM, Kennell D (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 254:2669–2676

    PubMed  CAS  Google Scholar 

  52. Moorman AF, de Boer PA, Geerts WJ et al (1988) Complementary distribution of carbamoylphosphate synthetase (ammonia) and glutamine synthetase in rat liver acinus is regulated at a pretranslational level. J Histochem Cytochem 36:751–755

    PubMed  CAS  Google Scholar 

  53. Zucman-Rossi J, Benhamouche S, Godard C et al (2007) Differential effects of inactivated Axin1 and activated beta-catenin mutations in human hepatocellular carcinomas. Oncogene 26:774–780

    PubMed  CAS  Google Scholar 

  54. Cadoret A, Ovejero C, Terris B et al (2002) New targets of beta-catenin signaling in the liver are involved in the glutamine metabolism. Oncogene 21:8293–8301

    PubMed  CAS  Google Scholar 

  55. Christa L, Simon MT, Flinois JP et al (1994) Overexpression of glutamine synthetase in human primary liver cancer. Gastroenterology 106:1312–1320

    PubMed  CAS  Google Scholar 

  56. Osada T, Sakamoto M, Nagawa H et al (1999) Acquisition of glutamine synthetase expression in human hepatocarcinogenesis: relation to disease recurrence and possible regulation by ubiquitin-dependent proteolysis. Cancer 85:819–831

    PubMed  CAS  Google Scholar 

  57. Bioulac-Sage P, Rebouissou S, Thomas C et al (2007) Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry. Hepatology 46:740–748

    PubMed  CAS  Google Scholar 

  58. Bialecki ES, Di Bisceglie AM (2005) Diagnosis of hepatocellular carcinoma. HPB (Oxford) 7:26–34

    Google Scholar 

  59. Varma V, Cohen C (2004) Immunohistochemical and molecular markers in the diagnosis of hepatocellular carcinoma. Adv Anat Pathol 11:239–249

    PubMed  CAS  Google Scholar 

  60. Hubberstey AV, Mottillo EP (2002) Cyclase-associated proteins: CAPacity for linking signal transduction and actin polymerization. FASEB J 16:487–499

    PubMed  CAS  Google Scholar 

  61. Yu G, Swiston J, Young D (1994) Comparison of human CAP and CAP2, homologs of the yeast adenylyl cyclase-associated proteins. J Cell Sci 107:1671–1678

    PubMed  CAS  Google Scholar 

  62. Shibata R, Mori T, Du W, Chuma M, Gotoh M, Shimazu M et al (2006) Overexpression of cyclase-associated protein 2 in multistage hepatocarcinogenesis. Clin Cancer Res 12:5363–5368

    PubMed  CAS  Google Scholar 

  63. Libbrecht L, Severi T, Cassiman D et al (2006) Glypican-3 expression distinguishes small hepatocellular carcinomas from cirrhosis, dysplastic nodules, and focal nodular hyperplasia-like nodules. Am J Surg Pathol 30:1405–1411

    PubMed  Google Scholar 

  64. Wang XY, Degos F, Dubois S, Tessiore S et al (2006) Glypican-3 expression in hepatocellular tumors: diagnostic value for preneoplastic lesions and hepatocellular carcinomas. Hum Pathol 37:1435–1441

    PubMed  CAS  Google Scholar 

  65. Abdul-Al HM, Makhlou HR, Wang G, Goodman ZD (2008) Glypican-3 expression in benign liver tissue with active hepatitis C: implications for the diagnosis of hepatocellular carcinoma. Hum Pathol 39:209–212

    PubMed  CAS  Google Scholar 

  66. Nakatsuka T, Kageshita T, Ito S, Wakamatsu K, Monji M, Ikuta Y et al (2004) Identification of glypican-3 as a novel tumor marker for melanoma. Clin Cancer Res 10:6612–6621

    Google Scholar 

  67. http://www.amptestdirectory.org/index.cfm

  68. Gan EK, Powell LW, Olynyk JK (2011) Natural history and management of HFE-hemochromatosis. Semin Liver Dis 31:293–301

    PubMed  CAS  Google Scholar 

  69. Santos PC, Dinardo CL, Cançado RD et al (2012) Non-HFE hemochromatosis. Rev Bras Hematol Hemoter 34:311–316

    PubMed  Google Scholar 

  70. Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA et al (1996) A novel MHC class-I gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13:399–408

    PubMed  CAS  Google Scholar 

  71. Sanchez M, Bruguera M, Rodes J, Oliva R (2001) Complete characterization of the 39 region of the human and mouse hereditary hemochromatosis HFE gene and detection of novel splicing forms. Blood Cells Mol Dis 27:35–43

    PubMed  CAS  Google Scholar 

  72. Jeffrey GP, Basclain K, Hajek J, Chakrabarti S, Adams PC (1999) Alternate splicing produces a soluble form of the hereditary hemochromatosis protein HFE. Blood Cells Mol Dis 25:61–67

    PubMed  CAS  Google Scholar 

  73. Rhodes DA, Trowsdale J (1999) Alternate splice variants of the hemochromatosis gene HFE. Immunogenetics 49:357–359

    PubMed  CAS  Google Scholar 

  74. Thenie A, Orhant M, Gicquel I, Fergelot P, Le Gall JY et al (2000) The HFE gene undergoes alternate splicing processes. Blood Cells Mol Dis 26:155–162

    PubMed  CAS  Google Scholar 

  75. Martins R, Silva B, Proenca D, Faustino P (2011) Differential HFE gene expression is regulated by alternative splicing in human tissues. PLoS One 6:e17542

    PubMed  CAS  Google Scholar 

  76. Worwood M, Shearman JD, Wallace DF, Dooley LS, Merryweather- Clarke AT, Pointon LL et al (1997) A simple genetic test identifies 90 % of UK patients with haemochromatosis. Gut 41:841–844

    Google Scholar 

  77. Bridle KR, Frazer DM, Wilkins SJ, Dixon JL, Purdie DM, Crawford DH, Subramaniam VN, Powell LW, Anderson GJ, Ramm GA (2003) Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet 361:669–673

    PubMed  CAS  Google Scholar 

  78. Stott MK, Fellowes AP, Upton JD, Burt MJ, George PM (1999) Simple multiplex PCR for the simultaneous detection of the C282Y and H63D hemochromatosis (HFE) gene mutations. Clin Chem 45:426–428

    PubMed  CAS  Google Scholar 

  79. Huang MM, Arnheim N, Goodman MF (1992) Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Res 20:4567–4573

    PubMed  CAS  Google Scholar 

  80. Kimura H, Kasahara K, Kawaishi M, Kunitoh H, Tamura T, Holloway B, Nishio K (2006) Detection of epidermal growth factor receptor mutations in serum as a predictor of the response to gefitinib in patients with non-small-cell lung cancer. Clin Cancer Res 12:3915–3921

    PubMed  CAS  Google Scholar 

  81. Sánchez M, Villa M, Ingelmo M et al (2003) Population screening for hemochromatosis: a study in 5370 Spanish blood donors. J Hepatol 38:745–750

    PubMed  Google Scholar 

  82. Higuchi R (1989) DNA from whole blood for PCR. Amplifications 2:1–3

    Google Scholar 

  83. Cukjati M, Koren S, Curin Serbec V, Vidan-Jeras B, Rupreht R (2007) A novel homozygous frameshift deletion c.471del of HFE associated with hemochromatosis. Clin Genet 71:350–353

    PubMed  CAS  Google Scholar 

  84. Gemmati D, Zeri G, Orioli E, De Gaetano FE et al (2012) Polymorphisms in the genes coding for iron binding and transporting proteins are associated with disability, severity, and early progression in multiple sclerosis. BMC Med Genet 13:70

    PubMed  CAS  Google Scholar 

  85. Bach V, Barceló MJ, Altés A et al (2006) Genotyping the HFE gene by melting point analysis with the LightCycler system: pros and cons. Blood Cells Mol Dis 36:288–291

    PubMed  CAS  Google Scholar 

  86. Aguilar-Martinez P, Lok CY, Cunat S, Cadet E, Robson K, Rochette J (2007) Juvenile hemochromatosis caused by a novel combination of hemojuvelin G320V/R176C mutations in a 5-year old girl. Haematologica 92:421–422

    PubMed  CAS  Google Scholar 

  87. De Lima Santos PC, Pereira AC, Cancado RD, Schettert IT, Hirata RD, Hirata MH, Figueiredo MS, Chiattone CS, Krieger JE, Guerra-Shinohara EM (2010) Hemojuvelin and hepcidin genes sequencing in Brazilian patients with primary iron overload. Genet Test Mol Biomark 14:803–806

    Google Scholar 

  88. Lanzara C, Roetto A, Daraio F, Rivard S, Ficarella R, Simard H, Cox TM, Cazzola M, Piperno A, Gimenez-Roqueplo AP et al (2004) Spectrum of hemojuvelin gene mutations in 1q-linked juvenile hemochromatosis. Blood 103:4317–4321

    PubMed  CAS  Google Scholar 

  89. Lee PL, Beutler E, Rao SV, Barton JC (2004) Genetic abnormalities and juvenile hemochromatosis: mutations of the HJV gene encoding hemojuvelin. Blood 103:4669–4671

    PubMed  CAS  Google Scholar 

  90. Roetto A, Papanikolaou G, Politou M et al (2003) Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet 33:21–22

    PubMed  CAS  Google Scholar 

  91. Hattori A, Tomosugi N, Tatsumi Y et al (2012) Identification of a novel mutation in the HAMP gene that causes non-detectable hepcidin molecules in a Japanese male patient with juvenile hemochromatosis. Blood Cells Mol Dis 48:179–182

    PubMed  CAS  Google Scholar 

  92. Biasiotto G, Belloli S, Ruggeri G et al (2003) Identification of new mutations of the HFE, hepcidin, and transferrin receptor 2 genes by denaturing HPLC analysis of individuals with biochemical indications of iron overload. Clin Chem 49:1981–1988

    PubMed  CAS  Google Scholar 

  93. Kawabata H, Yang R, Hirama T, Vuong PT, Kawano S, Gombart AF, Koeffler HP (1999) Molecular cloning of transferrin receptor 2: a new member of the transferrin receptor-like family. J Biol Chem 274:20826–20832

    PubMed  CAS  Google Scholar 

  94. Roetto A, Totaro A, Piperno A et al (2001) New mutations inactivating transferrin receptor 2 in hemochromatosis type 3. Blood 97:2555–2560

    PubMed  CAS  Google Scholar 

  95. Anderson GJ, Vulpe CD (2009) Mammalian iron transport. Cell Mol Life Sci 66:3241–3261

    PubMed  CAS  Google Scholar 

  96. Yang F, Liu X, Quinones M, Melby PC, Ghio A, Haile DJ (2002) Regulation of reticuloendothelial iron transporter MTP1 (Slc11a3) by inflammation. J Biol Chem 277:39786–39791

    PubMed  CAS  Google Scholar 

  97. Pietrangelo A, Caleffi A, Corradini E (2011) Non-HFE hepatic iron overload. Semin Liver Dis 31:302–318

    PubMed  CAS  Google Scholar 

  98. Montosi G, Donovan A, Totaro A et al (2001) Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene. J Clin Invest 108:619–623

    PubMed  CAS  Google Scholar 

  99. Pietrangelo A, Montosi G, Totaro A et al (1999) Hereditary hemochromatosis in adults without pathogenic mutations in the hemochromatosis gene. N Engl J Med 341:725–732

    PubMed  CAS  Google Scholar 

  100. Lavanchy D (2004) Hepatitis B, virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J Viral Hepat 11:97–107

    PubMed  CAS  Google Scholar 

  101. Liaw YF, Chu CM (2009) Hepatitis B virus infection. Lancet 373:582–592

    PubMed  CAS  Google Scholar 

  102. Dienstag JL (2008) Hepatitis B, virus infection. N Engl J Med 359:1486–1500

    PubMed  CAS  Google Scholar 

  103. Valsamakis A (2007) Molecular testing in the diagnosis and management of chronic hepatitis B. Clin Microbiol Rev 20:426–439

    PubMed  CAS  Google Scholar 

  104. Martinot-Peignoux M, Boyer N, Colombat M et al (2002) Serum hepatitis B virus DNA levels and liver histology in inactive HBsAg carriers. J Hepatol 36:543–546

    PubMed  CAS  Google Scholar 

  105. Ishak K, Baptista A, Bianchi L et al (1995) Histological grading and staging of chronic hepatitis. J Hepatol 22:696–699

    PubMed  CAS  Google Scholar 

  106. Berninger M, Hammer M, Hoyer B, Gerin J (1982) An assay for the detection of the DNA genome of hepatitis B virus in serum. J Med Virol 9:57–68

    PubMed  CAS  Google Scholar 

  107. Guo KJ, Bowden DS (1991) Digoxigenin-labeled probes for the detection of hepatitis B virus DNA in serum. J Clin Microbiol 29:506–509

    PubMed  CAS  Google Scholar 

  108. Tsongalis GJ (2006) Branched DNA, technology in molecular diagnostics. Am J Clin Pathol 126:448–453

    PubMed  CAS  Google Scholar 

  109. Chen CH, Wang JT, Lee CZ et al (1995) Quantitative detection of hepatitis B virus DNA in human sera by branched-DNA signal amplification. J Virol Methods 53:131–137

    PubMed  CAS  Google Scholar 

  110. Abe A, Inoue K, Tanaka T et al (1999) Quantitation of hepatitis B virus genomic DNA by real-time detection PCR. J Clin Microbiol 37:2899–2903

    PubMed  CAS  Google Scholar 

  111. Mackay IM, Arden KE, Nitsche A (2002) Real-time PCR in virology. Nucleic Acids Res 30:1292–1305

    PubMed  CAS  Google Scholar 

  112. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582

    PubMed  CAS  Google Scholar 

  113. Germer JJ, Qutub MO, Mandrekar JN et al (2006) Quantification of hepatitis B virus (HBV) DNA with a TaqMan HBV analyte-specific reagent following sample processing with the MagNA pure LC instrument. J Clin Microbiol 44:1490–1494

    PubMed  CAS  Google Scholar 

  114. Wang Q, Wang X, Zhang J, Song G (2012) LNA real-time PCR probe quantification of hepatitis B virus DNA. Exp Ther Med 3:503–508

    PubMed  CAS  Google Scholar 

  115. Veedu RN, Wengel J (2010) Locked nucleic acids: promising nucleic acid analogs for therapeutic applications. Chem Biodivers 7:536–542

    PubMed  CAS  Google Scholar 

  116. Orito E, Mizokami M, Ina Y, Moriyama EN et al (1989) Host-independent evolution and a genetic classification of the hepadnavirus family based on nucleotide sequences. Proc Natl Acad Sci U S A 86:7059–7062

    PubMed  CAS  Google Scholar 

  117. Okamoto H, Tsuda F, Sakugawa H et al (1988) Typing hepatitis B virus by homology in nucleotide sequence: comparison of surface antigen subtypes. J Gen Virol 69:2575–2583

    PubMed  CAS  Google Scholar 

  118. Stuyver L, De Gendt S, Van Geyt C et al (2000) A new genotype of hepatitis B virus: complete genome and phylogenetic relatedness. J Gen Virol 81:67–74

    PubMed  CAS  Google Scholar 

  119. Miyakawa Y, Mizokami M (2003) Classifying hepatitis B virus genotypes. Intervirology 46:329–338

    PubMed  CAS  Google Scholar 

  120. Kidd-Ljunggren K, Miyakawa Y, Kidd AH (2002) Genetic variability in hepatitis B viruses. J Gen Virol 83:1267–1280

    PubMed  CAS  Google Scholar 

  121. Kao JH, Chen PJ, Lai MY, Chen DS (2000) Hepatitis B genotypes correlate with clinical outcomes in patients with chronic hepatitis B. Gastroenterology 118:554–559

    PubMed  CAS  Google Scholar 

  122. Thakur V, Guptan RC, Kazim SN et al (2002) Profile, spectrum and significance of HBV genotypes in chronic liver disease patients in the Indian subcontinent. J Gastroenterol Hepatol 17:165–170

    PubMed  Google Scholar 

  123. Wiegand J, Hasenclever D, Tillmann HL (2008) Should treatment of hepatitis B depend on hepatitis B virus genotypes? A hypothesis generated from an explorative analysis of published evidence. Antivir Ther 13:211–220

    PubMed  CAS  Google Scholar 

  124. Janssen HL, van Zonneveld M, Senturk H et al (2005) Pegylated interferon alfa-2b alone or in combination with lamivudine for HBeAg-positive chronic hepatitis B: a randomised trial. Lancet 365:123–129

    PubMed  CAS  Google Scholar 

  125. Koedijk FD, van Houdt R, Op de Coul EL et al (2008) Hepatitis B virus transmission patterns in the Netherlands, 2004. Ned Tijdschr Geneeskd 152:2673–2680

    PubMed  CAS  Google Scholar 

  126. Alam MM, Zaidi SZ, Shaukat S et al (2007) Common genotypes of hepatitis B virus prevalent in injecting drug abusers (addicts) of North West Frontier Province of Pakistan. Virol J 4:63

    PubMed  Google Scholar 

  127. Guirgis BS, Abbas RO, Azzazy HM (2010) Hepatitis B virus genotyping: current methods and clinical implications. Int J Infect Dis 14:e941–e953

    PubMed  CAS  Google Scholar 

  128. http://www.medical-siemens.com.

  129. Lindstom A, Odeberg J, Albert J (2004) Pyrosequencing for detection of lamivudine-resistant hepatitis B virus. J Clin Microbiol 42:4788–4795

    Google Scholar 

  130. Liu WC, Lindh M, Buti M et al (2008) Genotyping of hepatitis B virus – genotypes a to g by multiplex polymerase chain reaction. Intervirology 51:247–252

    PubMed  CAS  Google Scholar 

  131. Yeh SH, Tsai CY, Kao JH et al (2004) Quantification and genotyping of hepatitis B virus in a single reaction by real-time PCR and melting curve analysis. J Hepatol 41:659–666

    PubMed  CAS  Google Scholar 

  132. Lindh M, Andersson AS, Gusdal A (1997) Genotypes, nt 1858 variants, and geographic origin of hepatitis B virus – large-scale analysis using a new genotyping method. J Infect Dis 175:1285–1293

    PubMed  CAS  Google Scholar 

  133. Lee JM, Ahn SH, Chang HY et al (2004) Reappraisal of HBV genotypes and clinical significance in Koreans using MALDI-TOF mass spectrometry. Korean J Hepatol 10:260–270

    PubMed  Google Scholar 

  134. Kriegshäuser G, Auner V, Schuster E et al (2011) KRAS mutation analysis in genomic DNA isolated from formalin-fixed paraffin-embedded ovarian tissue: evaluation of a strip-based reverse-hybridisation assay. J Clin Pathol 64:252–256

    PubMed  Google Scholar 

  135. Prix L, Uciechowski P, Böckmann B, Giesing M, Schuetz AJ (2002) Diagnostic biochip array for fast and sensitive detection of K-ras mutations in stool. Clin Chem 48:428–435

    PubMed  CAS  Google Scholar 

  136. Ausch C, Buxhofer-Ausch V, Oberkanins C et al (2009) Sensitive detection of KRAS mutations in archived formalin-fixed paraffin-embedded tissue using mutant-enriched PCR and reverse-hybridization. J Mol Diagn 11:508–513

    PubMed  CAS  Google Scholar 

  137. Fariña Sarasqueta A, Moerland E, de Bruyne H et al (2011) SNaPshot and StripAssay as valuable alternatives to direct sequencing for KRAS mutation detection in colon cancer routine diagnostics. J Mol Diagn 13:199–205

    PubMed  Google Scholar 

  138. Gauthier M, Bonnaud B, Arsac M et al (2010) Microarray for hepatitis B virus genotyping and detection of 994 mutations along the genome. J Clin Microbiol 48:4207–4215

    PubMed  Google Scholar 

  139. Tran N, Berne R, Chann R et al (2006) European multicenter evaluation of high-density DNA probe arrays for detection of hepatitis B virus resistance mutations and identification of genotypes. J Clin Microbiol 44:2792–2800

    PubMed  CAS  Google Scholar 

  140. Ali MM, Hasan F, Ahmad S, Al-Nakib W (2010) Comparative evaluation of INNO-LiPA HBV assay, direct DNA sequencing and subtractive PCR-RFLP for genotyping of clinical HBV isolates. Virol J 7:111

    PubMed  Google Scholar 

  141. Olivier M (2005) The Invader assay for SNP genotyping. Mutat Res 573:103–110

    PubMed  CAS  Google Scholar 

  142. Tadokoro K, Kobayashi M, Yamaguchi T et al (2006) Classification of hepatitis B virus genotypes by the PCR-Invader method with genotype-specific probes. J Virol Methods 138:30–39

    PubMed  CAS  Google Scholar 

  143. http://www.innogenetics.com/infectiousdiseases_detail.html?id=9

  144. http://www.questdiagnostics.com/testcenter/testguide.action?dc=TS_HBV_Genotype_BCP_

  145. Hanafiah KM, Groeger J, Flaxman AD, Wiersma ST (2012) Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to hepatitis C virus seroprevalence. Hepatology. doi:10.1002/hep.26141

    Google Scholar 

  146. Kim WR (2002) The burden of hepatitis C in the United States. Hepatology 36:S30–S34

    PubMed  Google Scholar 

  147. Robertson B, Myers G, Howard C et al (1998) Classification, nomenclature, and database development for hepatitis C virus (HCV) and related viruses: proposals for standardization. Arch Virol 143:2493–2503

    PubMed  CAS  Google Scholar 

  148. NIH Consens State Sci Statements (2002) 19:1–46

    Google Scholar 

  149. Robertson B, Myers G, Howard C et al (1998) Classification, nomenclature, and database development for hepatitis C virus (HCV) and related viruses: proposals for standardization. International Committee on Virus Taxonomy. Arch Virol 143:2493–2503

    PubMed  CAS  Google Scholar 

  150. Hnatyszyn HJ (2005) Chronic hepatitis C and genotyping: the clinical significance of determining HCV genotypes. Antivir Ther 10:1–11

    PubMed  CAS  Google Scholar 

  151. http://www.hepatitis.va.gov/patient/treat/decisions-single-page.asp

  152. Scott JD, Gretch DR (2007) Molecular diagnostics of hepatitis C virus infection: a systematic review. JAMA 297:724–732

    PubMed  CAS  Google Scholar 

  153. Pearlman BL (2011) The IL-28 genotype: how it will affect the care of patients with hepatitis C virus infection. Curr Gastroenterol Rep 13:78–86

    PubMed  Google Scholar 

  154. Bonetti P, Chemello L, Antona C et al (1997) Treatment of chronic hepatitis C with interferon-alpha by monitoring the response according to viraemia. J Viral Hepat 4:107–112

    PubMed  CAS  Google Scholar 

  155. Tong MJ, Blatt LM, Tong LT et al (1998) Long-term retreatment in chronic hepatitis C patients who were non-responders to an initial course of interferon-alpha 2b. J Viral Hepat 5:323–331

    PubMed  CAS  Google Scholar 

  156. Kleiber J, Walter T, Haberhausen G et al (2000) Performance characteristics of a quantitative, homogeneous TaqMan RT-PCR test for HCV RNA. J Mol Diagn 2:158–166

    PubMed  CAS  Google Scholar 

  157. Halfon P, Bourlière M, Pénaranda G et al (2006) Real-time PCR assays for hepatitis C virus (HCV) RNA quantitation are adequate for clinical management of patients with chronic HCV infection. J Clin Microbiol 44:2507–2511

    PubMed  CAS  Google Scholar 

  158. Fried MW, Shiffman ML, Reddy KR et al (2002) Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 347:975–982

    PubMed  CAS  Google Scholar 

  159. Manns MP, McHutchison JG, Gordon SC et al (2001) Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomized trial. Lancet 358:958–965

    PubMed  CAS  Google Scholar 

  160. Verbeeck J, Maes P, Lemey P, Pybus OG et al (2006) Investigating the origin and spread of hepatitis C virus genotype 5a. J Virol 80:4220–4226

    PubMed  CAS  Google Scholar 

  161. Nguyen MH, Keeffe EB (2005) Prevalence and treatment of hepatitis C virus genotypes 4, 5 and 6. Clin Gastroenterol Hepatol 3:S97–S101

    PubMed  CAS  Google Scholar 

  162. Legrand-Abravanel F, Sandres-Saune K, Barange L et al (2004) Hepatitis C virus genotype 5: epidemiological characteristics and sensitivity to combination therapy with interferon-alpha plus ribavirine. J Infect Dis 189:1397–1400

    PubMed  CAS  Google Scholar 

  163. Verbeeck J, Stanley MJ, Shieh J et al (2008) Evaluation of Versant hepatitis C virus genotype assay (LiPA) 2.0. J Clin Microbiol 46:1901–1906

    PubMed  CAS  Google Scholar 

  164. Elahi E, Pourmand N, Chaung R et al (2003) Determination of hepatitis C virus genotype by Pyrosequencing. J Virol Methods 109:171–176

    PubMed  CAS  Google Scholar 

  165. Nakatani SM, Santos CA, Riediger IN et al (2011) Comparative performance evaluation of hepatitis C virus genotyping based on the 5′ untranslated region versus partial sequencing of the NS5B region of Brazilian patients with chronic hepatitis C. Virol J 8:459

    PubMed  CAS  Google Scholar 

  166. Schutzbank TE, Sefers SE, Kahmann N et al (2006) Comparative evaluation of three commercially available methodologies for hepatitis C virus genotyping. J Clin Microbiol 44:3797–3798

    PubMed  Google Scholar 

  167. Ank N, Paludan SR (2009) Type III interferons: new layers of complexity in innate antiviral immunity. Biofactors 35:82–87

    PubMed  CAS  Google Scholar 

  168. Pagliaccetti NE, Eduardo R, Kleinstein SH et al (2008) Interleukin-29 (inteferon-lambda1) functions cooperatively with interferon to induce antiviral gene expression and inhibit hepatitis C replication. J Biol Chem 283:30079–30089

    PubMed  CAS  Google Scholar 

  169. Ge D, Fellay J, Thompson AJ et al (2009) Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461:399–401

    PubMed  CAS  Google Scholar 

  170. McCarthy JJ, Li JH, Thompson A, Suchindran S et al (2010) Replicated association between an IL28B gene variant and a sustained response to pegylated interferon and ribavirin. Gastroenterology 138:2307–2314

    PubMed  Google Scholar 

  171. Fiorina L, Paolucci S, Papadimitriou S, Baldanti F (2012) Comparison of three different methods for the evaluation of IL28 and ITPA polymorphisms in patients infected with HCV. J Virol Methods 184:103–105

    PubMed  CAS  Google Scholar 

  172. Cook L, Diem K, Kim W et al (2012) Allele-specific PCR for determination of IL28B genotype. J Clin Microbiol 50:4144–4146

    PubMed  CAS  Google Scholar 

  173. Sharafi H, Pouryasin H, Alavian SM et al (2012) Development and validation of a simple, rapid and inexpensive PCR-RFLP method for genotyping of common IL28B polymorphisms: a useful pharmacogenetic tool for prediction of hepatitis C treatment response. Hepat Mon 12:190–195

    PubMed  Google Scholar 

  174. Ito K, Higami K et al (2011) The rs8099917 polymorphism, when determined by a suitable genotyping method, is a better predictor for response to pegylated alpha interferon/ribavirin therapy in Japanese patients than other single nucleotide polymorphisms associated with interleukin-28B. J Clin Microbiol 49:1853–1860

    PubMed  CAS  Google Scholar 

  175. Eurich D, Boas-Knoop S, Ruehl M et al (2011) Relationship between the interleukin-28b gene polymorphism and the histological severity of hepatitis C virus-induced graft inflammation and the response to antiviral therapy after liver transplantation. Liver Transpl 17:289–298

    PubMed  Google Scholar 

  176. Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362:1907–1917

    PubMed  Google Scholar 

  177. Llovet JM, Bruix J (2008) Novel advancements in the management of hepatocellular carcinoma in 2008. J Hepatol 48(Suppl 1):S20–S37

    PubMed  CAS  Google Scholar 

  178. Paradis V, Bièche I, Dargère D et al (2003) Molecular profiling of hepatocellular carcinomas (HCC) using a large-scale real-time RT-PCR approach: determination of a molecular diagnostic index. Am J Pathol 163:733–741

    PubMed  CAS  Google Scholar 

  179. Nam SW, Park JY, Ramasamy A et al (2005) Molecular changes from dysplastic nodule to hepatocellular carcinoma through gene expression profiling. Hepatology 42:809–818

    PubMed  CAS  Google Scholar 

  180. Llovet JM, Chen Y, Wurmbach E et al (2006) A molecular signature to discriminate dysplastic nodules from early hepatocellular carcinoma in HCV cirrhosis. Gastroenterology 131:1758–1767

    PubMed  CAS  Google Scholar 

  181. Haybaeck J et al (2011) The parallel universe: microRNAs and their role in chronic hepatitis, liver tissue damage and hepatocarcinogenesis. Swiss Med Wkly 141:w13287

    PubMed  Google Scholar 

  182. Gramantieri L et al (2008) MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med 12:2189–2204

    PubMed  CAS  Google Scholar 

  183. Coulouarn C, Factor VM, Andersen JB et al (2009) Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 28:3526–3536

    PubMed  CAS  Google Scholar 

  184. Budhu A, Jia HL, Forgues M et al (2008) Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 47:897–907

    PubMed  CAS  Google Scholar 

  185. Zhang J, Yang Y, Yang T et al (2010) MicroRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity. Br J Cancer 103:1215–1220

    PubMed  CAS  Google Scholar 

  186. Ura S, Honda M, Yamashita T et al (2009) Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma. Hepatology 49:1098–1112

    PubMed  CAS  Google Scholar 

  187. Chung GE, Yoon JH, Myung SJ et al (2010) High expression of microRNA-15b predicts a low risk of tumor recurrence following curative resection of hepatocellular carcinoma. Oncol Rep 23:113–119

    PubMed  CAS  Google Scholar 

  188. Ji J, Shi J, Budhu A et al (2009) MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med 361:1437–1447

    PubMed  CAS  Google Scholar 

  189. Wang W, Zhao LJ, Tan YX et al (2012) MiR-138 induces cell cycle arrest by targeting cyclin D3 in hepatocellular carcinoma. Carcinogenesis 33:1113–1120

    PubMed  CAS  Google Scholar 

  190. He XX, Chang Y, Meng FY et al (2012) MicroRNA-375 targets AEG-1 in hepatocellular carcinoma and suppresses liver cancer cell growth in vitro and in vivo. Oncogene 31:3357–3369

    PubMed  CAS  Google Scholar 

  191. Huang YS, Dai Y, Yu XF et al (2008) Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues without viral hepatitis. J Gastroenterol Hepatol 23:87–94

    PubMed  Google Scholar 

  192. Antequera F, Bird A (1993) Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A 90:11995–11999

    PubMed  CAS  Google Scholar 

  193. Antequera F, Boyes J, Bird A (1990) High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62:503–514

    PubMed  CAS  Google Scholar 

  194. Baylin SB, Hoppener JW, de Bustros A et al (1986) DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas. Cancer Res 46:2917–2922

    PubMed  CAS  Google Scholar 

  195. Baylin SB, Fearon ER, Vogelstein B et al (1987) Hypermethylation of the 5′ region of the calcitonin gene is a property of human lymphoid and acute myeloid malignancies. Blood 70:412–417

    PubMed  CAS  Google Scholar 

  196. de Bustros A, Nelkin BD, Silverman A et al (1985) The short arm of chromosome 11 is a “hot spot” for hypermethylation in human neoplasia. Proc Natl Acad Sci U S A 85:5693–5697

    Google Scholar 

  197. Jeng KS, Sheen IS, Chen BF, Wu JY (2000) Is the p53 gene mutation of prognostic value in hepatocellular carcinoma after resection? Arch Surg 135:1329–1333

    PubMed  CAS  Google Scholar 

  198. Katiyar S, Dash BC, Thakur V, Guptan RC, Sarin SK, Das BC (2000) p53 tumor suppressor gene mutations in hepatocellular carcinoma patients in India. Cancer 88:1565–1573

    PubMed  CAS  Google Scholar 

  199. Honda K, Sbisa E, Tullo A, Papeo PA et al (1998) p53 mutation is a poor prognostic indicator for survival in patients with hepatocellular carcinoma undergoing surgical tumour ablation. Br J Cancer 77:776–782

    PubMed  CAS  Google Scholar 

  200. Heinze T, Jonas S, Karsten A, Neuhaus P (1999) Determination of the oncogenes p53 and C-erb B2 in the tumour cytosols of advanced hepatocellular carcinoma (HCC) and correlation to survival time. Anticancer Res 19:2501–2503

    PubMed  CAS  Google Scholar 

  201. Malkin D (2001) The role of p53 in human cancer. J Neurooncol 51:231–243

    PubMed  CAS  Google Scholar 

  202. Ryan KM, Phillips AC, Vousden KH (2001) Regulation and function of the p53 tumor suppressor protein. Curr Opin Cell Biol 13:332–337

    PubMed  CAS  Google Scholar 

  203. Chen GG, Merchant JL, Lai PB et al (2003) Mutation of p53 in recurrent hepatocellular carcinoma and its association with the expression of ZBP-89. Am J Pathol 162:1823–1829

    PubMed  CAS  Google Scholar 

  204. Hsia CC, Nakashima Y, Thorgeirsson SS et al (2000) Correlation of immunohistochemical staining and mutations of p53 in human hepatocellular carcinoma. Oncol Rep 7:353–356

    PubMed  CAS  Google Scholar 

  205. Laurent-Puig P, Legoix P, Bluteau O et al (2001) Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 120:1763–1773

    PubMed  CAS  Google Scholar 

  206. Audard V, Grimber G, Elie C et al (2007) Cholestasis is a marker for hepatocellular carcinomas displaying β-catenin mutations. J Pathol 212:345–352

    PubMed  CAS  Google Scholar 

  207. Uenishi T, Kubo S, Yamamoto T et al (2003) Cytokeratin 19 expression in hepatocellular carcinoma predicts early postoperative recurrence. Cancer Sci 94:851–857

    PubMed  CAS  Google Scholar 

  208. Kirkpatrick KL, Mokbel K (2001) The significance of human telomerase reverse transcriptase (hTERT) in cancer. Eur J Surg Oncol 27:754–760

    PubMed  CAS  Google Scholar 

  209. Yang YJ, Chen H, Huang P, Li CH et al (2011) Quantification of plasma hTERT DNA in hepatocellular carcinoma patients by quantitative fluorescent polymerase chain reaction. Clin Invest Med 34:E238

    PubMed  CAS  Google Scholar 

  210. Bosch FX, Ribes J, Diaz M, Cleries R (2004) Primary liver cancer: worldwide incidence and trends. Gastroenterology 127:S5–S16

    PubMed  Google Scholar 

  211. Shackelford RE, Whitling NA, McNab P et al (2012) KRAS testing: a tool for the implementation of personalized medicine. Genes Cancer 3:459–466

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Coppola M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shackelford, R.E., Mayhall, G., Japa, S., Nasir, A., Malafa, M., Coppola, D. (2014). Molecular-Genetic Testing in Hepatocellular Carcinoma and Its Premalignant Conditions. In: Coppola, D. (eds) Molecular Pathology and Diagnostics of Cancer. Cancer Growth and Progression, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7192-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7192-5_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7191-8

  • Online ISBN: 978-94-007-7192-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics