Skip to main content

Molecular Diagnostics of Myeloid Neoplasms

  • Chapter
  • First Online:
Molecular Pathology and Diagnostics of Cancer

Part of the book series: Cancer Growth and Progression ((CAGP,volume 16))

  • 2723 Accesses

Abstract

According to 2008 World Health Organization (WHO) Classification of Tumors of Hematopoietic and Lymphoid Tissue, myeloid neoplasms include (1) myeloproliferative neoplasms (MPN), (2) myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PFGFRB, or FGFR1, (3) myelodysplastic/myeloproliferative neoplasms (MDS/MPN), (4) myelodysplastic syndromes (MDS), and (5) acute myeloid leukemia (AML) and related precursor neoplasms. The diagnosis and subclassification of myeloid neoplasms is critical and approaches are multifaceted. In an era of advanced molecular biology, the diagnosis of myeloid neoplasms requires an integration of morphology, clinical presentation, laboratory results and immunophenotying with cytogenetics and molecular studies. Emerging novel molecular genetic technologies e.g. DNA microarray, single nucleotide polymorphism (SNP) array, whole genomic sequencing will aid further subclassification and characterization of disease entities of myeloid neoplasm. The common or fundamental molecular markers and associated cytogenetic aberrations, together with the diagnostic approaches are emphasized and reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

aCML:

Atypical chronic myeloid leukemia

ALL:

Acute lymphoblastic leukemia

AML:

Acute myeloid leukemia

APL:

Acute promyelocytic leukemia

B-ALL:

B lymphoblastic leukemia

CARs:

Commonly affected regions

CBBF:

Core binding factor translocations

CBF:

Core-binding factor

CDR:

Common deletion region

CEL:

Chronic eosinophilic leukemia

CML:

Chronic myelogenous leukemia

CMML:

Chronic myelomonocytic leukemia

CyR:

Cytogenetic response

DIC:

Disseminated intravascular coagulation

EMH:

Extramedullary hematopoiesis

ET:

Essential thrombocythemia

FAB:

French-American-British

FGFR1:

Febroblast growth factor receptor 1

FISH:

Fluorescence in-situ hybridization

GEP:

Gene expression profiling

GIST:

Gastrointestinal stromal tumors

HR:

Hematological response

JMML:

Juvenile myelomonocytic leukemia

MDS:

Myelodysplastic syndromes

MPN:

Myeloproliferative neoplasms

MR:

Molecular response

MPN-U:

Myeloproliferative neoplasms, unclassifiable

MR:

Molecular response

MS:

Mastocytosis

NOS:

Not otherwise specified

PDGFR:

Platelet derived growth factor receptor

PMF:

Primary myelofibrosis

PML:

Promyelocytic leukemia

PV:

Polycythemia vera

RAEB:

Refractory anemia with excess blasts

RARA:

Retinoic acid receptor gene, alpha

RARS:

Refractory anemia with ring sideroblasts

RCMD:

Refractory cytopenia with multilineage dysplasia

RCUD:

Refractory cytopenia with unilineage dysplasia

RFLP:

Restricted fragment length polymorphism

SM-AHNMD:

Systemic mastocytosis with associated clonal hematopoetic non-mast cell lineage disease

SPOC:

Spen paralog and ortholog C-terminal

T-ALL:

T-lymphoblastic leukemia

WHO:

World Health Organization

References

  1. Swerdlow S, Campo E, Harris N, Jaffe E, Pileri S, Stein H, Thiele J, Vardiman J (2008) WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn. International Agency for Research on Cancer press, Lyon

    Google Scholar 

  2. Mrozek K, Heerema NA, Bloomfield CD (2004) Cytogenetics in acute leukemia. Blood Rev 18(2):115–136

    PubMed  Google Scholar 

  3. Betz BL, Hess JL (2010) Acute myeloid leukemia diagnosis in the 21st century. Arch Pathol Lab Med 134(10):1427–1433

    PubMed  Google Scholar 

  4. Wadleigh M, Tefferi A (2010) Classification and diagnosis of myeloproliferative neoplasms according to the 2008 World Health Organization criteria. Int J Hematol 91(2):174–179

    PubMed  Google Scholar 

  5. Tefferi A, Vardiman JW (2008) Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 22(1):14–22

    PubMed  CAS  Google Scholar 

  6. Randolph TR (2005) Chronic myelocytic leukemia–Part I: history, clinical presentation, and molecular biology. Clin Lab Sci 18(1):38–48

    PubMed  Google Scholar 

  7. Rowley JD (1973) Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243(5405):290–293

    PubMed  CAS  Google Scholar 

  8. Bartram CR, de Klein A, Hagemeijer A, van Agthoven T, Geurts van Kessel A, Bootsma D, Grosveld G, Ferguson-Smith MA, Davies T, Stone M et al (1983) Translocation of c-ab1 oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia. Nature 306(5940):277–280

    PubMed  CAS  Google Scholar 

  9. Zhang L, Bennett JM, Zhang X, Moscinski L, Ibarz-Pinilla J, List AF, Komrokji R (2010) Uncommon of the uncommon: low-grade myelodysplastic syndrome evolving into chronic myelogenous leukemia. J Clin Oncol 29:434–436

    Google Scholar 

  10. Fine BM, Stanulla M, Schrappe M, Ho M, Viehmann S, Harbott J, Boxer LM (2004) Gene expression patterns associated with recurrent chromosomal translocations in acute lymphoblastic leukemia. Blood 103(3):1043–1049

    PubMed  CAS  Google Scholar 

  11. Bacher U, Haferlach T, Alpermann T, Zenger M, Hochhaus A, Beelen DW, Uppenkamp M, Rummel M, Kern W, Schnittger S, Haferlach C (2011) Subclones with the t(9;22)/BCR-ABL1 rearrangement occur in AML and seem to cooperate with distinct genetic alterations. Br J Haematol 152(6):713–720

    PubMed  Google Scholar 

  12. Villegas A, Anguita E, Gonzalez FA, Ferro MT, San Roman C (1998) Occurrence of BCR-ABL rearrangement in a Philadelphia chromosome-negative patient with 5q and 13q deletions and myeloproliferative syndrome. Cancer Genet Cytogenet 100(1):1–4

    PubMed  CAS  Google Scholar 

  13. Kurzrock R, Kantarjian HM, Druker BJ, Talpaz M (2003) Philadelphia chromosome-positive leukemias: from basic mechanisms to molecular therapeutics. Ann Intern Med 138(10):819–830

    PubMed  CAS  Google Scholar 

  14. McWhirter JR, Wang JY (1993) An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J 12(4):1533–1546

    PubMed  CAS  Google Scholar 

  15. Deininger MW, Goldman JM, Melo JV (2000) The molecular biology of chronic myeloid leukemia. Blood 96(10):3343–3356

    PubMed  CAS  Google Scholar 

  16. Pane F, Frigeri F, Sindona M, Luciano L, Ferrara F, Cimino R, Meloni G, Saglio G, Salvatore F, Rotoli B (1996) Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood 88(7):2410–2414

    PubMed  CAS  Google Scholar 

  17. Verma D, Kantarjian HM, Jones D, Luthra R, Borthakur G, Verstovsek S, Rios MB, Cortes J (2009) Chronic myeloid leukemia (CML) with P190 BCR-ABL: analysis of characteristics, outcomes, and prognostic significance. Blood 114(11):2232–2235

    PubMed  CAS  Google Scholar 

  18. Wan TS, Ma SK, Au WY, Chan LC (2003) Derivative chromosome 9 deletions in chronic myeloid leukaemia: interpretation of atypical D-FISH pattern. J Clin Pathol 56(6):471–474

    PubMed  CAS  Google Scholar 

  19. Thorn I, Botling J, Hermansson M, Lonnerholm G, Sundstrom C, Rosenquist R, Barbany G (2009) Monitoring minimal residual disease with flow cytometry, antigen-receptor gene rearrangements and fusion transcript quantification in Philadelphia-positive childhood acute lymphoblastic leukemia. Leuk Res 33(8):1047–1054

    PubMed  Google Scholar 

  20. Emig M, Saussele S, Wittor H, Weisser A, Reiter A, Willer A, Berger U, Hehlmann R, Cross NC, Hochhaus A (1999) Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR. Leukemia 13(11):1825–1832

    PubMed  CAS  Google Scholar 

  21. Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C, Niederwieser D, Resta D, Capdeville R, Zoellner U, Talpaz M, Druker B, Goldman J, O’Brien SG, Russell N, Fischer T, Ottmann O, Cony-Makhoul P, Facon T, Stone R, Miller C, Tallman M, Brown R, Schuster M, Loughran T, Gratwohl A, Mandelli F, Saglio G, Lazzarino M, Russo D, Baccarani M, Morra E (2002) Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 346(9):645–652

    PubMed  CAS  Google Scholar 

  22. Aguayo A, Couban S (2009) State-of-the-art in the management of chronic myelogenous leukemia in the era of the tyrosine kinase inhibitors: evolutionary trends in diagnosis, monitoring and treatment. Leuk Lymphoma 50(Suppl 2):1–8

    PubMed  CAS  Google Scholar 

  23. Hughes T, Deininger M, Hochhaus A, Branford S, Radich J, Kaeda J, Baccarani M, Cortes J, Cross NC, Druker BJ, Gabert J, Grimwade D, Hehlmann R, Kamel-Reid S, Lipton JH, Longtine J, Martinelli G, Saglio G, Soverini S, Stock W, Goldman JM (2006) Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood 108(1):28–37

    PubMed  CAS  Google Scholar 

  24. Donato NJ, Wu JY, Stapley J, Gallick G, Lin H, Arlinghaus R, Talpaz M (2003) BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 101(2):690–698

    PubMed  CAS  Google Scholar 

  25. Donato NJ, Wu JY, Stapley J, Lin H, Arlinghaus R, Aggarwal BB, Shishodia S, Albitar M, Hayes K, Kantarjian H, Talpaz M (2004) Imatinib mesylate resistance through BCR-ABL independence in chronic myelogenous leukemia. Cancer Res 64(2):672–677

    PubMed  CAS  Google Scholar 

  26. Quentmeier H, Eberth S, Romani J, Zaborski M, Drexler HG (2011) BCR-ABL1-independent PI3Kinase activation causing imatinib-resistance. J Hematol Oncol 4(1):6

    PubMed  CAS  Google Scholar 

  27. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, Garcon L, Raslova H, Berger R, Bennaceur-Griscelli A, Villeval JL, Constantinescu SN, Casadevall N, Vainchenker W (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434(7037):1144–1148

    PubMed  CAS  Google Scholar 

  28. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, Vassiliou GS, Bench AJ, Boyd EM, Curtin N, Scott MA, Erber WN, Green AR (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365(9464):1054–1061

    PubMed  CAS  Google Scholar 

  29. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S, Adelsperger J, Koo S, Lee JC, Gabriel S, Mercher T, D’Andrea A, Frohling S, Dohner K, Marynen P, Vandenberghe P, Mesa RA, Tefferi A, Griffin JD, Eck MJ, Sellers WR, Meyerson M, Golub TR, Lee SJ, Gilliland DG (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7(4):387–397

    PubMed  CAS  Google Scholar 

  30. Kralovics R, Teo SS, Buser AS, Brutsche M, Tiedt R, Tichelli A, Passamonti F, Pietra D, Cazzola M, Skoda RC (2005) Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2. Blood 106:3374–3376

    PubMed  CAS  Google Scholar 

  31. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, Futreal PA, Erber WN, McMullin MF, Harrison CN, Warren AJ, Gilliland DG, Lodish HF, Green AR (2007) JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 356(5):459–468

    PubMed  CAS  Google Scholar 

  32. Delhommeau F, Jeziorowska D, Marzac C, Casadevall N (2010) Molecular aspects of myeloproliferative neoplasms. Int J Hematol 91(2):165–173

    PubMed  CAS  Google Scholar 

  33. Kota J, Caceres N, Constantinescu SN (2008) Aberrant signal transduction pathways in myeloproliferative neoplasms. Leukemia 22(10):1828–1840

    PubMed  CAS  Google Scholar 

  34. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M, Skoda RC (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352(17):1779–1790

    PubMed  CAS  Google Scholar 

  35. Bellucci S, Michiels JJ (2006) The role of JAK2 V617F mutation, spontaneous erythropoiesis and megakaryocytopoiesis, hypersensitive platelets, activated leukocytes, and endothelial cells in the etiology of thrombotic manifestations in polycythemia vera and essential thrombocythemia. Semin Thromb Hemost 32(4 Pt 2):381–398

    PubMed  CAS  Google Scholar 

  36. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M, Steensma DP, Elliott MA, Wolanskyj AP, Hogan WJ, McClure RF, Litzow MR, Gilliland DG, Tefferi A (2006) MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 108(10):3472–3476

    PubMed  CAS  Google Scholar 

  37. Jekarl DW, Han SB, Kim M, Lim J, Oh EJ, Kim Y, Kim HJ, Min WS, Han K (2010) JAK2 V617F mutation in myelodysplastic syndrome, myelodysplastic syndrome/myeloproliferative neoplasm, unclassifiable, refractory anemia with ring sideroblasts with thrombocytosis, and acute myeloid leukemia. Korean J Hematol 45(1):46–50

    PubMed  CAS  Google Scholar 

  38. Schmitt-Graeff AH, Teo SS, Olschewski M, Schaub F, Haxelmans S, Kirn A, Reinecke P, Germing U, Skoda RC (2008) JAK2V617F mutation status identifies subtypes of refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Haematologica 93(1):34–40

    PubMed  CAS  Google Scholar 

  39. Ho K, Valdez F, Garcia R, Tirado CA (2010) JAK2 translocations in hematological malignancies: review of the literature. J Assoc Genet Technol 36(3):107–109

    PubMed  Google Scholar 

  40. Mossuz P, Girodon F, Donnard M, Latger-Cannard V, Dobo I, Boiret N, Lecron JC, Binquet C, Barro C, Hermouet S, Praloran V (2004) Diagnostic value of serum erythropoietin level in patients with absolute erythrocytosis. Haematologica 89(10):1194–1198

    PubMed  CAS  Google Scholar 

  41. Andrieux JL, Demory JL (2005) Karyotype and molecular cytogenetic studies in polycythemia vera. Curr Hematol Rep 4(3):224–229

    PubMed  CAS  Google Scholar 

  42. De Stefano V, Za T, Rossi E, Vannucchi AM, Ruggeri M, Elli E, Mico C, Tieghi A, Cacciola RR, Santoro C, Vianelli N, Guglielmelli P, Pieri L, Scognamiglio F, Cacciola E, Rodeghiero F, Pogliani EM, Finazzi G, Gugliotta L, Leone G, Barbui T (2010) Increased risk of recurrent thrombosis in patients with essential thrombocythemia carrying the homozygous JAK2 V617F mutation. Ann Hematol 89(2):141–146

    PubMed  Google Scholar 

  43. Hirose Y, Masaki Y, Sugai S (2002) Leukemic transformation with trisomy 8 in essential thrombocythemia: a report of four cases. Eur J Haematol 68(2):112–116

    PubMed  Google Scholar 

  44. Reilly JT, Snowden JA, Spearing RL, Fitzgerald PM, Jones N, Watmore A, Potter A (1997) Cytogenetic abnormalities and their prognostic significance in idiopathic myelofibrosis: a study of 106 cases. Br J Haematol 98(1):96–102

    PubMed  CAS  Google Scholar 

  45. Reilly JT (2005) Cytogenetic and molecular genetic abnormalities in agnogenic myeloid metaplasia. Semin Oncol 32(4):359–364

    PubMed  CAS  Google Scholar 

  46. Strasser-Weippl K, Steurer M, Kees M, Augustin F, Tzankov A, Dirnhofer S, Fiegl M, Simonitsch-Klupp I, Gisslinger H, Zojer N, Ludwig H (2006) Prognostic relevance of cytogenetics determined by fluorescent in situ hybridization in patients having myelofibrosis with myeloid metaplasia. Cancer 107(12):2801–2806

    PubMed  CAS  Google Scholar 

  47. Dingli D, Grand FH, Mahaffey V, Spurbeck J, Ross FM, Watmore AE, Reilly JT, Cross NC, Dewald GW, Tefferi A (2005) Der(6)t(1;6)(q21-23;p21.3): a specific cytogenetic abnormality in myelofibrosis with myeloid metaplasia. Br J Haematol 130(2):229–232

    PubMed  CAS  Google Scholar 

  48. Lim KH, Pardanani A, Tefferi A (2008) KIT and mastocytosis. Acta Haematol 119(4):194–198

    PubMed  CAS  Google Scholar 

  49. Hungness SI, Akin C (2007) Mastocytosis: advances in diagnosis and treatment. Curr Allergy Asthma Rep 7(4):248–254

    PubMed  CAS  Google Scholar 

  50. Yanagihori H, Oyama N, Nakamura K, Kaneko F (2005) c-kit Mutations in patients with childhood-onset mastocytosis and genotype-phenotype correlation. J Mol Diagn 7(2):252–257

    PubMed  CAS  Google Scholar 

  51. Zhao W, Bueso-Ramos CE, Verstovsek S, Barkoh BA, Khitamy AA, Jones D (2007) Quantitative profiling of codon 816 KIT mutations can aid in the classification of systemic mast cell disease. Leukemia 21(7):1574–1576

    PubMed  CAS  Google Scholar 

  52. Corless CL, Harrell P, Lacouture M, Bainbridge T, Le C, Gatter K, White C Jr, Granter S, Heinrich MC (2006) Allele-specific polymerase chain reaction for the imatinib-resistant KIT D816V and D816F mutations in mastocytosis and acute myelogenous leukemia. J Mol Diagn 8(5):604–612

    PubMed  CAS  Google Scholar 

  53. Beghini A, Ripamonti CB, Cairoli R, Cazzaniga G, Colapietro P, Elice F, Nadali G, Grillo G, Haas OA, Biondi A, Morra E, Larizza L (2004) KIT activating mutations: incidence in adult and pediatric acute myeloid leukemia, and identification of an internal tandem duplication. Haematologica 89(8):920–925

    PubMed  CAS  Google Scholar 

  54. Goemans BF, Zwaan CM, Miller M, Zimmermann M, Harlow A, Meshinchi S, Loonen AH, Hahlen K, Reinhardt D, Creutzig U, Kaspers GJ, Heinrich MC (2005) Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia 19(9):1536–1542

    PubMed  CAS  Google Scholar 

  55. Hellmann A (2008) Myeloproliferative syndromes: diagnosis and therapeutic options. Pol Arch Med Wewn 118(12):756–760

    PubMed  Google Scholar 

  56. Cross NC, Reiter A (2008) Fibroblast growth factor receptor and platelet-derived growth factor receptor abnormalities in eosinophilic myeloproliferative disorders. Acta Haematol 119(4):199–206

    PubMed  CAS  Google Scholar 

  57. Golub TR, Barker GF, Lovett M, Gilliland DG (1994) Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77(2):307–316

    PubMed  CAS  Google Scholar 

  58. Bain BJ, Fletcher SH (2007) Chronic eosinophilic leukemias and the myeloproliferative variant of the hypereosinophilic syndrome. Immunol Allergy Clin North Am 27(3):377–388

    PubMed  Google Scholar 

  59. Steer EJ, Cross NC (2002) Myeloproliferative disorders with translocations of chromosome 5q31-35: role of the platelet-derived growth factor receptor beta. Acta Haematol 107(2):113–122

    PubMed  CAS  Google Scholar 

  60. Vizmanos JL, Hernandez R, Vidal MJ, Larrayoz MJ, Odero MD, Marin J, Ardanaz MT, Calasanz MJ, Cross NC (2004) Clinical variability of patients with the t(6;8)(q27;p12) and FGFR1OP-FGFR1 fusion: two further cases. Hematol J 5(6):534–537

    PubMed  CAS  Google Scholar 

  61. Erben P, Gosenca D, Muller MC, Reinhard J, Score J, Del Valle F, Walz C, Mix J, Metzgeroth G, Ernst T, Haferlach C, Cross NC, Hochhaus A, Reiter A (2010) Screening for diverse PDGFRA or PDGFRB fusion genes is facilitated by generic quantitative reverse transcriptase polymerase chain reaction analysis. Haematologica 95(5):738–744

    PubMed  CAS  Google Scholar 

  62. Hirsch-Ginsberg C, LeMaistre AC, Kantarjian H, Talpaz M, Cork A, Freireich EJ, Trujillo JM, Lee MS, Stass SA (1990) RAS mutations are rare events in Philadelphia chromosome-negative/bcr gene rearrangement-negative chronic myelogenous leukemia, but are prevalent in chronic myelomonocytic leukemia. Blood 76(6):1214–1219

    PubMed  CAS  Google Scholar 

  63. Tefferi A, Gilliland DG (2007) Oncogenes in myeloproliferative disorders. Cell Cycle 6(5):550–566

    PubMed  CAS  Google Scholar 

  64. Orazi A, Germing U (2008) The myelodysplastic/myeloproliferative neoplasms: myeloproliferative diseases with dysplastic features. Leukemia 22(7):1308–1319

    PubMed  CAS  Google Scholar 

  65. Vannucchi AM, Guglielmelli P, Tefferi A (2009) Advances in understanding and management of myeloproliferative neoplasms. CA Cancer J Clin 59(3):171–191

    PubMed  Google Scholar 

  66. Vardiman JW (2004) Myelodysplastic/myeloproliferative diseases. Cancer Treat Res 121:13–43

    PubMed  Google Scholar 

  67. Loh ML, Vattikuti S, Schubbert S, Reynolds MG, Carlson E, Lieuw KH, Cheng JW, Lee CM, Stokoe D, Bonifas JM, Curtiss NP, Gotlib J, Meshinchi S, Le Beau MM, Emanuel PD, Shannon KM (2004) Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 103(6):2325–2331

    PubMed  CAS  Google Scholar 

  68. Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A, Hahlen K, Hasle H, Licht JD, Gelb BD (2003) Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 34(2):148–150

    PubMed  CAS  Google Scholar 

  69. List A, Dewald G, Bennett J, Giagounidis A, Raza A, Feldman E, Powell B, Greenberg P, Thomas D, Stone R, Reeder C, Wride K, Patin J, Schmidt M, Zeldis J, Knight R (2006) Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med 355(14):1456–1465

    PubMed  CAS  Google Scholar 

  70. Giagounidis AA, Germing U, Aul C (2006) Biological and prognostic significance of chromosome 5q deletions in myeloid malignancies. Clin Cancer Res 12(1):5–10

    PubMed  CAS  Google Scholar 

  71. Lai JL, Preudhomme C, Zandecki M, Flactif M, Vanrumbeke M, Lepelley P, Wattel E, Fenaux P (1995) Myelodysplastic syndromes and acute myeloid leukemia with 17p deletion. An entity characterized by specific dysgranulopoiesis and a high incidence of P53 mutations. Leukemia 9(3):370–381

    PubMed  CAS  Google Scholar 

  72. Jotterand Bellomo M, Parlier V, Muhlematter D, Grob JP, Beris P (1992) Three new cases of chromosome 3 rearrangement in bands q21 and q26 with abnormal thrombopoiesis bring further evidence to the existence of a 3q21q26 syndrome. Cancer Genet Cytogenet 59(2):138–160

    PubMed  CAS  Google Scholar 

  73. Haase D, Germing U, Schanz J, Pfeilstocker M, Nosslinger T, Hildebrandt B, Kundgen A, Lubbert M, Kunzmann R, Giagounidis AA, Aul C, Trumper L, Krieger O, Stauder R, Muller TH, Wimazal F, Valent P, Fonatsch C, Steidl C (2007) New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood 110(13):4385–4395

    PubMed  CAS  Google Scholar 

  74. Valent P, Wieser R (2009) Update on genetic and molecular markers associated with myelodysplastic syndromes. Leuk Lymphoma 50(3):341–348

    PubMed  CAS  Google Scholar 

  75. Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N, Raza A, Root DE, Attar ESR, Golub TR (2008) Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451(7176):335–339

    PubMed  CAS  Google Scholar 

  76. Pellagatti A, Jadersten M, Forsblom AM, Cattan H, Christensson B, Emanuelsson EK, Merup M, Nilsson L, Samuelsson J, Sander B, Wainscoat JS, Boultwood J, Hellstrom-Lindberg E (2007) Lenalidomide inhibits the malignant clone and up-regulates the SPARC gene mapping to the commonly deleted region in 5q- syndrome patients. Proc Natl Acad Sci USA 104(27):11406–11411

    PubMed  CAS  Google Scholar 

  77. Morishita K, Parganas E, William CL, Whittaker MH, Drabkin H, Oval J, Taetle R, Valentine MB, Ihle JN (1992) Activation of EVI1 gene expression in human acute myelogenous leukemias by translocations spanning 300-400 kilobases on chromosome band 3q26. Proc Natl Acad Sci USA 89(9):3937–3941

    PubMed  CAS  Google Scholar 

  78. Suzukawa K, Parganas E, Gajjar A, Abe T, Takahashi S, Tani K, Asano S, Asou H, Kamada N, Yokota J et al (1994) Identification of a breakpoint cluster region 3’ of the ribophorin I gene at 3q21 associated with the transcriptional activation of the EVI1 gene in acute myelogenous leukemias with inv(3)(q21q26). Blood 84(8):2681–2688

    PubMed  CAS  Google Scholar 

  79. Vinatzer U, Mannhalter C, Mitterbauer M, Gruener H, Greinix H, Schmidt HH, Fonatsch C, Wieser R (2003) Quantitative comparison of the expression of EVI1 and its presumptive antagonist, MDS1/EVI1, in patients with myeloid leukemia. Genes Chromosomes Cancer 36(1):80–89

    PubMed  CAS  Google Scholar 

  80. Steensma DP, Dewald GW, Lasho TL, Powell HL, McClure RF, Levine RL, Gilliland DG, Tefferi A (2005) The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and myelodysplastic syndromes. Blood 106(4):1207–1209

    PubMed  CAS  Google Scholar 

  81. Gattermann N, Billiet J, Kronenwett R, Zipperer E, Germing U, Nollet F, Criel A, Selleslag D (2007) High frequency of the JAK2 V617F mutation in patients with thrombocytosis (platelet count > 600 × 109/L) and ringed sideroblasts more than 15% considered as MDS/MPD, unclassifiable. Blood 109(3):1334–1335

    PubMed  CAS  Google Scholar 

  82. Della Porta MG, Malcovati L, Boveri E, Travaglino E, Pietra D, Pascutto C, Passamonti F, Invernizzi R, Castello A, Magrini U, Lazzarino M, Cazzola M (2009) Clinical relevance of bone marrow fibrosis and CD34-positive cell clusters in primary myelodysplastic syndromes. J Clin Oncol 27(5):754–762

    PubMed  Google Scholar 

  83. Ingram W, Lea NC, Cervera J, Germing U, Fenaux P, Cassinat B, Kiladjian JJ, Varkonyi J, Antunovic P, Westwood NB, Arno MJ, Mohamedali A, Gaken J, Kontou T, Czepulkowski BH, Twine NA, Tamaska J, Csomer J, Benedek S, Gattermann N, Zipperer E, Giagounidis A, Garcia-Casado Z, Sanz G, Mufti GJ (2006) The JAK2 V617F mutation identifies a subgroup of MDS patients with isolated deletion 5q and a proliferative bone marrow. Leukemia 20(7):1319–1321

    PubMed  CAS  Google Scholar 

  84. Heerema-McKenney A, Arber DA (2009) Acute myeloid leukemia. Hematol Oncol Clin North Am 23(4):633–654

    PubMed  Google Scholar 

  85. Paschka P (2008) Core binding factor acute myeloid leukemia. Semin Oncol 35(4):410–417

    PubMed  CAS  Google Scholar 

  86. Kundu M, Liu PP (2001) Function of the inv(16) fusion gene CBFB-MYH11. Curr Opin Hematol 8(4):201–205

    PubMed  CAS  Google Scholar 

  87. Lo Coco F, Diverio D, Falini B, Biondi A, Nervi C, Pelicci PG (1999) Genetic diagnosis and molecular monitoring in the management of acute promyelocytic leukemia. Blood 94(1):12–22

    PubMed  Google Scholar 

  88. Degos L (2003) The history of acute promyelocytic leukaemia. Br J Haematol 122(4):539–553

    PubMed  Google Scholar 

  89. Meyer C, Hofmann J, Burmeister T, Gröger D, Park TS, Emerenciano M, Pombo de Oliveira M, Renneville A, Villarese P, Macintyre E, Cavé H, Clappier E, Mass-Malo K, Zuna J, Trka J (2013) The MLL recombinome of acute leukemias in 2013. Leukemia doi: 10.1038/leu.2013.135 [Epub ahead of print]

  90. Repp R, Borkhardt A, Haupt E, Kreuder J, Brettreich S, Hammermann J, Nishida K, Harbott J, Lampert F (1995) Detection of four different 11q23 chromosomal abnormalities by multiplex-PCR and fluorescence-based automatic DNA-fragment analysis. Leukemia 9(1):210–215

    PubMed  CAS  Google Scholar 

  91. Alsabeh R, Brynes RK, Slovak ML, Arber DA (1997) Acute myeloid leukemia with t(6;9) (p23;q34): association with myelodysplasia, basophilia, and initial CD34 negative immunophenotype. Am J Clin Pathol 107(4):430–437

    PubMed  CAS  Google Scholar 

  92. Lugthart S, van Drunen E, van Norden Y, van Hoven A, Erpelinck CA, Valk PJ, Beverloo HB, Lowenberg B, Delwel R (2008) High EVI1 levels predict adverse outcome in acute myeloid leukemia: prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated. Blood 111(8):4329–4337

    PubMed  CAS  Google Scholar 

  93. Rosnet O, Buhring HJ, Marchetto S, Rappold I, Lavagna C, Sainty D, Arnoulet C, Chabannon C, Kanz L, Hannum C, Birnbaum D (1996) Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells. Leukemia 10(2):238–248

    PubMed  CAS  Google Scholar 

  94. Ray RJ, Paige CJ, Furlonger C, Lyman SD, Rottapel R (1996) Flt3 ligand supports the differentiation of early B cell progenitors in the presence of interleukin-11 and interleukin-7. Eur J Immunol 26(7):1504–1510

    PubMed  CAS  Google Scholar 

  95. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, Sonoda Y, Fujimoto T, Misawa S (1996) Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 10(12):1911–1918

    PubMed  CAS  Google Scholar 

  96. Kiyoi H, Naoe T (2002) FLT3 in human hematologic malignancies. Leuk Lymphoma 43(8):1541–1547

    PubMed  CAS  Google Scholar 

  97. Motyckova G, Stone RM (2010) The role of molecular tests in acute myelogenous leukemia treatment decisions. Curr Hematol Malig Rep 5(2):109–117

    PubMed  Google Scholar 

  98. Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T (2002) Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene 21(16):2555–2563

    PubMed  CAS  Google Scholar 

  99. Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, Muller C, Gruning W, Kratz-Albers K, Serve S, Steur C, Buchner T, Kienast J, Kanakura Y, Berdel WE, Serve H (2000) Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood 96(12):3907–3914

    PubMed  CAS  Google Scholar 

  100. Meshinchi S, Appelbaum FR (2009) Structural and functional alterations of FLT3 in acute myeloid leukemia. Clin Cancer Res 15(13):4263–4269

    PubMed  CAS  Google Scholar 

  101. Kottaridis PD, Gale RE, Linch DC (2003) Flt3 mutations and leukaemia. Br J Haematol 122(4):523–538

    PubMed  CAS  Google Scholar 

  102. Wagner K, Damm F, Thol F, Gohring G, Gorlich K, Heuser M, Schafer I, Schlegelberger B, Heil G, Ganser A, Krauter J (2011) FLT3-internal tandem duplication and age are the major prognostic factors in relapsed acute myeloid leukemia with normal karyotype. Haematologica 96(5):681–686

    PubMed  Google Scholar 

  103. Rau R, Brown P (2009) Nucleophosmin (NPM1) mutations in adult and childhood acute myeloid leukaemia: towards definition of a new leukaemia entity. Hematol Oncol 27(4):171–181

    PubMed  CAS  Google Scholar 

  104. Falini B, Nicoletti I, Martelli MF, Mecucci C (2007) Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc + AML): biologic and clinical features. Blood 109(3):874–885

    PubMed  CAS  Google Scholar 

  105. Falini B, Martelli MP, Bolli N, Sportoletti P, Liso A, Tiacci E, Haferlach T (2011) Acute myeloid leukemia with mutated nucleophosmin (NPM1): is it a distinct entity? Blood 117(4):1109–1120

    PubMed  CAS  Google Scholar 

  106. Schlenk RF, Dohner K, Krauter J, Frohling S, Corbacioglu A, Bullinger L, Habdank M, Spath D, Morgan M, Benner A, Schlegelberger B, Heil G, Ganser A, Dohner H (2008) Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 358(18):1909–1918

    PubMed  CAS  Google Scholar 

  107. Falini B, Sportoletti P, Martelli MP (2009) Acute myeloid leukemia with mutated NPM1: diagnosis, prognosis and therapeutic perspectives. Curr Opin Oncol 21(6):573–581

    PubMed  Google Scholar 

  108. Gale RE, Green C, Allen C, Mead AJ, Burnett AK, Hills RK, Linch DC (2008) The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood 111(5):2776–2784

    PubMed  CAS  Google Scholar 

  109. Falini B, Lenze D, Hasserjian R, Coupland S, Jaehne D, Soupir C, Liso A, Martelli MP, Bolli N, Bacci F, Pettirossi V, Santucci A, Martelli MF, Pileri S, Stein H (2007) Cytoplasmic mutated nucleophosmin (NPM) defines the molecular status of a significant fraction of myeloid sarcomas. Leukemia 21(7):1566–1570

    PubMed  CAS  Google Scholar 

  110. Marcucci G, Maharry K, Radmacher MD, Mrozek K, Vukosavljevic T, Paschka P, Whitman SP, Langer C, Baldus CD, Liu CG, Ruppert AS, Powell BL, Carroll AJ, Caligiuri MA, Kolitz JE, Larson RA, Bloomfield CD (2008) Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B Study. J Clin Oncol 26(31):5078–5087

    PubMed  CAS  Google Scholar 

  111. Cairoli R, Beghini A, Grillo G, Nadali G, Elice F, Ripamonti CB, Colapietro P, Nichelatti M, Pezzetti L, Lunghi M, Cuneo A, Viola A, Ferrara F, Lazzarino M, Rodeghiero F, Pizzolo G, Larizza L, Morra E (2006) Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood 107(9):3463–3468

    PubMed  CAS  Google Scholar 

  112. Paschka P, Marcucci G, Ruppert AS, Whitman SP, Mrozek K, Maharry K, Langer C, Baldus CD, Zhao W, Powell BL, Baer MR, Carroll AJ, Caligiuri MA, Kolitz JE, Larson RA, Bloomfield CD (2008) Wilms’ tumor 1 gene mutations independently predict poor outcome in adults with cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol 26(28):4595–4602

    PubMed  CAS  Google Scholar 

  113. Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J, Ben Abdelali R, Macintyre E, De Braekeleer E, De Braekeleer M, Delabesse E, de Oliveira MP, Cave H, Clappier E, van Dongen JJ, Balgobind BV, van den Heuvel-Eibrink MM, Beverloo HB, Panzer-Grumayer R, Teigler-Schlegel A, Harbott J, Kjeldsen E, Schnittger S, Koehl U, Gruhn B, Heidenreich O, Chan LC, Yip SF, Krzywinski M, Eckert C, Moricke A, Schrappe M, Alonso CN, Schafer BW, Krauter J, Lee DA, Zur Stadt U, Te Kronnie G, Sutton R, Izraeli S, Trakhtenbrot L, Lo Nigro L, Tsaur G, Fechina L, Szczepanski T, Strehl S, Ilencikova D, Molkentin M, Burmeister T, Dingermann T, Klingebiel T, Marschalek R (2009) New insights to the MLL recombinome of acute leukemias. Leukemia 23(8):1490–1499

    PubMed  CAS  Google Scholar 

  114. Whitman SP, Liu S, Vukosavljevic T, Rush LJ, Yu L, Liu C, Klisovic MI, Maharry K, Guimond M, Strout MP, Becknell B, Dorrance A, Klisovic RB, Plass C, Bloomfield CD, Marcucci G, Caligiuri MA (2005) The MLL partial tandem duplication: evidence for recessive gain-of-function in acute myeloid leukemia identifies a novel patient subgroup for molecular-targeted therapy. Blood 106(1):345–352

    PubMed  CAS  Google Scholar 

  115. Naghashpour M, Lancet J, Moscinski L, Zhang L (2011) Mixed phenotype acute leukemia with t(11;19)(q23;p13.3)/MLL-MLLT1(ENL), B/T-lymphoid type: a first case report. Am J Hematol 85(6):451–454

    Google Scholar 

  116. Neubauer A, Maharry K, Mrozek K, Thiede C, Marcucci G, Paschka P, Mayer RJ, Larson RA, Liu ET, Bloomfield CD (2008) Patients with acute myeloid leukemia and RAS mutations benefit most from postremission high-dose cytarabine: a Cancer and Leukemia Group B study. J Clin Oncol 26(28):4603–4609

    PubMed  CAS  Google Scholar 

  117. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, van Waalwijk B, van Doorn-Khosrovani S, Boer JM, Beverloo HB, Moorhouse MJ, van der Spek PJ, Lowenberg B, Delwel R (2004) Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350(16):1617–1628

    PubMed  CAS  Google Scholar 

  118. Bacher U, Kohlmann A, Haferlach T (2009) Current status of gene expression profiling in the diagnosis and management of acute leukaemia. Br J Haematol 145(5):555–568

    PubMed  CAS  Google Scholar 

  119. Marcucci G, Radmacher MD, Maharry K, Mrozek K, Ruppert AS, Paschka P, Vukosavljevic T, Whitman SP, Baldus CD, Langer C, Liu CG, Carroll AJ, Powell BL, Garzon R, Croce CM, Kolitz JE, Caligiuri MA, Larson RA, Bloomfield CD (2008) MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 358(18):1919–1928

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zhang M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, X., Zhang, L. (2014). Molecular Diagnostics of Myeloid Neoplasms. In: Coppola, D. (eds) Molecular Pathology and Diagnostics of Cancer. Cancer Growth and Progression, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7192-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7192-5_18

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7191-8

  • Online ISBN: 978-94-007-7192-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics