Skip to main content

Molecular Pathology and Diagnostics of Colorectal Cancer

  • Chapter
  • First Online:
  • 2809 Accesses

Part of the book series: Cancer Growth and Progression ((CAGP,volume 16))

Abstract

Colorectal carcinoma (CRC) is the third most common malignancy in the United States and is the second leading cause of cancer deaths. Over the past 20 years, our knowledge of this CRC carcinogenesis has enormously increased; presently, several molecular diagnostic tests are commonly employed to analyze stage IV CRC and familiar CRC syndromes to determine treatment options and CRC inheritance and risk. More recently the number of CRC diagnostic tests has enormously expanded as our knowledge of CRC carcinogenesis has increased. Here, we review the standard tests employed in CRC, such as KRAS and Braf analyses, and also include less commonly employed tests related to familiar CRC and microsatellite instability. Last, we focus on possible future CRC genetic tests and testing modalities, focusing on techniques such as microarray and mass spectrophotometry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

8-oxo-G:

7,8-dihydro-8-oxo-deoxyguanosine

AFAP:

Attenuated familial adenomatous polyposis

APC:

Adenomatous polyposis

ARMS:

Amplification resistant mutation system

CRC:

Colorectal carcinoma

CSGE:

Conformation strand gel electrophoresis

EGFR:

Epidermal growth factor receptor

FAP:

Familial adenomatous polyposis

GTP:

Guanosine-5′-triphosphate

HNPCC:

Polyposis hereditary nonpolyposis colon cancer

HRM:

High-resolution melting

JPS:

Juvenile polyposis syndrome

MAP:

MYH-associated polyposis

mCRC:

Metastatic CRC

MLH1:

MutL homolog 1

MLH3:

MutS homolog 3

MLPA:

Multiplex ligation-dependent probe amplification

MSH2:

MutS homolog 2

MSH6:

MutS homolog 6

MSI:

Microsatellite instability

NCCN:

National Comprehensive Cancer Network

PCR:

Polymerase chain reaction

PJS:

Peutz-Jeghers syndrome

PMS2:

Postmeiotic segregation increased 2

PTT:

Protein truncation test

SSCP:

Single strand conformation polymorphism

T-ARMS-PCR:

Tetra-primer amplification refractory mutation system PCR

References

  1. Parkin DM, Pisani P, Ferlay J (1999) Global cancer statistics. CA Cancer J Clin 52:33–64

    Google Scholar 

  2. van der Voort van Zijp J, Hoekstra HJ, Basson MD (2008) Evolving management of colorectal cancer. World J Gastroenterol 14:3956–3967

    Google Scholar 

  3. Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 361:2449–2460

    PubMed  CAS  Google Scholar 

  4. Parkin DM, Muir CS, Whelan SL, Gao YT, Ferlay J, Powell J (1992) Cancer incidence in five continents. Vol. 6, vol 120. International Agency for Research on Cancer, Lyon, pp 301–353

    Google Scholar 

  5. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85

    PubMed  CAS  Google Scholar 

  6. Picelli S, Von Holst S, Wessendorf P (2009) The continuing search for predisposing colorectal cancer variants. Cancer Genomics Proteomics 6:305–316

    PubMed  CAS  Google Scholar 

  7. Johns LE, Houlston RS (2001) A systematic review and meta-analysis of familial colorectal cancer risk. Am J Gastroenterol 96:2992–3003

    PubMed  CAS  Google Scholar 

  8. Cannon-Albright LA, Skolnick MH, Bishop DT, Lee RG, Burt RW (1988) Common inheritance of susceptibility to colonic adenomatous polyps and associated colorectal cancers. N Engl J Med 319:533–537

    PubMed  CAS  Google Scholar 

  9. Potter JD (1999) Colorectal cancer: molecules and populations. J Natl Cancer Inst 91:916–932

    PubMed  CAS  Google Scholar 

  10. Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Fuchs CS, Colditz GA (2003) Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst 95:825–828

    PubMed  Google Scholar 

  11. Giovannucci E (2007) Metabolic syndrome, hyperinsulinemia, and colon cancer: a review. Am J Clin Nutr 86:s836–s842

    PubMed  Google Scholar 

  12. Stallmach A, Bielecki C, Schmidt C (2009) Malignant transformation in inflammatory bowel disease—surveillance guide. Dig Dis 27:584–590

    PubMed  Google Scholar 

  13. Pais R, Silaghi H, Silaghi AC, Rusu ML, Dumitrascu DL (2009) Metabolic syndrome and risk of subsequent colorectal cancer. World J Gastroenterol 15:5141–5148

    PubMed  CAS  Google Scholar 

  14. Saltz L (2008) Colorectal cancer treatment: what’s next? (or: is there life after EGFR and VEGF?). Gastrointest Cancer Res 2(4 Suppl):S20–S22

    PubMed  Google Scholar 

  15. Sobel ME, Bagg A, Caliendo AM, Ladanyi M, Zehnbauer B (2008) The evolution of molecular genetic pathology: advancing 20th-century diagnostic methods into potent tools for the new millennium. J Mol Diagn 10:480–483

    PubMed  Google Scholar 

  16. Tsongalis GJ, Silverman LM (2006) Molecular diagnostics: a historical perspective. Clin Chim Acta 369:188–192

    PubMed  CAS  Google Scholar 

  17. Wang HL, Lopategui J, Amin MB, Patterson SD (2010) KRAS mutation testing in human cancers: the pathologist’s role in the era of personalized medicine. Adv Anat Pathol 17:23–32

    PubMed  CAS  Google Scholar 

  18. O-charoenrat P, Rhys-Evans P, Eccles S (2000) Expression and regulation of c-ERBB ligands in human head and neck squamous carcinoma cells. Int J Cancer 88:759–765

    PubMed  CAS  Google Scholar 

  19. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signaling network. Nat Rev Mol Cell Biol 2:127–137

    PubMed  CAS  Google Scholar 

  20. Mayer A, Takimoto M, Fritz E, Schellander G, Kofler K, Ludwig H (1993) The prognostic significance of proliferating cell nuclear antigen, epidermal growth factor receptor, and mdr gene expression in colorectal cancer. Cancer 71:2454–2460

    PubMed  CAS  Google Scholar 

  21. Nicholson RI, Gee JM, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37(Suppl 4):S9–S15

    PubMed  CAS  Google Scholar 

  22. Kopp R, Rothbauer E, Mueller E, Schildberg FW, Jauch KW, Pfeiffer A (2003) Reduced survival of rectal cancer patients with increased tumor epidermal growth factor receptor levels. Dis Colon Rectum 46:1391–1399

    PubMed  Google Scholar 

  23. Tol J, Dijkstra JR, Klomp M, Teerenstra S, Dommerholt M, Vink-Börger ME, van Cleef PH, van Krieken JH, Punt CJ, Nagtegaal ID (2010) Markers for EGFR pathway activation as predictor of outcome in metastatic colorectal cancer patients treated with or without cetuximab. Eur J Cancer 46:1997–2009

    PubMed  CAS  Google Scholar 

  24. Ziober BL, Willson JK, Hymphrey LE, Childress-Fields K, Brattain MG (1993) Autocrine transforming growth factor-alpha is associated with progression of transformed properties in human colon cancer cells. J Biol Chem 268:691–698

    PubMed  CAS  Google Scholar 

  25. Untawale S, Zorbas MA, Hodgson CP, Coffey RJ, Gallick GE, North SM, Wildrick DM, Olive M, Blick M, Yeoman LC et al (1993) Transforming growth factor-alpha production and autoinduction in a colorectal carcinoma cell line (DiFi) with an amplified epidermal growth factor receptor gene. Cancer Res 53:1630–1636

    PubMed  CAS  Google Scholar 

  26. Tsushima H, Kawata S, Tamura S, Ito N, Shirai Y, Kiso S, Imai Y, Shimomukai H, Nomura Y, Matsuda Y, Matsuzawa Y (1996) High levels of transforming growth factor beta 1 in patients with colorectal cancer: association with disease progression. Gastroenterology 110:375–382

    PubMed  CAS  Google Scholar 

  27. Pennell NA, Lynch TJ Jr (2009) Combined inhibition of the VEGFR and EGFR signaling pathways in the treatment of NSCLC. Oncologist 14:399–411

    PubMed  CAS  Google Scholar 

  28. Malumbres M, Barbacid M (2003) RAS oncogenes: the first 30 years. Nat Rev Cancer 3:459–465

    PubMed  CAS  Google Scholar 

  29. Der CJ, Krontiris TG, Cooper GM (1982) Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sci USA 79:3637–3640

    PubMed  CAS  Google Scholar 

  30. Graziani A, Gramaglia D, Zonca PD, Comoglio PM (1993) Hepatocyte growth factor/scatter factor stimulates the Ras-guanine nucleotide exchanger. J Biol Chem 268:9165–9168

    PubMed  CAS  Google Scholar 

  31. Hu YP, Patil SB, Panasiewicz M, Li W, Hauser J, Humphrey LE, Brattain MG (2008) Heterogeneity of receptor function in colon carcinoma cells determined by cross-talk between type I insulin-like growth factor receptor and epidermal growth factor receptor. Cancer Res 68:8004–8013

    PubMed  CAS  Google Scholar 

  32. Bos JL (1989) Ras oncogenes in human cancer: a review. Cancer Res 49:4682–4689

    PubMed  CAS  Google Scholar 

  33. McCormick F (1989) Ras GTPase activating protein: signal transmitter and signal terminator. Cell 56:5–8

    PubMed  CAS  Google Scholar 

  34. Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125–132

    PubMed  CAS  Google Scholar 

  35. Cunningham D, Humblet Y, Siena S et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345

    PubMed  CAS  Google Scholar 

  36. Bonner JA, Harari PM, Giralt J et al (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354:567–578

    PubMed  CAS  Google Scholar 

  37. Vermorken JB, Trigo J, Hitt R et al (2007) Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum based therapy. J Clin Oncol 25:2171–2177

    PubMed  CAS  Google Scholar 

  38. Goldstein NI, Prewett M, Zuklys K, Rockwell P, Mendelsohn J (1995) Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res 1:1311–1318

    PubMed  CAS  Google Scholar 

  39. Li S, Schmitz KR, Jeffrey PD et al (2005) Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7:301–311

    PubMed  CAS  Google Scholar 

  40. Gill GN, Kawamoto T, Cochet C et al (1984) Monoclonal anti-epidermal growth factor receptor antibodies which are inhibitors of epidermal growth factor binding and antagonists of epidermal growth factor binding and antagonists of epidermal growth factor-stimulated tyrosine protein kinase activity. J Biol Chem 259:7755–7760

    PubMed  CAS  Google Scholar 

  41. Peng D, Fan Z, Lu Y et al (1996) Anti-epidermal growth factor receptor monoclonal antibody 225 up-regulates p27KIP1 and induces G1 arrest in prostatic cancer cell line DU145. Cancer Res 56:3666–3669

    PubMed  CAS  Google Scholar 

  42. Roda JM, Joshi T, Butchar JP, McAlees JW, Lehman A, Tridandapani S, Carson WE 3rd (2007) The activation of natural killer cell effector functions by cetuximab-coated, epidermal growth factor receptor positive tumor cells is enhanced by cytokines. Clin Cancer Res 13:6419–6428

    PubMed  CAS  Google Scholar 

  43. Yang XD, Jia XC, Corvalan JR et al (2001) Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody for cancer therapy. Crit Rev Oncol Hematol 38:17–23

    PubMed  CAS  Google Scholar 

  44. Foon KA, Yang XD, Weiner LM, Belldegrun AS, Figlin RA, Crawford J, Rowinsky EK, Dutcher JP, Vogelzang NJ, Gollub J, Thompson JA, Schwartz G, Bukowski RM, Roskos LK, Schwab GM (2004) Preclinical and clinical evaluations of ABX-EGF, a fully human anti-epidermal growth factor receptor antibody. Int J Radiat Oncol Biol Phys 58:984–990

    PubMed  CAS  Google Scholar 

  45. Van Cutsem E, Peeters M, Siena S, Humblet Y, Hendlisz A, Neyns B, Canon JL, Van Laethem JL, Maurel J, Richardson G, Wolf M, Amado RG (2007) Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 25:1658–1664

    PubMed  Google Scholar 

  46. Chung KY, Shia J, Kemeny NE, Shah M, Schwartz GK, Tse A, Hamilton A, Pan D, Schrag D, Schwartz L, Klimstra DS, Fridman D, Kelsen DP, Saltz LB (2005) Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol 23:1803–1810

    PubMed  CAS  Google Scholar 

  47. Lièvre A, Bachet JB, Boige V, Cayre A, Le Corre D, Buc E, Ychou M, Bouché O, Landi B, Louvet C, André T, Bibeau F, Diebold MD, Rougier P, Ducreux M, Tomasic G, Emile JF, Penault-Llorca F, Laurent-Puig P (2008) KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 26:374–379

    PubMed  Google Scholar 

  48. Barault L, Veyrie N, Jooste V, Lecorre D, Chapusot C, Ferraz JM, Lièvre A, Cortet M, Bouvier AM, Rat P, Roignot P, Faivre J, Laurent-Puig P, Piard F (2008) Mutations in the RAS-MAPK, PI(3)K (phosphatidylinositol-3-OH kinase) signaling network correlate with poor survival in a population-based series of colon cancers. Int J Cancer 122:2255–2259

    PubMed  CAS  Google Scholar 

  49. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R, Suggs S, Radinsky R, Patterson SD, Chang DD (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26:1626–1634

    PubMed  CAS  Google Scholar 

  50. Zavodna K, Konecny M, Krivulcik T, Spanik S, Behulova R, Vizvaryova M, Weismanova E, Galbavy S, Kausitz J (2009) Genetic analysis of KRAS mutation status in metastatic colorectal cancer patients. Neoplasma 56:275–278

    PubMed  CAS  Google Scholar 

  51. Kislitsin D, Lerner A, Rennert G, Lev Z (2002) K-ras mutations in sporadic colorectal tumors in Israel: unusual high frequency of codon 13 mutations and evidence for nonhomogeneous representation of mutation subtypes. Dig Dis Sci 47:1073–1079

    PubMed  CAS  Google Scholar 

  52. Breivik J, Meling GI, Spurkland A, Rognum TO, Gaudernack G (1994) K-ras mutation in colorectal cancer: relations to patient age, sex and tumour location. Br J Cancer 69:367–371

    PubMed  CAS  Google Scholar 

  53. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532

    PubMed  CAS  Google Scholar 

  54. Zlobec I, Kovac M, Erzberger P, Molinari F, Bihl MP, Rufle A, Foerster A, Frattini M, Terracciano L, Heinimann K, Lugli A (2010) Combined analysis of specific KRAS mutation, BRAF and microsatellite instability identifies prognostic subgroups of sporadic and hereditary colorectal cancer. Int J Cancer 127:2569–2575

    PubMed  CAS  Google Scholar 

  55. De Roock W, Jonker DJ, Di Nicolantonio F, Sartore-Bianchi A, Tu D, Siena S, Lamba S, Arena S, Frattini M, Piessevaux H, Van Cutsem E, O’Callaghan CJ, Khambata-Ford S, Zalcberg JR, Simes J, Karapetis CS, Bardelli A, Tejpar S (2010) Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA 304:1812–1820

    PubMed  Google Scholar 

  56. Lièvre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, Côté JF, Tomasic G, Penna C, Ducreux M, Rougier P, Penault-Llorca F, Laurent-Puig P (2006) KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66:3992–3995

    PubMed  Google Scholar 

  57. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD, Robitaille S, Price TJ, Shepherd L, Au HJ, Langer C, Moore MJ, Zalcberg JR (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359:1757–1765

    PubMed  CAS  Google Scholar 

  58. De Roock W, Piessevaux H, De Schutter J, Janssens M, De Hertogh G, Personeni N, Biesmans B, Van Laethem JL, Peeters M, Humblet Y, Van Cutsem E, Tejpar S (2008) KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann Oncol 19:508–515

    PubMed  Google Scholar 

  59. Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, de Braud F, Donea S, Ludwig H, Schuch G, Stroh C, Loos AH, Zubel A, Koralewski P (2009) Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 27:663–671

    PubMed  CAS  Google Scholar 

  60. National Comprehensive Cancer Network (2012) NCCI clinical practice guidelines in oncology. Non Small Cell Lung Cancer (Version 2.2009) and Colon Cancer (Version 3.2009). http://www.nccn.org/professionals/physician_gls/PDF/colon.ncl.pdf, http://www.nccn.org/professionals/physician_gls/PDF/colon.pdf

  61. Gilbert MT, Haselkorn T, Bunce M, Sanchez JJ, Lucas SB, Jewell LD, Van Marck E, Worobey M (2007) The isolation of nucleic acids from fixed, paraffin-embedded tissues-which methods are useful when? PLoS One 2:e537

    PubMed  Google Scholar 

  62. Williams C, Pontén F, Moberg C, Söderkvist P, Uhlén M, Pontén J, Sitbon G, Lundeberg J (1999) A high frequency of sequence alterations is due to formalin fixation of archival specimens. Am J Pathol 155:1467–1471

    PubMed  CAS  Google Scholar 

  63. Esposito G (2007) Complementary techniques: laser capture microdissection–increasing specificity of gene expression profiling of cancer specimens. Adv Exp Med Biol 593:54–65

    PubMed  Google Scholar 

  64. Chien CC, Chen SH, Liu CC, Lee CL, Yang RN, Yang SH, Huang CJ (2007) Correlation of K-ras codon 12 mutations in human feces and ages of patients with colorectal cancer (CRC). Transl Res 149:96–102

    PubMed  CAS  Google Scholar 

  65. Brink M, de Goeij AF, Weijenberg MP, Roemen GM, Lentjes MH, Pachen MM, Smits KM, de Bruïne AP, Goldbohm RA, van den Brandt PA (2003) K-ras oncogene mutations in sporadic colorectal cancer in The Netherlands cohort study. Carcinogenesis 24:703–710

    PubMed  CAS  Google Scholar 

  66. Do H, Krypuy M, Mitchell PL, Fox SB, Dobrovic A (2008) High resolution melting analysis for rapid and sensitive EGFR and KRAS mutation detection in formalin fixed paraffin embedded biopsies. BMC Cancer 8:142

    PubMed  Google Scholar 

  67. Tsiatis AC, Norris-Kirby A, Rich RG, Hafez MJ, Gocke CD, Eshleman JR, Murphy KM (2010) Comparison of Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations. Diagnostic and clinical implications. J Mol Diagn 12:425–432

    PubMed  CAS  Google Scholar 

  68. Huang MM, Arnheim N, Goodman MF (1992) Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Res 20:4567–4573

    PubMed  CAS  Google Scholar 

  69. Clayton SJ, Scott FM, Walker J, Callaghan K, Haque K, Liloglou T, Xinarianos G, Shawcross S, Ceuppens P, Field JK, Fox JC (2000) K-ras point mutation detection in lung cancer: comparison of two approaches to somatic mutation detection using ARMS allele-specific amplification. Clin Chem 46:1929–1938

    PubMed  CAS  Google Scholar 

  70. Franklin WA, Haney J, Sugita M, Bemis L, Jimeno A, Messersmith WA (2010) KRAS mutation: comparison of testing methods and tissue sampling techniques in colon cancer. J Mol Diagn 12:43–50

    PubMed  CAS  Google Scholar 

  71. Kimura H, Kasahara K, Kawaishi M, Kunitoh H, Tamura T, Holloway B, Nishio K (2006) Detection of epidermal growth factor receptor mutations in serum as a predictor of the response to gefitinib in patients with non-small-cell lung cancer. Clin Cancer Res 12:3915–3921

    PubMed  CAS  Google Scholar 

  72. Weichert W, Schewe C, Lehmann A, Sers C, Denkert C, Budczies J, Stenzinger A, Joos H, Landt O, Heiser V, Röcken C, Dietel M (2010) KRAS genotyping of paraffin-embedded colorectal cancer tissue in routine diagnostics: comparison of methods and impact of histology. J Mol Diagn 12:35–42

    PubMed  CAS  Google Scholar 

  73. Kobunai T, Watanabe T, Yamamoto Y, Eshima K (2010) The frequency of KRAS mutation detection in human colon carcinoma is influenced by the sensitivity of assay methodology: a comparison between direct sequencing and real-time PCR. Biochem Biophys Res Commun 395:158–162

    PubMed  CAS  Google Scholar 

  74. Loupakis F, Ruzzo A, Cremolini C, Vincenzi B, Salvatore L, Santini D, Masi G, Stasi I, Canestrari E, Rulli E, Floriani I, Bencardino K, Galluccio N, Catalano V, Tonini G, Magnani M, Fontanini G, Basolo F, Falcone A, Graziano F (2009) KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br J Cancer 101:715–721

    PubMed  CAS  Google Scholar 

  75. Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, Zanon C, Moroni M, Veronese S, Siena S, Bardelli A (2007) Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res 67:2643–2648

    PubMed  CAS  Google Scholar 

  76. Tang KT, Lee CH (2010) BRAF mutation in papillary thyroid carcinoma: pathogenic role and clinical implications. J Chin Med Assoc 73:113–128

    PubMed  CAS  Google Scholar 

  77. Shepherd C, Puzanov I, Sosman JA (2010) B-RAF inhibitors: an evolving role in the therapy of malignant melanoma. Curr Oncol Rep 12:146–152

    PubMed  CAS  Google Scholar 

  78. Vang R, IeM S, Kurman RJ (2009) Ovarian low-grade and high-grade serous carcinoma: pathogenesis, clinicopathologic and molecular biologic features, and diagnostic problems. Adv Anat Pathol 16:267–282

    PubMed  Google Scholar 

  79. Fransén K, Klintenäs M, Osterström A, Dimberg J, Monstein HJ, Söderkvist P (2004) Mutation analysis of the BRAF, ARAF and RAF-1 genes in human colorectal adenocarcinomas. Carcinogenesis 25:527–533

    PubMed  Google Scholar 

  80. Domingo E, Espín E, Armengol M, Oliveira C, Pinto M, Duval A, Brennetot C, Seruca R, Hamelin R, Yamamoto H, Schwartz S Jr (2004) Activated BRAF targets proximal colon tumors with mismatch repair deficiency and MLH1 inactivation. Genes Chromosomes Cancer 39:138–142

    PubMed  CAS  Google Scholar 

  81. Kumara T, Simms LA, Whitehall VL, Spring KJ, Wynter CV, Walsh MD, Barker MA, Arnold S, McGivern A, Matsubara N, Tanaka N, Higuchi T, Young J, Jass JR, Leggett BA (2004) BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut 53:1137–1144

    Google Scholar 

  82. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867

    PubMed  CAS  Google Scholar 

  83. Benlloch S, Payá A, Alenda C, Bessa X, Andreu M, Jover R, Castells A, Llor X, Aranda FI, Massutí B (2006) Detection of BRAF V600E mutation in colorectal cancer: comparison of automatic sequencing and real-time chemistry methodology. J Mol Diagn 8:540–543

    PubMed  CAS  Google Scholar 

  84. McGivern A, Wynter CV, Whitehall VL, Kambara T, Spring KJ, Walsh MD, Barker MA, Arnold S, Simms LA, Leggett BA, Young J, Jass JR (2004) Promoter hypermethylation frequency and BRAF mutations distinguish hereditary non-polyposis colon cancer from sporadic MSI-H colon cancer. Fam Cancer 3:101–107

    PubMed  CAS  Google Scholar 

  85. Kadiyska TK, Konstantinova DV, Atanasov VR, Kremensky IM, Mitev VI (2007) Frequency and application of the hot spot BRAF gene mutation (p.V600E) in the diagnostic strategy for hereditary nonpolyposis colorectal cancer. Cancer Detect Prev 31:254–256

    PubMed  CAS  Google Scholar 

  86. Eychene A, Barnier JV, Apiou F, Dutrillaux B, Calothy G (1992) Chromosomal assignment of two human B-raf (Rmil) proto-oncogene loci: B-raf-1 encoding the p94Braf/Rmil and B-raf-2, a processed pseudogene. Oncogene 7:1657–1660

    PubMed  CAS  Google Scholar 

  87. Zou M, Baitei EY, Alzahrani AS, Al-Mohanna F, Farid NR, Meyer B, Shi Y (2009) Oncogenic activation of MAP kinase by BRAF pseudogene in thyroid tumors. Neoplasia 11:57–65

    PubMed  CAS  Google Scholar 

  88. Lurkin I, Stoehr R, Hurst CD, van Tilborg AA, Knowles MA, Hartmann A, Zwarthoff EC (2010) Two multiplex assays that simultaneously identify 22 possible mutation sites in the KRAS, BRAF, NRAS and PIK3CA genes. PLoS One 5:e8802

    PubMed  Google Scholar 

  89. Albitar M, Yeh C, Ma W (2009) K-ras mutations and cetuximab in colorectal cancer. N Engl J Med 360:834

    PubMed  CAS  Google Scholar 

  90. De Roock W, Lambrechts D, Tejpar S (2009) K-ras mutations and cetuximab in colorectal cancer [letter to editor]. N Engl J Med 360:834

    PubMed  Google Scholar 

  91. Samuels Y, Velculescu VE (2004) Oncogenic mutations of PIK3CA in human cancers. Cell Cycle 3:1221–1224

    PubMed  CAS  Google Scholar 

  92. Wong KK, Engelman JA, Cantley LC (2010) Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev 20:87–90

    PubMed  CAS  Google Scholar 

  93. Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8:627–644

    PubMed  CAS  Google Scholar 

  94. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    PubMed  CAS  Google Scholar 

  95. Jhawer M, Goel S, Wilson AJ, Montagna C, Ling YH et al (2008) PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res 68:1953–1961

    PubMed  CAS  Google Scholar 

  96. Prenen H, De Schutter J, Jacobs B, De Roock W, Biesmans B et al (2009) PIK3CA mutations are not a major determinant of resistance to the epidermal growth factor receptor inhibitor cetuximab in metastatic colorectal cancer. Clin Cancer Res 15:3184–3188

    PubMed  CAS  Google Scholar 

  97. Perrone F, Lampis A, Orsenigo M, Di Bartolomeo M, Gevorgyan A, Losa M, Frattini M, Riva C, Andreola S, Bajetta E, Bertario L, Leo E, Pierotti MA, Pilotti S (2009) PI3KCA/PTEN deregulation contributes to impaired responses to cetuximab in metastatic colorectal cancer patients. Ann Oncol 20:84–90

    PubMed  CAS  Google Scholar 

  98. Velho S, Oliveira C, Ferreira A, Ferreira AC, Suriano G, Schwartz S Jr, Duval A, Carneiro F, Machado JC, Hamelin R, Seruca R (2005) The prevalence of PIK3CA mutations in gastric and colon cancer. Eur J Cancer 41:1649–1654

    PubMed  CAS  Google Scholar 

  99. Lambrechts D, De Roock W, Prenen H, De Schutter J, Jacobs B, Biesmans B, Claes B, De Hertogh G, Van Cutsem E, Tejpar S (2009) The role of KRAS, BRAF, NRAS, and PIK3CA mutations as markers of resistance to cetuximab in chemorefractory metastatic colorectal cancer. J Clin Oncol 27:4020

    Google Scholar 

  100. Russo A, Rizzo S, Bronte G, Silvestris N, Colucci G, Gebbia N, Bazan V, Fulfaro F (2009) The long and winding road to useful predictive factors for anti-EGFR therapy in metastatic colorectal carcinoma: the KRAS/BRAF pathway. Oncology 77(Suppl 1):57–68

    PubMed  CAS  Google Scholar 

  101. Luschka H (1861) Ueber polypose Vegetationen der gesammten Dickdarmschleimhaut. Arch Pathol Anat Physiol Klin Med 20:133–142

    Google Scholar 

  102. Aretz S, Stienen D, Uhlhaas S, Loff S, Back W, Pagenstecher C, McLeod DR, Graham GE, Mangold E, Santer R, Propping P, Friedl W (2005) High proportion of large genomic STK11 deletions in Peutz-Jeghers syndrome. Hum Mutat 26:513–519

    PubMed  CAS  Google Scholar 

  103. Aretz S, Stienen D, Uhlhaas S, Stolte M, Entius MM, Loff S, Back W, Kaufmann A, Keller KM, Blaas SH, Siebert R, Vogt S, Spranger S, Holinski-Feder E, Sunde L, Propping P, Friedl W (2007) High proportion of large genomic deletions and a genotype phenotype update in 80 unrelated families with juvenile polyposis syndrome. J Med Genet 44:702–709

    PubMed  CAS  Google Scholar 

  104. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170

    PubMed  CAS  Google Scholar 

  105. Half E, Bercovich D, Rozen P (2009) Familial adenomatous polyposis. Orphanet J Rare Dis 4:22

    PubMed  Google Scholar 

  106. Offerhaus GJ, Giardiello FM, Krush AJ et al (1992) The risk of upper gastrointestinal cancer in familial adenomatous polyposis. Gastroenterology 102:1980–1982

    PubMed  CAS  Google Scholar 

  107. Park JG, Park KJ, Ahn YO et al (1992) Risk of gastric cancer among Korean familial adenomatous polyposis patients. Report of three cases. Dis Colon Rectum 35:996–998

    PubMed  CAS  Google Scholar 

  108. Brosens LA, Keller JJ, Offerhaus GJ, Goggins M, Giardiello FM (2005) Prevention and management of duodenal polyps in familial adenomatous polyposis. Gut 54:1034–1043

    PubMed  CAS  Google Scholar 

  109. Johnson JC, DiSario JA, Grady WM (2004) Surveillance and treatment of periampullary and duodenal adenomas in familial adenomatous polyposis. Curr Treat Options Gastroenterol 7:79–89

    PubMed  Google Scholar 

  110. Anaya DA, Chang GJ, Rodriguez-Bigas MA (2008) Extracolonic manifestations of hereditary colorectal cancer syndromes. Clin Colon Rectal Surg 21:263–272

    PubMed  Google Scholar 

  111. Laken SJ, Papadopoulos N, Petersen GM, Gruber SB, Hamilton SR, Giardiello FM, Brensinger JD, Vogelstein B, Kinzler KW (1999) Analysis of masked mutations in familial adenomatous polyposis. Proc Natl Acad Sci USA 96:2322–2326

    PubMed  CAS  Google Scholar 

  112. Sampson JR, Jones S, Dolwani S, Cheadle JP (2005) MutYH (MYH) and colorectal cancer. Biochem Soc Trans 33:679–683

    PubMed  CAS  Google Scholar 

  113. Bisgaard ML, Ripa R, Knudsen AL, Bülow S (2004) Familial adenomatous polyposis patients without an identified APC germline mutation have a severe phenotype. Gut 53:266–270

    PubMed  CAS  Google Scholar 

  114. Jones S, Emmerson P, Maynard J et al (2002) Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:CRT:a mutations. Hum Mol Genet 11:2961–2967

    PubMed  CAS  Google Scholar 

  115. Sieber OM, Lipton L, Crabtree M et al (2003) Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N Engl J Med 348:791–799

    PubMed  Google Scholar 

  116. Béroud C, Soussi T (1996) APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res 24:121–124

    PubMed  Google Scholar 

  117. Bos JL, Fearon ER, Hamilton SR, de Veerlan v M, van Boom JH, Vogelstein B (1987) Presence of ras gene mutations in human colorectal cancers. Nature 327:293–297

    PubMed  CAS  Google Scholar 

  118. Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hedge P, McKechnie D, Finniear R, Markham A, Groffen J, Boguski MS, Altschul SF, Horii A, Ando H, Miyoshi Y, Miki Y, Nishisho I, Nakamura Y (1991) Identification of FAP locus genes from chromosome 5q21. Science 253:661–665

    PubMed  CAS  Google Scholar 

  119. Fearon ER, Cho KR, Nigro JM, Kern SE, Simons JW, Ruppert JM, Hamilton SR, Preisinger AC, Thomas G, Kinzler KW, Vogelstein B (1990) Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247:49–56

    PubMed  CAS  Google Scholar 

  120. Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, van Tuinen P, Ledbetter DH, Barker DF, Nakamura Y, White R, Vogelstein B (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244:217–221

    PubMed  CAS  Google Scholar 

  121. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    PubMed  CAS  Google Scholar 

  122. Neufeld KL, White RL (1997) Nuclear and cytoplasmic localizations of the adenomatous polyposis coli protein. Proc Natl Acad Sci USA 94:3034–3039

    PubMed  CAS  Google Scholar 

  123. Henderson BR (2000) Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nat Cell Biol 2:653–660

    PubMed  CAS  Google Scholar 

  124. Rosin-Arbesfeld R, Townsley F, Bienz M (2000) The APC tumour suppressor has a nuclear export function. Nature 406:1009–1012

    PubMed  CAS  Google Scholar 

  125. Smith KJ, Levy DB, Maupin P, Pollard TD, Vogelstein B, Kinzler KW (1994) Wild-type but not mutant APC associates with the microtubule cytoskeleton. Cancer Res 54:3672–3675

    PubMed  CAS  Google Scholar 

  126. Kennell J, Cadigan KM (2009) APC and beta-catenin degradation. Adv Exp Med Biol 656:1–12

    PubMed  CAS  Google Scholar 

  127. Zhang T, Nanney LB, Luongo C, Lamps L, Heppner KJ, DuBois RN, Beauchamp RD (1997) Concurrent overexpression of cyclin D1 and cyclin-dependent kinase 4 (Cdk4) in intestinal adenomas from multiple intestinal neoplasia (Min) mice and human familial adenomatous polyposis patients. Cancer Res 57:169–175

    PubMed  CAS  Google Scholar 

  128. Wilding J, Straub J, Bee J, Churchman M, Bodmer W, Dickson C, Tomlinson I, Ilyas M (2002) Cyclin D1 is not an essential target of beta-catenin signaling during intestinal tumorigenesis, but it may act as a modifier of disease severity in multiple intestinal neoplasia (Min) mice. Cancer Res 62:4562–4565

    PubMed  CAS  Google Scholar 

  129. Venesio T, Balsamo A, Scordamaglia A, Bertolaso M, Arrigoni A, Sprujevnik T, Rossini FP, Risio M (2003) Germline APC mutation on the beta-catenin binding site is associated with a decreased apoptotic level in colorectal adenomas. Mod Pathol 16:57–65

    PubMed  Google Scholar 

  130. Shinozaki H, Yang K, Fan K, Edelmann W, Kucherlapati R, Weinstein IB, Lipkin M (2003) Cyclin D1 expression in the intestinal mucosa and tumors of Apc1638N mice. Anticancer Res 23:2217–2226

    PubMed  CAS  Google Scholar 

  131. Kaplan KB, Burds AA, Swedlow JR, Bekir SS, Sorger PK, Näthke IS (2001) A role for the adenomatous polyposis coli protein in chromosome segregation. Nat Cell Biol 3:429–432

    PubMed  CAS  Google Scholar 

  132. Bisgaard ML, Fenger K, Bülow S, Niebuhr E, Mohr J (2003) Familial adenomatous polyposis (FAP): frequency, penetrance, and mutation rate. Hum Mutat 3:121–125

    Google Scholar 

  133. Rozen P, Samuel Z, Rabau M, Goldman G, Shomrat R, Legum C, Orr-Urtreger A (2001) Familial adenomatous polyposis at the Tel Aviv Medical Center: demographic and clinical features. Fam Cancer 1:75–82

    PubMed  CAS  Google Scholar 

  134. Olschwang S, Tiret A, Laurent-Puig P, Muleris M, Parc R, Thomas G (1993) Restriction of ocular fundus lesions to a specific subgroup of APC mutations in adenomatous polyposis coli patients. Cell 75:959–968

    PubMed  CAS  Google Scholar 

  135. Nagase H, Miyoshi Y, Horii A, Aoki T, Ogawa M, Utsunomiya J, Baba S, Sasazuki T, Nakamura Y (1992) Correlation between the location of germ-line mutations in the APC gene and the number of colorectal polyps in familial adenomatous polyposis patients. Cancer Res 52:4055–4057

    PubMed  CAS  Google Scholar 

  136. Powell SM, Petersen GM, Krush AJ, Booker S, Jen J, Giardiello FM, Hamilton SR, Vogelstein B, Kinzler KW (1993) Molecular diagnosis of familial adenomatous polyposis. N Engl J Med 329:1982–1987

    PubMed  CAS  Google Scholar 

  137. Hogervorst FB, Cornelis RS, Bout M, van Vliet M, Oosterwijk JC, Olmer R, Bakker B, Klijn JG, Vasen HF, Meijers-Heijboer H et al (1995) Rapid detection of BRCA1 mutations by the protein truncation test. Nat Genet 10:208–212

    PubMed  CAS  Google Scholar 

  138. Roest PA, Roberts RG, van der Tuijn AC, Heikoop JC, van Ommen GJ, den Dunnen JT (1993) Protein truncation test (PTT) to rapidly screen the DMD gene for translation terminating mutations. Neuromuscul Disord 3:391–394

    PubMed  CAS  Google Scholar 

  139. De Rosa M, Scarano MI, Panariello L, Morelli G, Riegler G, Rossi GB, Tempesta A, Romano G, Renda A, Pettinato G, Izzo P (2003) The mutation spectrum of the APC gene in FAP patients from southern Italy: detection of known and four novel mutations. Hum Mutat 21:655–656

    PubMed  Google Scholar 

  140. Aretz S, Stienen D, Uhlhaas S, Pagenstecher C, Mangold E, Caspari R et al (2005) Large submicroscopic genomic APC deletions are a common cause of typical familial adenomatous polyposis. J Med Genet 42:185–192

    PubMed  CAS  Google Scholar 

  141. Gismondi V, Bafico A, Biticchi R et al (1998) 310 Basepair APC deletion with duplication of breakpoint (4394ins15del310) in an Italian polyposis patient. Hum Mutat 1:S220–S222

    PubMed  Google Scholar 

  142. Mihalatos M, Apessos A, Dauwerse H, Velissariou V, Psychias A, Koliopanos A, Petropoulos K, Triantafillidis JK, Danielidis I, Fountzilas G, Agnantis NJ, Nasioulas G (2005) Rare mutations predisposing to familial adenomatous polyposis in Greek FAP patients. BMC Cancer 5:40

    PubMed  Google Scholar 

  143. Pagenstecher C, Gadzicki D, Stienen D, Uhlhaas S, Mangold E, Rahner N, Arslan-Kirchner M, Propping P, Friedl W, Aretz S (2007) A complex rearrangement in the APC gene uncovered by multiplex ligation-dependent probe amplification. J Mol Diagn 9:122–126

    PubMed  CAS  Google Scholar 

  144. Castellsagué E, González S, Nadal M, Campos O, Guinó E, Urioste M, Blanco I, Frebourg T, Capellá G (2008) Detection of APC gene deletions using quantitative multiplex PCR of short fluorescent fragments. Clin Chem 54:1132–1140

    PubMed  Google Scholar 

  145. Varesco L, Gismondi V, James R, Robertson M, Grammatico P, Groden J, Casarino L, De Benedetti L, Bafico A, Bertario L et al (1993) Identification of APC gene mutations in Italian adenomatous polyposis coli patients by PCR-SSCP analysis. Am J Hum Genet 52:280–285

    PubMed  CAS  Google Scholar 

  146. Trimbath JD, Griffin C, Romans K, Giardiello FM (2003) Attenuated familial adenomatous polyposis presenting as ampullary adenocarcinoma. Gut 52:903–904

    PubMed  CAS  Google Scholar 

  147. Watson P, Lynch HT (1993) Extracolonic cancer in hereditary nonpolyposis colorectal cancer. Cancer 71:677–685

    PubMed  CAS  Google Scholar 

  148. Aziz O, Athanasiou T, Fazio VW, Nicholls RJ, Darzi AW, Church J, Phillips RK, Tekkis PP (2006) Meta-analysis of observational studies of ileorectal versus ileal pouch-anal anastomosis for familial adenomatous polyposis. Br J Surg 93:407–417

    PubMed  CAS  Google Scholar 

  149. Kartheuser AH, Parc R, Penna CP, Tiret E, Frileux P, Hannoun L, Nordlinger B, Loygue J (1996) Ileal pouch-anal anastomosis as the first choice operation in patients with familial adenomatous polyposis: a ten-year experience. Surgery 119:615–623

    PubMed  CAS  Google Scholar 

  150. Hirschman BA, Pollock BH, Tomlinson GE (2005) The spectrum of APC mutations in children with hepatoblastoma from familial adenomatous polyposis kindreds. J Pediatr 147:263–266

    PubMed  CAS  Google Scholar 

  151. Steinbach G, Lynch PM, Phillips RK, Wallace MH, Hawk E, Gordon GB, Wakabayashi N, Saunders B, Shen Y, Fujimura T, Su LK, Levin B (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342:1946–1952

    PubMed  CAS  Google Scholar 

  152. Phillips RK, Wallace MH, Lynch PM, Hawk E, Gordon GB, Saunders BP, Wakabayashi N, Shen Y, Zimmerman S, Godio L, Rodrigues-Bigas M, Su LK, Sherman J, Kelloff G, Levin B, Steinbach G, FAP Study Group (2002) A randomised, double blind, placebo controlled study of celecoxib, a selective cyclooxygenase 2 inhibitor, on duodenal polyposis in familial adenomatous polyposis. Gut 50:857–860

    PubMed  CAS  Google Scholar 

  153. Heiskanen I, Luostarinen T, Järvinen HJ (2000) Impact of screening examinations on survival in familial adenomatous polyposis. Scand J Gastroenterol 35:1284–1287

    PubMed  CAS  Google Scholar 

  154. Dowton SB, Slaugh RA (1995) Diagnosis of human heritable diseases–laboratory approaches and outcomes. Clin Chem 41:785–794

    PubMed  CAS  Google Scholar 

  155. Knudsen AL, Bisgaard ML, Bülow S (2003) Attenuated familial adenomatous polyposis (AFAP). A review of the literature. Fam Cancer 2:43–55

    PubMed  Google Scholar 

  156. Grady WM (2003) Genetic testing for high-risk colon cancer patients. Gastroenterology 124:1574–1594

    PubMed  CAS  Google Scholar 

  157. Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, Koyama K, Utsunomiya J, Baba S, Hedge P (1991) Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253:665–669

    PubMed  CAS  Google Scholar 

  158. Rowley PT (2004) Screening for an inherited susceptibility to colorectal cancer. Genet Test 8:421–430

    PubMed  CAS  Google Scholar 

  159. Gardner EJ (1962) Follow-up study of a family group exhibiting dominant inheritance for a syndrome including intestinal polyps, osteomas, fibromas and epidermal cysts. Am J Hum Genet 14:376

    PubMed  CAS  Google Scholar 

  160. Fotiadis C, Tsekouras DK, Antonakis P, Sfiniadakis J, Genetzakis M, Zografos GC (2005) Gardner’s syndrome: a case report and review of the literature. World J Gastroenterol 11:5408–5411

    PubMed  CAS  Google Scholar 

  161. Turcot J, Després J-P, St Pierre F (1959) Malignant tumors of the central nervous system associated with familial polyposis of the colon: report of two cases. Dis Colon Rectum 2:465–468

    PubMed  CAS  Google Scholar 

  162. Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, Powell SM, Krush AJ, Berk T, Cohen Z, Tetu B et al (1995) The molecular basis of Turcot’s syndrome. N Engl J Med 332:839–847

    PubMed  CAS  Google Scholar 

  163. Paraf F, Jothy S, Van Meir EG (1997) Brain tumor-polyposis syndrome: two genetic diseases? J Clin Oncol 15:2744–2758

    PubMed  CAS  Google Scholar 

  164. Laken SJ, Petersen GM, Gruber SB, Oddoux C, Ostrer H, Giardiello FM, Hamilton SR, Hampel H, Markowitz A, Klimstra D, Jhanwar S, Winawer S, Offit K, Luce MC, Kinzler KW, Vogelstein B (1997) Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nat Genet 17:79–83

    PubMed  CAS  Google Scholar 

  165. Zauber NP, Sabbath-Solitare M, Marotta S, Zauber AG, Foulkes W, Chan M, Turner F, Bishop DT (2005) Clinical and genetic findings in an Ashkenazi Jewish population with colorectal neoplasms. Cancer 104:719–729

    PubMed  CAS  Google Scholar 

  166. Gryfe R, Di Nicola N, Gallinger S, Redston M (1998) Somatic instability of the APC I1307K allele in colorectal neoplasia. Cancer Res 58:4040–4043

    PubMed  CAS  Google Scholar 

  167. Niell BL, Long JC, Rennert G, Gruber SB (2003) Genetic anthropology of the colorectal cancer-susceptibility allele APC I1307K: evidence of genetic drift within the Ashkenazim. Am J Hum Genet 73:1250–1260

    PubMed  CAS  Google Scholar 

  168. Gryfe R, Di Nicola N, Lal G, Gallinger S, Redston M (1999) Inherited colorectal polyposis and cancer risk of the APC I1307K polymorphism. Am J Hum Genet 64:378–384

    PubMed  CAS  Google Scholar 

  169. Rennert G, Almog R, Tomsho LP, Low M, Pinchev M, Chaiter Y, Bonner JD, Rennert HS, Greenson JK, Gruber SB (2005) Colorectal polyps in carriers of the APC I1307K polymorphism. Dis Colon Rectum 48:2317–2321

    PubMed  Google Scholar 

  170. Baris HN, Kedar I, Halpern GJ, Shohat T, Magal N, Ludman MD, Shohat M (2007) Prevalence of breast and colorectal cancer in Ashkenazi Jewish carriers of Fanconi anemia and bloom syndrome. Isr Med Assoc J 9:847–850

    PubMed  CAS  Google Scholar 

  171. Shackelford RE, Kaufmann WK, Paules RS (2000) Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med 28:1387–1404

    PubMed  CAS  Google Scholar 

  172. Lee SH, Blair IA (2001) Oxidative DNA damage and cardiovascular disease. Trends Cardiovasc Med 11:148–155

    PubMed  CAS  Google Scholar 

  173. Cooke MS, Olinski R, Evans MD (2006) Does measurement of oxidative damage to DNA have clinical significance? Clin Chim Acta 365:30–49

    PubMed  CAS  Google Scholar 

  174. Marnett LJ (2000) Oxyradicals and DNA damage. Carcinogenesis 21:361–370

    PubMed  CAS  Google Scholar 

  175. Slupska MM, Luther WM, Chiang JH, Yang H, Miller JH (1999) Functional expression of hMYH, a human homolog of the Escherichia coli MutY protein. J Bacteriol 181:6210–6213

    PubMed  CAS  Google Scholar 

  176. Yang H, Clendenin WM, Wong D, Demple B, Slupska MM, Chiang JH, Miller JH (2001) Enhanced activity of adenine-DNA glycosylase (Myh) by apurinic/apyrimidinic endonuclease (Ape1) in mammalian base excision repair of an A/GO mismatch. Nucleic Acids Res 29:743–752

    PubMed  CAS  Google Scholar 

  177. Lipton L, Halford SE, Johnson V, Novelli MR, Jones A, Cummings C, Barclay E, Sieber O, Sadat A, Bisgaard ML, Hodgson SV, Aaltonen LA, Thomas HJ, Tomlinson IP (2003) Carcinogenesis in MYH-associated polyposis follows a distinct genetic pathway. Cancer Res 63:7595–7599

    PubMed  CAS  Google Scholar 

  178. Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT, Hodges AK, Davies DR, David SS, Sampson JR, Cheadle JP (2002) Inherited variants of MYH associated with somatic G:C → T: a mutations in colorectal tumors. Nat Genet 30:227–232

    PubMed  CAS  Google Scholar 

  179. Fleischmann C, Peto J, Cheadle J, Shah B, Sampson J, Houlston RS (2004) Comprehensive analysis of the contribution of germline MYH variation to early-onset colorectal cancer. Int J Cancer 109:554–558

    PubMed  CAS  Google Scholar 

  180. Farrington SM, Tenesa A, Barnetson R, Wiltshire A, Prendergast J, Porteous M, Campbell H, Dunlop MG (2005) Germline susceptibility to colorectal cancer due to base-excision repair gene defects. Am J Hum Genet 77:112–119

    PubMed  CAS  Google Scholar 

  181. Vogt S, Jones N, Christian D et al (2009) Expanded extracolonic tumor spectrum in MUTYH-associated polyposis. Gastroenterology 137:1976–1985

    PubMed  CAS  Google Scholar 

  182. Nielsen M, Franken PF, Reinards TH, Weiss MM, Wagner A, van der Klift H et al (2005) Multiplicity in polyp count and extracolonic manifestations in 40 Dutch patients with MYH associated polyposis coli (MAP). J Med Genet 42:e54

    PubMed  CAS  Google Scholar 

  183. Sampson JR, Dolwani S, Jones S, Eccles D, Ellis A, Evans DG, Frayling I, Jordan S, Maher ER, Mak T, Maynard J, Pigatto F, Shaw J, Cheadle JP (2003) Autosomal recessive colorectal adenomatous polyposis due to inherited mutations of MYH. Lancet 362:39–41

    PubMed  CAS  Google Scholar 

  184. Barnetson RA, Devlin L, Miller J, Farrington SM, Slater S, Drake AC, Campbell H, Dunlop MG, Porteous ME (2007) Germline mutation prevalence in the base excision repair gene, MYH, in patients with endometrial cancer. Clin Genet 72:551–555

    PubMed  CAS  Google Scholar 

  185. O’Shea AM, Cleary SP, Croitoru MA, Kim H, Berk T, Monga N, Riddell RH, Pollett A, Gallinger S (2008) Pathological features of colorectal carcinomas in MYH-associated polyposis. Histopathology 53:184–194

    PubMed  Google Scholar 

  186. Chow E, Thirlwell C, Macrae F, Lipton L (2004) Colorectal cancer and inherited mutations in base-excision repair. Lancet Oncol 5:600–606

    PubMed  CAS  Google Scholar 

  187. Prior TW, Bridgeman SJ (2010) Identifying mutations for MYH-associated polyposis. Curr Protoc Hum Genet, Chapter 10:Unit 10.13

    Google Scholar 

  188. Piccioli P, Serra M, Gismondi V, Pedemonte S, Loiacono F, Lastraioli S, Bertario L, De Angioletti M, Varesco L, Notaro R (2006) Multiplex tetra-primer amplification refractory mutation system PCR to detect 6 common germline mutations of the MUTYH gene associated with polyposis and colorectal cancer. Clin Chem 52:739–743

    PubMed  CAS  Google Scholar 

  189. Gismondi V, Meta M, Bonelli L, Radice P, Sala P, Bertario L, Viel A, Fornasarig M, Arrigoni A, Gentile M, Ponz de Leon M, Anselmi L, Mareni C, Bruzzi P, Varesco L (2004) Prevalence of the Y165C, G382D and 1395delGGA germline mutations of the MYH gene in Italian patients with adenomatous polyposis coli and colorectal adenomas. Int J Cancer 109:680–684

    PubMed  CAS  Google Scholar 

  190. Cleary SP, Cotterchio M, Jenkins MA et al (2009) Germline MutY human homologue mutations and colorectal cancer: a multisite case–control study. Gastroenterology 136:1251–1260

    PubMed  CAS  Google Scholar 

  191. Jones N, Vogt S, Nielsen M et al (2009) Cancer risks in MUTYH heterozygotes: increased colorectal cancer incidence in obligate carriers of heterozygous mutations in MUTYH. Gastroenterology 137:489–494

    PubMed  Google Scholar 

  192. Olschwang S, Blanché H, de Moncuit C, Thomas G (2007) Similar colorectal cancer risk in patients with monoallelic and biallelic mutations in the MYH gene identified in a population with adenomatous polyposis. Genet Test 11:315–320

    PubMed  CAS  Google Scholar 

  193. Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, Clendenning M, Sotamaa K, Prior T, Westman JA, Panescu J, Fix D, Lockman J, LaJeunesse J, Comeras I, de la Chapelle A (2008) Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J Clin Oncol 26:5783–5788

    PubMed  Google Scholar 

  194. Lynch HT, Shaw MW, Magnuson CW, Larsen AL, Krush AJ (1966) Hereditary factors in cancer. Study of two large midwestern kindreds. Arch Intern Med 117:206–212

    PubMed  CAS  Google Scholar 

  195. Umar A, Boland CR, Terdiman JP et al (2004) Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96:261–268

    PubMed  CAS  Google Scholar 

  196. Hsieh P, Yamane K (2008) DNA mismatch repair: molecular mechanism, cancer, and ageing. Mech Ageing Dev 129:391–407

    PubMed  CAS  Google Scholar 

  197. Zhang Y, Rohde LH, Wu H (2009) Involvement of nucleotide excision and mismatch repair mechanisms in double strand break repair. Curr Genomics 10:250–258

    PubMed  CAS  Google Scholar 

  198. Bronner CE, Baker SM, Morrison PT, Warren G, Smith LG, Lescoe MK, Kane M, Earabino C, Lipford J, Lindblom A et al (1994) Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368:258–261

    PubMed  CAS  Google Scholar 

  199. Mitchell RJ, Farrington SM, Dunlop MG, Campbell H (2002) Mismatch repair genes hMLH1 and hMSH2 and colorectal cancer: a HuGE review. Am J Epidemiol 156:885–902

    PubMed  CAS  Google Scholar 

  200. Kuismanen SA, Holmberg MT, Salovaara R, de la Chapelle A, Peltomäki P (2000) Genetic and epigenetic modification of MLH1 accounts for a major share of microsatellite-unstable colorectal cancers. Am J Pathol 156:1773–1779

    PubMed  CAS  Google Scholar 

  201. Wijnen J, Khan PM, Vasen H, van der Klift H, Mulder A, van Leeuwen-Cornelisse I, Bakker B, Losekoot M, Møller P, Fodde R (1997) Hereditary nonpolyposis colorectal cancer families not complying with the Amsterdam criteria show extremely low frequency of mismatch-repair-gene mutations. Am J Hum Genet 61:329–335

    PubMed  CAS  Google Scholar 

  202. Peltomaki P (2003) Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol 21:1174–1179

    PubMed  CAS  Google Scholar 

  203. Miyaki M, Konishi M, Tanaka K, Kikuchi-Yanoshita R, Muraoka M, Yasuno M, Igari T, Koike M, Chiba M, Mori T (1997) Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet 17:271–272

    PubMed  CAS  Google Scholar 

  204. Berends MJ, Wu Y, Sijmons RH, Mensink RG, van der Sluis T, Hordijk-Hos JM, de Vries EG, Hollema H, Karrenbeld A, Buys CH, van der Zee AG, Hofstra RM, Kleibeuker JH (2002) Molecular and clinical characteristics of MSH6 variants: an analysis of 25 index carriers of a germline variant. Am J Hum Genet 70:26–37

    PubMed  CAS  Google Scholar 

  205. Wijnen J, de Leeuw W, Vasen H, van der Klift H, Moller P, Stormorken A, Meijers-Heijboer H, Lindhout D, Menko F, Vossen S, Moslein G, Tops C, Brocker-Vriends A, Wu Y, Hofstra R, Sijmons R, Cornelisse C, Morreau H, Fodde R (1999) Familial endometrial cancer in female carriers of MSH6 germline mutations. Nat Genet 23:142–144

    PubMed  CAS  Google Scholar 

  206. Plaschke J, Engel C, Krüger S, Holinski-Feder E, Pagenstecher C, Mangold E, Moeslein G, Schulmann K, Gebert J, von Knebel DM, Rüschoff J, Loeffler M, Schackert HK (2004) Lower incidence of colorectal cancer and later age of disease onset in 27 families with pathogenic MSH6 germline mutations compared with families with MLH1 or MSH2 mutations: the German hereditary nonpolyposis colorectal cancer consortium. J Clin Oncol 22:4486–4494

    PubMed  CAS  Google Scholar 

  207. Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J (2000) BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 14:927–939

    PubMed  CAS  Google Scholar 

  208. Wu Y, Berends MJ, Sijmons RH, Mensink RG, Verlind E, Kooi KA, van der Sluis T, Kempinga C, van dDer Zee AG, Hollema H, Buys CH, Kleibeuker JH, Hofstra RM (2001) A role for MLH3 in hereditary nonpolyposis colorectal cancer. Nat Genet 29:137–138

    PubMed  CAS  Google Scholar 

  209. Duval A, Hamelin R (2002) Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res 62:2447–2454

    PubMed  CAS  Google Scholar 

  210. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B, Brattain M, Willson JKV (1995) Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 268:1336–1338

    PubMed  CAS  Google Scholar 

  211. Perucho M (1996) Microsatellite instability: the mutator that mutates the other mutator. Nat Med 2:630–631

    PubMed  CAS  Google Scholar 

  212. Loukola A, Eklin K, Laiho P, Salovaara R, Kristo P, Jarvinen H, Mecklin JP, Launonen V, Aaltonen LA (2001) Microsatellite marker analysis in screening for hereditary nonpolyposis colorectal cancer (HNPCC). Cancer Res 61:4545–4549

    PubMed  CAS  Google Scholar 

  213. Yuan ZQ, Legendre B, Cai DQ, Cao J, Zhu J, Weber TK (2009) High throughput detection of microsatellite instability (MSI) in sporadic colorectal cancer by MSI COPPER denaturing high performance liquid chromatography. Pathology 41:393–394

    PubMed  CAS  Google Scholar 

  214. Chialina SG, Fornes C, Landi C, de la Vega Elena CD, Nicolorich MV, Dourisboure RJ, Solano A, Solis EA (2006) Microsatellite instability analysis in hereditary non-polyposis colon cancer using the Bethesda consensus panel of microsatellite markers in the absence of proband normal tissue. BMC Med Genet 7:5

    PubMed  Google Scholar 

  215. Piñol V, Castells A, Andreu M, Castellví-Bel S, Alenda C, Llor X, Xicola RM, Rodríguez-Moranta F, Payá A, Jover R, Bessa X (2005) Accuracy of revised Bethesda guidelines, microsatellite instability, and immunohistochemistry for the identification of patients with hereditary nonpolyposis colorectal cancer. JAMA 293:1986–1994

    PubMed  Google Scholar 

  216. Lindor NM, Burgart LJ, Leontovich O, Goldberg RM, Cunningham JM, Sargent DJ, Walsh-Vockley C, Petersen GM, Walsh MD, Leggett BA, Young JP, Barker MA, Jass JR, Hopper J, Gallinger S, Bapat B, Redston M, Thibodeau SN (2002) Immunohistochemistry versus microsatellite instability testing in phenotyping colorectal tumors. J Clin Oncol 20:1043–1048

    PubMed  CAS  Google Scholar 

  217. Debniak T, Kurzawski G, Gorski B et al (2000) Value of pedigree/clinical data, immunohistochemistry and microsatellite instability analyses in reducing the cost of determining hMLH1 and hMSH2 gene mutations in patients with colorectal cancer. Eur J Cancer 36:49–54

    PubMed  CAS  Google Scholar 

  218. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–561

    PubMed  CAS  Google Scholar 

  219. Thibodeau SN, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science 260:816–819

    PubMed  CAS  Google Scholar 

  220. Domingo E, Laiho P, Ollikainen M, Pinto M, Wang L, French AJ, Westra J, Frebourg T, Espín E, Armengol M, Hamelin R, Yamamoto H, Hofstra RM, Seruca R, Lindblom A, Peltomäki P, Thibodeau SN, Aaltonen LA, Schwartz S Jr (2004) BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J Med Genet 41:664–668

    PubMed  CAS  Google Scholar 

  221. Domingo E, Niessen RC, Oliveira C, Alhopuro P, Moutinho C, Espín E, Armengol M, Sijmons RH, Kleibeuker JH, Seruca R, Aaltonen LA, Imai K, Yamamoto H, Schwartz S Jr, Hofstra RM (2005) BRAF-V600E is not involved in the colorectal tumorigenesis of HNPCC in patients with functional MLH1 and MSH2 genes. Oncogene 24:3995–3998

    PubMed  CAS  Google Scholar 

  222. Baudhuin LM, Mai M, French AJ, Kruckeberg KE, Swanson RL, Winters JL, Courteau LK, Thibodeau SN (2005) Analysis of hMLH1 and hMSH2 gene dosage alterations in hereditary nonpolyposis colorectal cancer patients by novel methods. J Mol Diagn 7:226–235

    PubMed  CAS  Google Scholar 

  223. Miyaki M, Konishi M, Muraoka M, Kikuchi-Yanoshita R, Tanaka K, Iwama T, Mori T, Koike M, Ushio K, Chiba M et al (1995) Germ line mutations of hMSH2 and hMLH1 genes in Japanese families with hereditary nonpolyposis colorectal cancer (HNPCC): usefulness of DNA analysis for screening and diagnosis of HNPCC patients. J Mol Med 73:515–520

    PubMed  CAS  Google Scholar 

  224. Wijnen J, Vasen H, Khan PM, Menko FH, van der Klift H, van Leeuwen C, van den Broek M, van Leeuwen-Cornelisse I, Nagengast F, Meijers-Heijboer A et al (1995) Seven new mutations in hMSH2, an HNPCC gene, identified by denaturing gradient-gel electrophoresis. Am J Hum Genet 56:1060–1066

    PubMed  CAS  Google Scholar 

  225. Charbonnier F, Raux G, Wang Q, Drouot N, Cordier F, Limacher JM, Saurin JC, Puisieux A, Olschwang S, Frebourg T (2000) Detection of exon deletions and duplications of the mismatch repair genes in hereditary nonpolyposis colorectal cancer families using multiplex polymerase chain reaction of short fluorescent fragments. Cancer Res 60:2760–2763

    PubMed  CAS  Google Scholar 

  226. Peltoma¨ki P, Vasen H (1997) The international collaborative group on hereditary nonpolyposis colorectal cancer. Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. Gastroenterology 113:1146–1158

    Google Scholar 

  227. Mauillon J, Michel P, Limacher JM, Dechelotte P, Charbonnier F, Martin C, Moreau V, Metayer J, Paillot B, Frebourg T (1996) Identification of novel germline hMLH1 mutations including a 22-kb Alu-mediated deletion in patients with familial colorectal cancer. Cancer Res 56:5728–5733

    PubMed  CAS  Google Scholar 

  228. Vasen HFA, Nagengast FM, Khan PM (1995) Interval cancers in hereditary non-polyposis colorectal cancer (Lynch syndrome). Lancet 345:1183–1184

    PubMed  CAS  Google Scholar 

  229. Järvinen HJ, Aarnio M, Mustonen H et al (2000) Controlled 15-year trial on screening for colorectal cancer in families with hereditary nonpolyposis colorectal cancer. Gastroenterology 118:829–834

    PubMed  Google Scholar 

  230. Hurlstone DP, Cross SS, Slater R, Sanders DS, Brown S (2004) Detecting diminutive colorectal lesions at colonoscopy: a randomized controlled trial of pan-colonic versus targeted chromoscopy. Gut 53:376–380

    PubMed  CAS  Google Scholar 

  231. Lindor NM, Petersen GM, Hadley DW, Kinney AY, Miesfeldt S, Lu KH, Lynch P, Burke W, Press N (2006) Recommendations for the care of individuals with an inherited predisposition to Lynch syndrome: a systematic review. JAMA 296:1507–1517

    PubMed  CAS  Google Scholar 

  232. Dunlop MG, Farrington SM, Carothers AD, Wyllie AH, Sharp L, Burn J, Liu B, Kinzler KW, Vogelstein B (1997) Cancer risk associated with germline DNA mismatch repair gene mutations. Hum Mol Genet 6:105–110

    PubMed  CAS  Google Scholar 

  233. Vasen HF, Wijnen JT, Menko FH, Kleibeuker JH, Taal BG, Griffioen G, Nagengast FM, Meijers-Heijboer EH, Bertario L, Varesco L, Bisgaard ML, Mohr J, Fodde R, Khan PM (1996) Cancer risk in families with hereditary nonpolyposis colorectal cancer diagnosed by mutation analysis. Gastroenterology 110:1020–1027

    PubMed  CAS  Google Scholar 

  234. Schmeler KM, Lynch HT, Chen L-M et al (2006) Prophylactic surgery to reduce the risk of gynecologic cancers in the Lynch syndrome. N Engl J Med 354:261–269

    PubMed  CAS  Google Scholar 

  235. Diamond M (1939) Adenoma of the rectum in children: report of a case in a thirty month old girl. Am J Dis Children 57:360

    Google Scholar 

  236. Stemper TJ, Kent TH, Summers RW (1975) Juvenile polyposis and gastrointestinal carcinoma. Ann Intern Med 83:639–646

    PubMed  CAS  Google Scholar 

  237. Goodman ZD, Yardley JH, Milligan FD (1979) Pathogenesis of colonic polyps in multiple juvenile polyposis. Cancer 43:1906–1913

    PubMed  CAS  Google Scholar 

  238. Yoshida T, Haraguchi Y, Tanaka A, Higa A, Daimon Y, Mizuta Y, Tamaki M et al (1988) A case of generalized juvenile gastrointestinal polyposis associated with gastric carcinoma. Endoscopy 20:33–35

    PubMed  CAS  Google Scholar 

  239. Walpole IR, Cullity G (1989) Juvenile polyposis: a case with early presentation and death attributable to adenocarcinoma of the pancreas. Am J Med Genet 32:1–8

    PubMed  CAS  Google Scholar 

  240. Bentley E, Chandrasoma P, Radin R, Cohen H (1989) Generalized juvenile polyposis with carcinoma. Am J Gastroenterol 84:1456–1459

    PubMed  CAS  Google Scholar 

  241. Jarvinen HJ, Franssila KO (1984) Familial juvenile polyposis coli: increased risk of colorectal cancer. Gut 25:792–800

    PubMed  CAS  Google Scholar 

  242. Jass JR (1990) Pathology of polyposis syndromes with special reference to juvenile polyposis. In: Utsunomiya J, Lynch HT (eds) Hereditary colorectal cancer. Springer, Tokyo, pp 343–350

    Google Scholar 

  243. Jass JR, Williams CB, Bussey HJ, Morson BC (1988) Juvenile polyposis–a precancerous condition. Histopathology 13:619–630

    PubMed  CAS  Google Scholar 

  244. Sachatello CR (1972) Polypoid diseases of the gastrointestinal tract. J Ky Med Assoc 70:540

    PubMed  CAS  Google Scholar 

  245. Bussey HJ, Veale AM, Morson BC (1978) Genetics of gastrointestinal polyposis. Gastroenterology 74:1325

    PubMed  CAS  Google Scholar 

  246. Burt RW, Bishop DT, Lynch HT, Rozen P, Winawer SJ (1990) Risk and surveillance of individuals with heritable factors for colorectal cancer. WHO collaborating centre for the prevention of colorectal cancer. Bull World Health Organ 68:655–665

    PubMed  CAS  Google Scholar 

  247. Howe JR, Sayed MG, Ahmed AF, Ringold J, Larsen-Haidle J, Merg A, Mitros FA, Vaccaro CA, Petersen GM, Giardiello FM, Tinley ST, Aaltonen LA, Lynch HT (2004) The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations. J Med Genet 41:484–491

    PubMed  CAS  Google Scholar 

  248. Mishina Y (2003) Function of bone morphogenetic protein signaling during mouse development. Front Biosci 8:d855–d869

    PubMed  CAS  Google Scholar 

  249. Howe JR, Roth S, Ringold JC, Summers RW, Järvinen HJ, Sistonen P, Tomlinson IP, Houlston RS, Bevan S, Mitros FA, Stone EM, Aaltonen LA (1998) Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280:1086–1088

    PubMed  CAS  Google Scholar 

  250. Calva-Cerqueira D, Chinnathambi S, Pechman B, Bair J, Larsen-Haidle J, Howe JR (2009) The rate of germline mutations and large deletions of SMAD4 and BMPR1A in juvenile polyposis. Clin Genet 75:79–85

    PubMed  CAS  Google Scholar 

  251. Sweet K, Willis J, Zhou XP, Gallione C, Sawada T, Alhopuro P, Khoo SK, Patocs A, Martin C, Bridgeman S, Heinz J, Pilarski R, Lehtonen R, Prior TW, Frebourg T, Teh BT, Marchuk DA, Aaltonen LA, Eng C (2005) Molecular classification of patients with unexplained hamartomatous and hyperplastic polyposis. JAMA 294:2465–2473

    PubMed  CAS  Google Scholar 

  252. Calva D, Howe JR (2008) Hamartomatous polyposis syndromes. Surg Clin North Am 88:779–817

    PubMed  Google Scholar 

  253. Grosfeld JL, West KW (1986) Generalized juvenile polyposis coli. Arch Surg 121:530

    PubMed  CAS  Google Scholar 

  254. Järvinen H (1993) Juvenile gastrointestinal polyposis. Probl Gen Surg 10:749–757

    Google Scholar 

  255. Peutz JL (1921) Over een zeer merkwaardige, gecombineerde familiaire pollyposis van de sligmliezen van den tractus intestinalis met die van de neuskeelholte en gepaard met eigenaardige pigmentaties van huid-en slijmvliezen. Ned Maandschr v Gen 10:134

    Google Scholar 

  256. Brosens LA, van Hattem WA, Jansen M, de Leng WW, Giardiello FM, Offerhaus GJ (2007) Gastrointestinal polyposis syndromes. Curr Mol Med 7:29–46

    PubMed  CAS  Google Scholar 

  257. Boardman LA, Thibodeau SN, Schaid DJ, Lindor NM, McDonnell SK, Burgart LJ, Ahlquist DA, Podratz KC, Pittelkow M, Hartmann LC (1998) Increased risk for cancer in patients with the Peutz-Jeghers syndrome. Ann Intern Med 128:896–899

    PubMed  CAS  Google Scholar 

  258. Giardiello FM, Welsh SB, Hamilton SR, Offerhaus GJ, Gittelsohn AM, Booker SV, Krush AJ, Yardley JH, Luk GD (1987) Increased risk of cancer in the Peutz-Jeghers syndrome. N Engl J Med 316:1511–1514

    PubMed  CAS  Google Scholar 

  259. Zbuk KM, Eng C (2007) Hamartomatous polyposis syndromes. Nat Clin Pract Gastroenterol Hepatol 4:492–502

    PubMed  CAS  Google Scholar 

  260. Collins SP, Reoma JL, Gamm DM, Uhler MD (2000) LKB1, a novel serine/threonine protein kinase and potential tumour suppressor, is phosphorylated by cAMP-dependent protein kinase (PKA) and prenylated in vivo. Biochem J 345:673–680

    PubMed  CAS  Google Scholar 

  261. Tiainen M, Ylikorkala A, Makela TP (1999) Growth suppression by Lkb1 is mediated by a G(1) cell cycle arrest. Proc Natl Acad Sci USA 96:9248–9251

    PubMed  CAS  Google Scholar 

  262. Karuman P, Gozani O, Odze RD et al (2001) The Peutz–Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol Cell 7:1307–1319

    PubMed  CAS  Google Scholar 

  263. Ylikorkala A, Rossi DJ, Korsisaari N et al (2001) Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice. Science 293:1323–1326

    PubMed  CAS  Google Scholar 

  264. Spicer J, Rayter S, Young N, Elliott R, Ashworth A, Smith D (2003) Regulation of the Wnt signalling component PAR1A by the Peutz–Jeghers syndrome kinase LKB1. Oncogene 22:4752–4756

    PubMed  CAS  Google Scholar 

  265. Rosner M, Hanneder M, Siegel N, Valli A, Fuchs C, Hengstschlager M (2008) The mTOR pathway and its role in human genetic diseases. Mutat Res 659:284–292

    PubMed  CAS  Google Scholar 

  266. Scott RJ, Crooks R, Meldrum CJ, Thomas L, Smith CJ, Mowat D, McPhillips M, Spigelman AD (2002) Mutation analysis of the STK11/LKB1 gene and clinical characteristics of an Australian series of Peutz-Jeghers syndrome patients. Clin Genet 62:282–287

    PubMed  CAS  Google Scholar 

  267. Ylikorkala A, Avizienyte E, Tomlinson IP et al (1999) Mutations and impaired function of LKB1 in familial and non-familial Peutz–Jeghers syndrome and a sporadic testicular cancer. Hum Mol Genet 8:45–51

    PubMed  CAS  Google Scholar 

  268. Lim W, Hearle N, Shah B et al (2003) Further observations on LKB1/STK11 status and cancer risk in Peutz–Jeghers syndrome. Br J Cancer 89:308–313

    PubMed  CAS  Google Scholar 

  269. Olschwang S, Boisson C, Thomas G (2001) Peutz–Jeghers families unlinked to STK11/LKB1 gene mutations are highly predisposed to primitive biliary adenocarcinoma. J Med Genet 38:356–360

    PubMed  CAS  Google Scholar 

  270. Mehenni H, Blouin JL, Radhakrishna U, Bhardwaj SS, Bhardwaj K, Dixit VB, Richards KF, Bermejo-Fenoll A, Leal AS, Raval RC, Antonarakis SE (1997) Peutz-Jeghers syndrome: confirmation of linkage to chromosome 19p13.3 and identification of a potential second locus, on 19q13.4. Am J Hum Genet 61:1327–1334

    PubMed  CAS  Google Scholar 

  271. Olschwang S, Markie D, Seal S, Neale K, Phillips R, Cottrell S, Ellis I, Hodgson S, Zauber P, Spigelman A, Iwama T, Loff S, McKeown C, Marchese C, Sampson J, Davies S, Talbot I, Wyke J, Thomas G, Bodmer W, Hemminki A, Avizienyte E, de la Chapelle A, Aaltonen L, Stratton M, Houlston R, Tomlinson I (1998) Peutz-Jeghers disease: most, but not all, families are compatible with linkage to 19p13.3. J Med Genet 35:42–44

    PubMed  CAS  Google Scholar 

  272. Hearle N, Schumacher V, Menko FH, Olschwang S, Boardman LA, Gille JJ, Keller JJ, Westerman AM, Scott RJ, Lim W, Trimbath JD, Giardiello FM, Gruber SB, Offerhaus GJ, Rooij FW, Wilson JH, Hansmann A, Möslein G, Royer-Pokora B, Vogel T, Phillips RK, Spigelman AD, Houlston RS (2006) STK11 status and intussusception risk in Peutz-Jeghers syndrome. J Med Genet 43:e41

    PubMed  CAS  Google Scholar 

  273. Volikos E, Robinson J, Aittomäki K, Mecklin JP, Järvinen H, Westerman AM, de Rooji FW, Vogel T, Moeslein G, Launonen V, Tomlinson IP, Silver AR, Aaltonen LA (2006) LKB1 exonic and whole gene deletions are a common cause of Peutz-Jeghers syndrome. J Med Genet 43:e18

    PubMed  CAS  Google Scholar 

  274. Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, Bignell G, Warren W, Aminoff M, Höglund P, Järvinen H, Kristo P, Pelin K, Ridanpää M, Salovaara R, Toro T, Bodmer W, Olschwang S, Olsen AS, Stratton MR, de la Chapelle A, Aaltonen LA (1998) A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391(6663):184–187

    PubMed  CAS  Google Scholar 

  275. Jiang CY, Esufali S, Berk T, Gallinger S, Cohen Z, Tobi M, Redston M, Bapat B (1999) STK11/LKB1 germline mutations are not identified in most Peutz-Jeghers syndrome patients. Clin Genet 56:136–141

    PubMed  CAS  Google Scholar 

  276. Boardman LA, Couch FJ, Burgart LJ, Schwartz D, Berry R, McDonnell SK, Schaid DJ, Hartmann LC, Schroeder JJ, Stratakis CA, Thibodeau SN (2000) Genetic heterogeneity in Peutz-Jeghers syndrome. Hum Mutat 16:23–30

    PubMed  CAS  Google Scholar 

  277. Mehenni H, Gehrig C, Nezu J, Oku A, Shimane M, Rossier C, Guex N, Blouin JL, Scott HS, Antonarakis SE (1998) Loss of LKB1 kinase activity in Peutz-Jeghers syndrome, and evidence for allelic and locus heterogeneity. Am J Hum Genet 63:1641–1650

    PubMed  CAS  Google Scholar 

  278. Wang ZJ, Churchman M, Avizienyte E, McKeown C, Davies S, Evans DG, Ferguson A, Ellis I, Xu WH, Yan ZY, Aaltonen LA, Tomlinson IP (1999) Germline mutations of the LKB1 (STK11) gene in Peutz-Jeghers patients. J Med Genet 36:365–368

    PubMed  CAS  Google Scholar 

  279. Abed AA, Günther K, Kraus C, Hohenberger W, Ballhausen WG (2001) Mutation screening at the RNA level of the STK11/LKB1 gene in Peutz-Jeghers syndrome reveals complex splicing abnormalities and a novel mRNA isoform (STK11 c.597(insertion mark)598insIVS4). Hum Mutat 18:397–410

    PubMed  CAS  Google Scholar 

  280. Yoon KA, Ku JL, Choi HS, Heo SC, Jeong SY, Park YJ, Kim NK, Kim JC, Jung PM, Park JG (2000) Germline mutations of the STK11 gene in Korean Peutz-Jeghers syndrome patients. Br J Cancer 82:1403–1406

    PubMed  CAS  Google Scholar 

  281. Saranrittichai S (2008) Peutz-jeghers syndrome and colon cancer in a 10-year-old girl: implications for when and how to start screening? Asian Pac J Cancer Prev 9:159–161

    PubMed  Google Scholar 

  282. Kopacova M, Tacheci I, Rejchrt S, Bures J (2009) Peutz-Jeghers syndrome: diagnostic and therapeutic approach. World J Gastroenterol 15:5397–5408

    PubMed  Google Scholar 

  283. Giardiello FM, Trimbath JD (2006) Peutz-Jeghers syndrome and management recommendations. Clin Gastroenterol Hepatol 4:408–415

    PubMed  Google Scholar 

  284. Wei C, Amos CI, Zhang N, Wang X, Rashid A, Walker CL, Behringer RR, Frazier ML (2008) Suppression of Peutz-Jeghers polyposis by targeting mammalian target of rapamycin signaling. Clin Cancer Res 14:1167–1171

    PubMed  CAS  Google Scholar 

  285. Udd L, Katajisto P, Rossi DJ, Lepistö A, Lahesmaa AM, Ylikorkala A, Järvinen HJ, Ristimäki AP, Mäkelä TP (2004) Suppression of Peutz-Jeghers polyposis by inhibition of cyclooxygenase-2. Gastroenterology 127:1030–1037

    PubMed  CAS  Google Scholar 

  286. Kawato Y, Aonuma M, Matsumoto K, Sato K (1991) Production of SN-38, a main metabolite of the camptothecin derivative CPT-11, and its species and tissue specificities. Yakubutsu Dotai 6:899–907

    CAS  Google Scholar 

  287. Ratain MJ (2002) Irinotecan dosing: does the CPT in CPT-11 stand for “can’t predict toxicity”? J Clin Oncol 20:7–8

    PubMed  Google Scholar 

  288. Fuchs CS, Moore MR, Harker G, Villa L, Rinaldi D, Hecht JR (2003) Phase III comparison of two irinotecan dosing regimens in second-line therapy of metastatic colorectal cancer. J Clin Oncol 21:807–814

    PubMed  CAS  Google Scholar 

  289. Kunimoto T, Nitta K, Tanaka T, Uehara N, Baba H, Takeuchi M, Yokokura T, Sawada S, Miyasaka T, Mutai M (1987) Antitumor activity of inhibitor 7-ethyl-10-[4-(1-piperidino)-1-piperidino]-carbonyloxy-camptothecin, a novel water-soluble derivative of camptothecin against murine tumors. Cancer Res 47:5944–5947

    PubMed  CAS  Google Scholar 

  290. Kawato Y, Nagata H, Furuta T, Yokokura T (1991) Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res 51:4187–4191

    PubMed  CAS  Google Scholar 

  291. Takasuna K, Kasai Y, Kitano Y, Mori K, Kakihata K, Hirohashi M, Nomura M (1995) Study of mechanisms of diarrhea induced by the new anticancer agent drug irinotecan hydrochloride (CPT-11). Folia Pharmacol Jpn 105:447–460

    CAS  Google Scholar 

  292. Iyer L, King CD, Whitington PF, Green MD, Roy SK, Tephly TR, Coffman BL, Ratain MJ (1998) Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest 101:847–854

    PubMed  CAS  Google Scholar 

  293. Ritter JK, Chen F, Sheen YY, Tran HM, Kimura S, Yeatman MT, Owens IS (1992) A novel complex locus UGT1 encodes human bilirubin, phenol and other UDP-glucuronosyltransferase isozymes with identical carboxyl termini. J Biol Chem 267:3257–3261

    PubMed  CAS  Google Scholar 

  294. Owens IS, Ritter JK (1995) Gene structure at the human UGT1 locus creates diversity in isozyme structure, structure specificity and regulation. Prog Nucleic Acid Res 51:306–308

    Google Scholar 

  295. Hasegawa Y, Ando Y, Ando M, Hashimoto N, Imaizumi K, Shimokata K (2006) Pharmacogenetic approach for cancer treatment-tailored medicine in practice. Ann N Y Acad Sci 1086:223–232

    PubMed  CAS  Google Scholar 

  296. Ando Y, Saka H, Ando M, Sawa T, Muro K, Ueoka H, Yokohama A, Saitoh S, Shimokata K, Hasegawa Y (2000) Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res 60:6921–6926

    PubMed  CAS  Google Scholar 

  297. Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M, Karrison T, Janisch L, Ramírez J, Rudin CM, Vokes EE, Ratain MJ (2004) Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 22:1382–1388

    PubMed  CAS  Google Scholar 

  298. Iyer L, Das S, Janisch L, Wen M, Ramírez J, Karrison T, Fleming GF, Vokes EE, Schilsky RL, Ratain MJ (2002) UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J 2:43–47

    PubMed  CAS  Google Scholar 

  299. Beutler E, Gelbart T, Demina A (1998) Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc Natl Acad Sci USA 95:8170–8174

    PubMed  CAS  Google Scholar 

  300. Gagné JF, Montminy V, Belanger P, Journault K, Gaucher G, Guillemette C (2002) Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Mol Pharmacol 62:608–617

    PubMed  Google Scholar 

  301. Yamamoto K, Sato H, Fujiyama Y, Doida Y, Bamba T (1998) Contribution of two missense mutations (G71R and Y486D) of the bilirubin UDP glycosyltransferase (UGT1A1) gene to phenotypes of Gilbert’s syndrome and Crigler-Najjar syndrome type II. Biochim Biophys Acta 1406:267–273

    PubMed  CAS  Google Scholar 

  302. Marcuello E, Altés A, Menoyo A, Del Rio E, Gómez-Pardo M, Baiget M (2004) UGT1A1 gene variations and irinotecan treatment in patients with metastatic colorectal cancer. Br J Cancer 91:678–682

    PubMed  CAS  Google Scholar 

  303. Onoue M, Terada T, Kobayashi M, Katsura T, Matsumoto S, Yanagihara K, Nishimura T, Kanai M, Teramukai S, Shimizu A, Fukushima M, Inui K (2009) UGT1A1*6 polymorphism is most predictive of severe neutropenia induced by irinotecan in Japanese cancer patients. Int J Clin Oncol 14:136–142

    PubMed  CAS  Google Scholar 

  304. Han JY, Lim HS, Shin ES, Yoo YK, Park YH, Lee JE, Jang IJ, Lee DH, Lee JS (2006) Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J Clin Oncol 24:2237–2244

    PubMed  CAS  Google Scholar 

  305. Takane H, Kawamoto K, Sasaki T, Moriki K, Moriki K, Kitano H, Higuchi S, Otsubo K, Ieiri I (2009) Life-threatening toxicities in a patient with UGT1A1*6/*28 and SLCO1B1*15/*15 genotypes after irinotecan-based chemotherapy. Cancer Chemother Pharmacol 63:1165–1169

    PubMed  Google Scholar 

  306. Monaghan G, Ryan M, Seddon R, Hume R, Burchell B (1996) Genetic variation in bilirubin UPD-glucuronosyltransferase gene promoter and Gilbert’s syndrome. Lancet 347:578–581

    PubMed  CAS  Google Scholar 

  307. Pirulli D, Giordano M, Puzzer D, Crovella S, Rigato I, Tiribelli C, Momigliano-Richiardi P, Amoroso A (2000) Rapid method for detection of extra (TA) in the promoter of the bilirubin-UDP-glucuronosyl transferase 1 gene associated with Gilbert syndrome. Clin Chem 46:129–131

    PubMed  CAS  Google Scholar 

  308. Hasegawa Y, Sarashina T, Ando M, Kitagawa C, Mori A, Yoneyama M, Ando Y, Shimokata K (2004) Rapid detection of UGT1A1 gene polymorphisms by newly developed invader assay. Clin Chem 50:1479–1480

    PubMed  CAS  Google Scholar 

  309. Recommendations from the EGAPP Working Group (2009) Can UGT1A1 genotyping reduce morbidity and mortality in patients with metastatic colorectal cancer treated with irinotecan? Genet Med 11:15–20

    Google Scholar 

  310. Hazama S, Nagashima A, Kondo H, Yoshida S, Shimizu R, Araki A, Yoshino S, Okayama N, Hinoda Y, Oka M (2010) Phase I study of irinotecan and doxifluridine for metastatic colorectal cancer focusing on the UGT1A1*28 polymorphism. Cancer Sci 101:722–727

    PubMed  CAS  Google Scholar 

  311. Murff HJ, Byrne D, Syngal S (2004) Cancer risk assessment: quality and impact of the family history interview. Am J Prev Med 27:239–245

    PubMed  Google Scholar 

  312. Bedoya F, Rubio JC, Morales-Gutierrez C, Abad-Barahona A, Lora Pablos D, Meneu JC, Moreno-Gonzalez E, Enriquez de Salamanca R, Vegh I (2009) Single nucleotide change in the cannabinoid receptor-1 (CNR1) gene in colorectal cancer outcome. Oncology 76:435–441

    PubMed  CAS  Google Scholar 

  313. McHugh SM, O’Donnell J, Gillen P (2009) Genomic and oncoproteomic advances in detection and treatment of colorectal cancer. World J Surg Oncol 7:36

    PubMed  Google Scholar 

  314. Likui W, Hong W, Shuwen Z (2010) Clinical significance of the upregulated osteopontin mRNA expression in human colorectal cancer. J Gastrointest Surg 14:74–81

    PubMed  Google Scholar 

  315. Bezabeh T, Somorjai R, Dolenko B, Bryskina N, Levin B, Bernstein CN, Jeyarajah E, Steinhart AH, Rubin DT, Smith IC (2009) Detecting colorectal cancer by 1H magnetic resonance spectroscopy of fecal extracts. NMR Biomed 22:593–600

    PubMed  CAS  Google Scholar 

  316. Snyder M, Du J, Gerstein M (2010) Personal genome sequencing: current approaches and challenges. Genes Dev 24:423–431

    PubMed  CAS  Google Scholar 

  317. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, Shendure J (2011) Exome sequencing as a tool for mendelian disease gene discovery. Nat Rev Genet 12:745–755

    PubMed  CAS  Google Scholar 

  318. Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, Nayir A, Bakkaloğlu A, Ozen S, Sanjad S, Nelson-Williams C, Farhi A, Mane S, Lifton RP (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA 106:19096–19101

    PubMed  CAS  Google Scholar 

  319. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    PubMed  CAS  Google Scholar 

  320. Wu WK, Law PT, Lee CW, Cho CH, Fan D, Wu K, Yu J, Sung JJ (2011) MicroRNA in colorectal cancer: from benchtop to bedside. Carcinogenesis 32:247–253

    PubMed  CAS  Google Scholar 

  321. Lao VV, Grady WM (2011) Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol 8:686–700

    PubMed  CAS  Google Scholar 

  322. Khare S, Verma M (2012) Epigenetics of colon cancer. Methods Mol Biol 863:177–185

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Jennifer Burton for her help with proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Coppola M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shackelford, R.E., Nasir, A., Hakam, A., Shibata, D., Yeatman, T., Coppola, D. (2014). Molecular Pathology and Diagnostics of Colorectal Cancer. In: Coppola, D. (eds) Molecular Pathology and Diagnostics of Cancer. Cancer Growth and Progression, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7192-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7192-5_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7191-8

  • Online ISBN: 978-94-007-7192-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics