Skip to main content

Molecular Diagnostics of Lymphoid Neoplasms

  • Chapter
  • First Online:
Book cover Molecular Pathology and Diagnostics of Cancer

Part of the book series: Cancer Growth and Progression ((CAGP,volume 16))

Abstract

According to 2008 World Health Organization (WHO) Classification of Tumors of Hematopoietic and Lymphoid Tissue, lymphoid neoplasms are divided into two, mature and immature (precursors), forms including mature B and T/NK cell leukemia/lymphomas and B and T-lymphoblastic leukemia/lymphomas (B-ALL/LBL, T-ALL/LBL). Nowadays a variety of molecular methods are introduced for the modern classification of lymphoid neoplasm system. Although morphological characteristics remain the cornerstone of the evaluation of lymphoid neoplasm, ancillary studies e.g. immunophenotyping and PCR study for T- and B-cell gene rearrangements are routinely implicated in daily service. Different from myeloid neoplasms, the application of molecular/genetic diagnosis and subclassification of lymphoid neoplasm are mainly limited in B-ALL. There are few known protooncogenes or cytogenetic abnormalities in the certain T/NK or B lymphoid malignancies. The chapter focuses on common molecular diagnostic approaches and molecules that implicated in therapeutic strategies, predicting prognosis and monitoring minimal residual disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

Activated B cell-like type

ALK:

Anaplastic large cell kinase

ALL:

Acute lymphoblastic leukemias

ALTCL:

Anaplastic large T cell lymphoma

ATM:

Ataxia telangiectasia mutated gene

B-ALL:

B-lymphoblastic leukemia/lymphoma

BL:

Burkitt lymphoma

B-PLL:

B-cell prolymphocytic leukemia

CDK6:

Cyclin dependent kinase 6 gene

CLL/SLL:

Chronic lymphocytic leukemia/small lymphocytic lymphoma

CNS:

Central nervous system

CRA:

Common region of amplification

DAPK1:

Death-associated protein kinase 1

DLBCL:

Diffuse large B-cell lymphoma

FFPE:

Formalin-fixed and paraffin-embedded

FISH:

Fluorescence in situ hybridization

FNA:

Fine needle aspirate

GCB:

Germinal center B-cell like

iAMP21:

Intrachromosomal amplification of chromosome 21

LPL:

Lymphoplasmacytic lymphoma

M-bcr:

Major breakpoint cluster region

m-bcr:

“minor” breakpoint cluster region

MF:

Mycosis fungoides

MLPA:

Multiplex ligation-dependent probe amplification

MRD:

Minimal residual disease

NK:

Natural killer

Non-GCB:

Non-germinal center B-cell like

NPM:

Nucleophosmin gene

PCR:

Polymerase Chain Reaction

PTCL, NOS:

Peripheral T cell lymphoma, not otherwise specified

RT-PCR:

Reverse Polymerase Chain Reaction

SHM:

Somatic hypermutation

SMZL:

Splenic marginal zone lymphoma

SNP:

Single Nucleotide Polymorphism Array

T-ALL:

T-lymphoblastic leukemia/lymphoma

TCR:

T cell gene rearrangement

TKI:

Tyrosine kinase inhibitor

UDP:

Uniparental disomy

WHO:

World Health Organization

References

  1. Swerdlow SH, I.A.f.R.o. Cancer, WHO (2008) WHO classification of tumours of haematopoietic and lymphoid tissues2008. International Agency for Research on Cancer

    Google Scholar 

  2. Harrison CJ, Foroni L (2002) Cytogenetics and molecular genetics of acute lymphoblastic leukemia. Rev Clin Exp Hematol 6(2):91–113, discussion 200–2

    PubMed  CAS  Google Scholar 

  3. Harrison CJ (2009) Cytogenetics of paediatric and adolescent acute lymphoblastic leukaemia. Br J Haematol 144(2):147–156

    PubMed  Google Scholar 

  4. Mullighan CG, Downing JR (2009) Global genomic characterization of acute lymphoblastic leukemia. Semin Hematol 46(1):3–15

    PubMed  CAS  Google Scholar 

  5. Pui CH, Relling MV, Downing JR (2004) Acute lymphoblastic leukemia. N Eng J Med 350(15):1535–1548

    CAS  Google Scholar 

  6. Graux C et al (2006) Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia 20(9):1496–1510

    PubMed  CAS  Google Scholar 

  7. Rezuke WN, Abernathy EC, Tsongalis GJ (1997) Molecular diagnosis of B- and T-cell lymphomas: fundamental principles and clinical applications. Clin Chem 43(10):1814–1823

    PubMed  CAS  Google Scholar 

  8. Cossman J et al (1991) Gene rearrangements in the diagnosis of lymphoma/leukemia. Guidelines for use based on a multiinstitutional study. Am J Clin Pathol 95(3):347–354

    PubMed  CAS  Google Scholar 

  9. van Krieken JH et al (2007) Improved reliability of lymphoma diagnostics via PCR-based clonality testing: report of the BIOMED-2 concerted action BHM4-CT98-3936. Leukemia 21(2):201–206

    PubMed  Google Scholar 

  10. Langerak AW et al (2007) Polymerase chain reaction-based clonality testing in tissue samples with reactive lymphoproliferations: usefulness and pitfalls. A report of the BIOMED-2 concerted action BMH4-CT98-3936. Leukemia 21(2):222–229

    PubMed  CAS  Google Scholar 

  11. van Dongen JJ et al (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 concerted action BMH4-CT98-3936. Leukemia 17(12):2257–2317

    PubMed  Google Scholar 

  12. Bagg A (2004) Molecular diagnosis in lymphoma. Curr Oncol Rep 6(5):369–379

    PubMed  Google Scholar 

  13. Jacobs PA, Tough IM, Wright DH (1963) Cytogenetic studies in Burkitt’s lymphoma. Lancet 2(7318):1144–1146

    PubMed  CAS  Google Scholar 

  14. Nowell PC, Hungerford DA (1960) Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst 25:85–109

    PubMed  CAS  Google Scholar 

  15. Kluin P, Schuuring E (2011) Molecular cytogenetics of lymphoma: where do we stand in 2010? Histopathology 58(1):128–144

    PubMed  Google Scholar 

  16. Roullet M, Bagg A (2010) The basis and rational use of molecular genetic testing in mature B-cell lymphomas. Adv Anat Pathol 17(5):333–358

    PubMed  CAS  Google Scholar 

  17. Aukema SM et al (2011) Double-hit B-cell lymphomas. Blood 117(8):2319–2331

    PubMed  CAS  Google Scholar 

  18. Li S et al (2012) B-cell lymphomas with MYC/8q24 rearrangements and IGH@BCL2/t(14;18)(q32;q21): an aggressive disease with heterogeneous histology, germinal center B-cell immunophenotype and poor outcome. Mod Pathol 25(1):145–156

    PubMed  CAS  Google Scholar 

  19. Lindsley RC, Lacasce AS (2012) Biology of double-hit B-cell lymphomas. Curr Opin Hematol 19(4):299–304

    Google Scholar 

  20. Pedersen MO et al (2012) Double-hit BCL2/MYC translocations in a consecutive cohort of patients with large B-cell lymphoma – a single centre’s experience. Eur J Haematol 89(1):63–71

    Google Scholar 

  21. Falini B, Martelli MP (2009) Anaplastic large cell lymphoma: changes in the world health organization classification and perspectives for targeted therapy. Haematologica 94(7):897–900

    PubMed  Google Scholar 

  22. Bijwaard KE et al (2001) Quantitative real-time reverse transcription-PCR assay for cyclin D1 expression: utility in the diagnosis of mantle cell lymphoma. Clin Chem 47(2):195–201

    PubMed  CAS  Google Scholar 

  23. Vianello F et al (1998) Detection of B-cell monoclonality in fine needle aspiration by PCR analysis. Leuk Lymphoma 29(1–2):179–185

    PubMed  CAS  Google Scholar 

  24. Isaacson PG et al (1989) Immunoproliferative small-intestinal disease. An immunohistochemical study. Am J Surg Pathol 13(12):1023–1033

    PubMed  CAS  Google Scholar 

  25. Griesser H (1995) Gene rearrangements and chromosomal translocations in T cell lymphoma–diagnostic applications and their limits. Virchows Arch 426(4):323–338

    PubMed  CAS  Google Scholar 

  26. Kallakury BV et al (1999) Posttherapy surveillance of B-cell precursor acute lymphoblastic leukemia. Value of polymerase chain reaction and limitations of flow cytometry. Am J Clin Pathol 111(6):759–766

    PubMed  CAS  Google Scholar 

  27. Elenitoba-Johnson KS et al (2000) PCR analysis of the immunoglobulin heavy chain gene in polyclonal processes can yield pseudoclonal bands as an artifact of low B cell number. J Mol Diagn 2(2):92–96

    PubMed  CAS  Google Scholar 

  28. Diss TC et al (1995) The polymerase chain reaction in the demonstration of monoclonality in T cell lymphomas. J Clin Pathol 48(11):1045–1050

    PubMed  CAS  Google Scholar 

  29. Bagg A et al (2002) Immunoglobulin heavy chain gene analysis in lymphomas: a multi-center study demonstrating the heterogeneity of performance of polymerase chain reaction assays. J Mol Diagn 4(2):81–89

    PubMed  CAS  Google Scholar 

  30. Bea S et al (2009) Uniparental disomies, homozygous deletions, amplifications, and target genes in mantle cell lymphoma revealed by integrative high-resolution whole-genome profiling. Blood 113(13):3059–3069

    PubMed  CAS  Google Scholar 

  31. O’Shea D et al (2009) Regions of acquired uniparental disomy at diagnosis of follicular lymphoma are associated with both overall survival and risk of transformation. Blood 113(10):2298–2301

    PubMed  Google Scholar 

  32. Schwindt H et al (2009) Chromosomal imbalances and partial uniparental disomies in primary central nervous system lymphoma. Leukemia 23(10):1875–1884

    PubMed  CAS  Google Scholar 

  33. Heinrichs S, Li C, Look AT (2010) SNP array analysis in hematologic malignancies: avoiding false discoveries. Blood 115(21):4157–4161

    PubMed  CAS  Google Scholar 

  34. Cazzaniga G et al (2002) Prospective molecular monitoring of BCR/ABL transcript in children with Ph + acute lymphoblastic leukaemia unravels differences in treatment response. Br J Haematol 119(2):445–453

    PubMed  CAS  Google Scholar 

  35. Scrideli CA et al (2003) Gene expression profile unravels significant differences between childhood and adult Ph + acute lymphoblastic leukemia. Leukemia 17(11):2234–2237

    PubMed  CAS  Google Scholar 

  36. Owaidah TM et al (2008) Expression of CD66c and CD25 in acute lymphoblastic leukemia as a predictor of the presence of BCR/ABL rearrangement. Hematol Oncol Stem Cell Ther 1(1):34–37

    PubMed  CAS  Google Scholar 

  37. Harrison CJ et al (2010) Detection of prognostically relevant genetic abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: recommendations from the biology and diagnosis committee of the international Berlin-Frankfurt-Munster study group. Br J Haematol 151(2):132–142

    PubMed  CAS  Google Scholar 

  38. Harper DP, Aplan PD (2008) Chromosomal rearrangements leading to MLL gene fusions: clinical and biological aspects. Cancer Res 68(24):10024–10027

    PubMed  CAS  Google Scholar 

  39. Krivtsov AV, Armstrong SA (2007) MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 7(11):823–833

    PubMed  CAS  Google Scholar 

  40. Krivtsov AV et al (2008) H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 14(5):355–368

    PubMed  CAS  Google Scholar 

  41. Armstrong SA et al (2003) Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell 3(2):173–183

    PubMed  CAS  Google Scholar 

  42. Romana SP et al (1995) High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood 86(11):4263–4269

    PubMed  CAS  Google Scholar 

  43. Wiemels JL et al (1999) Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 354(9189):1499–1503

    PubMed  CAS  Google Scholar 

  44. Davidsson J et al (2009) The DNA methylome of pediatric acute lymphoblastic leukemia. Hum Mol Genet 18(21):4054–4065

    PubMed  CAS  Google Scholar 

  45. Konn ZJ et al (2010) Cytogenetics of long-term survivors of ETV6-RUNX1 fusion positive acute lymphoblastic leukemia. Genes Chromosomes Cancer 49(3):253–259

    PubMed  CAS  Google Scholar 

  46. Chan WC et al (2009) T-Cell large granular lymphocytic leukemia. WHO classification of tumours of haematopoietic and lymphoid tissues. International Agency for Research on Cancer

    Google Scholar 

  47. Harrison CJ et al (2005) Interphase molecular cytogenetic screening for chromosomal abnormalities of prognostic significance in childhood acute lymphoblastic leukaemia: a UK cancer cytogenetics group study. Br J Haematol 129(4):520–530

    PubMed  Google Scholar 

  48. Moorman AV et al (2003) Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood 102(8):2756–2762

    PubMed  CAS  Google Scholar 

  49. Schultz KR et al (2007) Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the pediatric oncology group (POG) and children’s cancer group (CCG). Blood 109(3):926–935

    PubMed  CAS  Google Scholar 

  50. Harrison CJ et al (2004) Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. Br J Haematol 125(5):552–559

    PubMed  Google Scholar 

  51. Pui CH et al (1990) Clinical presentation, karyotypic characterization, and treatment outcome of childhood acute lymphoblastic leukemia with a near-haploid or hypodiploid less than 45 line. Blood 75(5):1170–1177

    PubMed  CAS  Google Scholar 

  52. Burmeister T et al (2010) Clinical features and prognostic implications of TCF3-PBX1 and ETV6-RUNX1 in adult acute lymphoblastic leukemia. Haematologica 95(2):241–246

    PubMed  CAS  Google Scholar 

  53. Kager L et al (2007) Incidence and outcome of TCF3-PBX1-positive acute lymphoblastic leukemia in Austrian children. Haematologica 92(11):1561–1564

    PubMed  Google Scholar 

  54. Bain G, Maandag ECR, te Riele HPJ, Feeney AJ, Sheehy A, Schlissel M, Shinton SA, Hardy RR, Murre C (1997) Both E12 and E47 allow commitment to the B cell lineage. Immunity 6:145–154

    PubMed  CAS  Google Scholar 

  55. Kuiper RP et al (2007) High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia 21(6):1258–1266

    PubMed  CAS  Google Scholar 

  56. Strefford JC et al (2007) Genome complexity in acute lymphoblastic leukemia is revealed by array-based comparative genomic hybridization. Oncogene 26(29):4306–4318

    PubMed  CAS  Google Scholar 

  57. Put N et al (2011) FOXP1 and PAX5 are rare but recurrent translocations partners in acute lymphoblastic leukemia. Cancer Genet 204(8):462–464

    PubMed  CAS  Google Scholar 

  58. Perez-Vera P, Reyes-Leon A, Fuentes-Panana EM (2011) Signaling proteins and transcription factors in normal and malignant early B cell development. Bone Marrow Res 2011:502751

    PubMed  Google Scholar 

  59. Tasian SK, Loh ML (2011) Understanding the biology of CRLF2-overexpressing acute lymphoblastic leukemia. Crit Rev Oncog 16(1–2):13–24

    PubMed  Google Scholar 

  60. Hertzberg L et al (2010) Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the international BFM study group. Blood 115(5):1006–1017

    PubMed  CAS  Google Scholar 

  61. Mullighan CG et al (2009) Rearrangement of CRLF2 in B-progenitor- and down syndrome-associated acute lymphoblastic leukemia. Nat Genet 41(11):1243–1246

    PubMed  CAS  Google Scholar 

  62. Russell LJ et al (2009) A novel translocation, t(14;19)(q32;p13), involving IGH@ and the cytokine receptor for erythropoietin. Leukemia 23(3):614–617

    PubMed  CAS  Google Scholar 

  63. Chapiro E et al (2010) Activating mutation in the TSLPR gene in B-cell precursor lymphoblastic leukemia. Leukemia 24(3):642–645

    PubMed  CAS  Google Scholar 

  64. Yoda A et al (2010) Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA 107(1):252–257

    PubMed  CAS  Google Scholar 

  65. Cario G et al (2010) Presence of the P2RY8-CRLF2 rearrangement is associated with a poor prognosis in non-high-risk precursor B-cell acute lymphoblastic leukemia in children treated according to the ALL-BFM 2000 protocol. Blood 115(26):5393–5397

    PubMed  CAS  Google Scholar 

  66. Moorman AV et al (2007) Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood 109(6):2327–2330

    PubMed  CAS  Google Scholar 

  67. Harewood L et al (2003) Amplification of AML1 on a duplicated chromosome 21 in acute lymphoblastic leukemia: a study of 20 cases. Leukemia 17(3):547–553

    PubMed  CAS  Google Scholar 

  68. Strefford JC et al (2006) Complex genomic alterations and gene expression in acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21. Proc Natl Acad Sci USA 103(21):8167–8172

    PubMed  CAS  Google Scholar 

  69. van der Velden VH et al (2004) TCRB gene rearrangements in childhood and adult precursor-B-ALL: frequency, applicability as MRD-PCR target, and stability between diagnosis and relapse. Leukemia 18(12):1971–1980

    PubMed  Google Scholar 

  70. Khalidi HS et al (1999) Acute lymphoblastic leukemia. Survey of immunophenotype, French-American-British classification, frequency of myeloid antigen expression, and karyotypic abnormalities in 210 pediatric and adult cases. Am J Clin Pathol 111(4):467–476

    PubMed  CAS  Google Scholar 

  71. Hoehn D et al (2012) CD117 expression is a sensitive but nonspecific predictor of FLT3 mutation in T acute lymphoblastic leukemia and T/myeloid acute leukemia. Am J Clin Pathol 137(2):213–219

    PubMed  Google Scholar 

  72. Ferrando AA et al (2002) Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1(1):75–87

    PubMed  CAS  Google Scholar 

  73. Kleppe M et al (2010) Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia. Nat Genet 42(6):530–535

    PubMed  CAS  Google Scholar 

  74. Lahortiga I et al (2007) Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nat Genet 39(5):593–595

    PubMed  CAS  Google Scholar 

  75. Rakowski LA, Lehotzky EA, Chiang MY (2011) Transient responses to NOTCH and TLX1/HOX11 inhibition in T-cell acute lymphoblastic leukemia/lymphoma. PLoS One 6(2):e16761

    PubMed  CAS  Google Scholar 

  76. Tosello V et al (2009) WT1 mutations in T-ALL. Blood 114(5):1038–1045

    PubMed  CAS  Google Scholar 

  77. Van Vlierberghe P et al (2010) PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat Genet 42(4):338–342

    PubMed  Google Scholar 

  78. Weng AP et al (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306(5694):269–271

    PubMed  CAS  Google Scholar 

  79. Weng AP et al (2006) c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 20(15):2096–2109

    PubMed  CAS  Google Scholar 

  80. Paietta E et al (2004) Activating FLT3 mutations in CD117/KIT(+) T-cell acute lymphoblastic leukemias. Blood 104(2):558–560

    PubMed  CAS  Google Scholar 

  81. Yokota S et al (1998) Mutational analysis of the N-ras gene in acute lymphoblastic leukemia: a study of 125 Japanese pediatric cases. Int J Hematol 67(4):379–387

    PubMed  CAS  Google Scholar 

  82. Prebet T et al (2009) Presence of a minor Philadelphia-positive clone in young adults with de novo T-cell ALL. Leuk Lymphoma 50(3):485–487

    PubMed  CAS  Google Scholar 

  83. Pilozzi E et al (1999) Gene rearrangements in T-cell lymphoblastic lymphoma. J Pathol 188(3):267–270

    PubMed  CAS  Google Scholar 

  84. Raval A et al (2007) Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell 129(5):879–890

    PubMed  CAS  Google Scholar 

  85. Dohner H et al (1999) Chromosome aberrations in B-cell chronic lymphocytic leukemia: reassessment based on molecular cytogenetic analysis. J Mol Med 77(2):266–281

    PubMed  CAS  Google Scholar 

  86. Dohner H et al (2000) Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343(26):1910–1916

    PubMed  CAS  Google Scholar 

  87. Dickinson JD et al (2006) 11q22.3 deletion in B-chronic lymphocytic leukemia is specifically associated with bulky lymphadenopathy and ZAP-70 expression but not reduced expression of adhesion/cell surface receptor molecules. Leuk Lymphoma 47(2):231–244

    PubMed  CAS  Google Scholar 

  88. Byrd JC et al (2006) Select high-risk genetic features predict earlier progression following chemoimmunotherapy with fludarabine and rituximab in chronic lymphocytic leukemia: justification for risk-adapted therapy. J Clin Oncol 24(3):437–443

    PubMed  CAS  Google Scholar 

  89. Grever MR et al (2007) Comprehensive assessment of genetic and molecular features predicting outcome in patients with chronic lymphocytic leukemia: results from the US intergroup phase III trial E2997. J Clin Oncol 25(7):799–804

    PubMed  CAS  Google Scholar 

  90. Sellmann L et al (2012) P53 protein expression in chronic lymphocytic leukemia. Leuk lymphoma 53(7):1282–1288

    Google Scholar 

  91. Rossi D et al (2009) The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of Del17p13: implications for overall survival and chemorefractoriness. Clin Cancer Res 15(3):995–1004

    PubMed  CAS  Google Scholar 

  92. Zenz T et al (2010) TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol 28(29):4473–4479

    PubMed  Google Scholar 

  93. Hamblin TJ et al (1999) Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94(6):1848–1854

    PubMed  CAS  Google Scholar 

  94. Orchard JA et al (2004) ZAP-70 expression and prognosis in chronic lymphocytic leukaemia. Lancet 363(9403):105–111

    PubMed  CAS  Google Scholar 

  95. Cruse JM et al (2007) Zap-70 and CD38 as predictors of IgVH mutation in CLL. Exp Mol Pathol 83(3):459–461

    PubMed  CAS  Google Scholar 

  96. Rosati E et al (2009) Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood 113(4):856–865

    PubMed  CAS  Google Scholar 

  97. Del Giudice I et al (2006) IgVH genes mutation and usage, ZAP-70 and CD38 expression provide new insights on B-cell prolymphocytic leukemia (B-PLL). Leukemia 20(7):1231–1237

    PubMed  Google Scholar 

  98. Lens D et al (1997) p53 abnormalities in B-cell prolymphocytic leukemia. Blood 89(6):2015–2023

    PubMed  CAS  Google Scholar 

  99. Krishnan B, Matutes E, Dearden C (2006) Prolymphocytic leukemias. Semin Oncol 33(2):257–263

    PubMed  CAS  Google Scholar 

  100. Wong KF, So CC, Chan JK (2002) Nucleolated variant of mantle cell lymphoma with leukemic manifestations mimicking prolymphocytic leukemia. Am J Clin Pathol 117(2):246–251

    PubMed  Google Scholar 

  101. Mateo M et al (1999) 7q31-32 allelic loss is a frequent finding in splenic marginal zone lymphoma. Am J Pathol 154(5):1583–1589

    PubMed  CAS  Google Scholar 

  102. Corcoran MM et al (1999) Dysregulation of cyclin dependent kinase 6 expression in splenic marginal zone lymphoma through chromosome 7q translocations. Oncogene 18(46):6271–6277

    PubMed  CAS  Google Scholar 

  103. Algara P et al (2002) Analysis of the IgV(H) somatic mutations in splenic marginal zone lymphoma defines a group of unmutated cases with frequent 7q deletion and adverse clinical course. Blood 99(4):1299–1304

    PubMed  CAS  Google Scholar 

  104. Traverse-Glehen A et al (2005) Analysis of VH genes in marginal zone lymphoma reveals marked heterogeneity between splenic and nodal tumors and suggests the existence of clonal selection. Haematologica 90(4):470–478

    PubMed  CAS  Google Scholar 

  105. Buckley PG et al (2009) Genome-wide microarray-based comparative genomic hybridization analysis of lymphoplasmacytic lymphomas reveals heterogeneous aberrations. Leuk Lymphoma 50(9):1528–1534

    PubMed  CAS  Google Scholar 

  106. Braggio E et al (2009) High-resolution genomic analysis in Waldenstrom’s macroglobulinemia identifies disease-specific and common abnormalities with marginal zone lymphomas. Clin Lymphoma Myeloma 9(1):39–42

    PubMed  CAS  Google Scholar 

  107. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, Sheehy P, Manning RJ, Patterson CJ, Tripsas C, Arcaini L, Pinkus GS, Rodig SJ, Sohani AR, Harris NL, Laramie JM, Skifter DA, Lincoln SE, Hunter ZR (2012) MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med 367(9):826–833

    PubMed  CAS  Google Scholar 

  108. Dewald GW et al (1985) The clinical significance of cytogenetic studies in 100 patients with multiple myeloma, plasma cell leukemia, or amyloidosis. Blood 66(2):380–390

    PubMed  CAS  Google Scholar 

  109. Sawyer JR et al (1995) Cytogenetic findings in 200 patients with multiple myeloma. Cancer Genet Cytogenet 82(1):41–49

    PubMed  CAS  Google Scholar 

  110. Avet-Loiseau H et al (2007) Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood 109(8):3489–3495

    PubMed  CAS  Google Scholar 

  111. Chng WJ et al (2005) A validated FISH trisomy index demonstrates the hyperdiploid and nonhyperdiploid dichotomy in MGUS. Blood 106(6):2156–2161

    PubMed  CAS  Google Scholar 

  112. Konigsberg R et al (2000) Predictive role of interphase cytogenetics for survival of patients with multiple myeloma. J Clin Oncol 18(4):804–812

    PubMed  CAS  Google Scholar 

  113. Calasanz MJ et al (1997) Cytogenetic analysis of 280 patients with multiple myeloma and related disorders: primary breakpoints and clinical correlations. Genes Chromosomes Cancer 18(2):84–93

    PubMed  CAS  Google Scholar 

  114. Chng WJ et al (2007) Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling. Cancer Res 67(7):2982–2989

    PubMed  CAS  Google Scholar 

  115. Ackermann J et al (1998) Absence of p53 deletions in bone marrow plasma cells of patients with monoclonal gammopathy of undetermined significance. Br J Haematol 103(4):1161–1163

    PubMed  CAS  Google Scholar 

  116. Avet-Loiseau H et al (2002) Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features, and clinical presentation. Blood 99(6):2185–2191

    PubMed  CAS  Google Scholar 

  117. Fonseca R et al (2004) Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 64(4):1546–1558

    PubMed  CAS  Google Scholar 

  118. Nishida K et al (1997) The Ig heavy chain gene is frequently involved in chromosomal translocations in multiple myeloma and plasma cell leukemia as detected by in situ hybridization. Blood 90(2):526–534

    PubMed  CAS  Google Scholar 

  119. Chesi M et al (1996) Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines. Blood 88(2):674–681

    PubMed  CAS  Google Scholar 

  120. Fonseca R et al (2002) Myeloma and the t(11;14)(q13;q32); evidence for a biologically defined unique subset of patients. Blood 99(10):3735–3741

    PubMed  CAS  Google Scholar 

  121. Chesi M et al (1997) Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet 16(3):260–264

    PubMed  CAS  Google Scholar 

  122. Santra M et al (2003) A subset of multiple myeloma harboring the t(4;14)(p16;q32) translocation lacks FGFR3 expression but maintains an IGH/MMSET fusion transcript. Blood 101(6):2374–2376

    PubMed  CAS  Google Scholar 

  123. Chesi M et al (1998) Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood 91(12):4457–4463

    PubMed  CAS  Google Scholar 

  124. Hurt EM et al (2004) Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell 5(2):191–199

    PubMed  CAS  Google Scholar 

  125. Hanamura I et al (2001) Ectopic expression of MAFB gene in human myeloma cells carrying (14;20)(q32;q11) chromosomal translocations. Jpn J Cancer Res 92(6):638–644

    PubMed  CAS  Google Scholar 

  126. Bergsagel PL et al (2005) Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 106(1):296–303

    PubMed  CAS  Google Scholar 

  127. Kuehl WM, Bergsagel PL (2005) Early genetic events provide the basis for a clinical classification of multiple myeloma. Hematology Am Soc Hematol Educ Program 2005:346–352

    Google Scholar 

  128. Agnelli L et al (2007) Integrative genomic analysis reveals distinct transcriptional and genetic features associated with chromosome 13 deletion in multiple myeloma. Haematologica 92(1):56–65

    PubMed  CAS  Google Scholar 

  129. Drach J et al (1998) Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival after conventional-dose chemotherapy. Blood 92(3):802–809

    PubMed  CAS  Google Scholar 

  130. Hanamura I et al (2006) Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 108(5):1724–1732

    PubMed  CAS  Google Scholar 

  131. Rasmussen T et al (2005) Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition in some plasma cell tumors. Blood 105(1):317–323

    PubMed  CAS  Google Scholar 

  132. Annunziata CM et al (2007) Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12(2):115–130

    PubMed  CAS  Google Scholar 

  133. Chng WJ et al (2011) Clinical and biological implications of MYC activation: a common difference between MGUS and newly diagnosed multiple myeloma. Leukemia 25(6):1026–1035

    PubMed  CAS  Google Scholar 

  134. Chapman MA et al (2011) Initial genome sequencing and analysis of multiple myeloma. Nature 471(7339):467–472

    PubMed  CAS  Google Scholar 

  135. Zollinger A et al (2008) Combined functional and molecular analysis of tumor cell signaling defines 2 distinct myeloma subgroups: Akt-dependent and Akt-independent multiple myeloma. Blood 112(8):3403–3411

    PubMed  Google Scholar 

  136. Bellacosa A et al (2005) Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res 94:29–86

    PubMed  CAS  Google Scholar 

  137. Liu H et al (2001) Resistance of t(11;18) positive gastric mucosa-associated lymphoid tissue lymphoma to Helicobacter pylori eradication therapy. Lancet 357(9249):39–40

    PubMed  CAS  Google Scholar 

  138. Ye H et al (2005) MALT lymphoma with t(14;18)(q32;q21)/IGH-MALT1 is characterized by strong cytoplasmic MALT1 and BCL10 expression. J Pathol 205(3):293–301

    PubMed  CAS  Google Scholar 

  139. Streubel B et al (2004) Variable frequencies of MALT lymphoma-associated genetic aberrations in MALT lymphomas of different sites. Leukemia 18(10):1722–1726

    PubMed  CAS  Google Scholar 

  140. Remstein ED et al (2006) The incidence and anatomic site specificity of chromosomal translocations in primary extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) in North America. Am J Surg Pathol 30(12):1546–1553

    PubMed  Google Scholar 

  141. Sagaert X et al (2006) MALT1 and BCL10 aberrations in MALT lymphomas and their effect on the expression of BCL10 in the tumour cells. Mod Pathol 19(2):225–232

    PubMed  CAS  Google Scholar 

  142. Streubel B et al (2005) T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia 19(4):652–658

    PubMed  CAS  Google Scholar 

  143. Ye H et al (2008) Chromosomal translocations involving BCL6 in MALT lymphoma. Haematologica 93(1):145–146

    PubMed  Google Scholar 

  144. Ott G et al (2002) Cytomorphologic, immunohistochemical, and cytogenetic profiles of follicular lymphoma: 2 types of follicular lymphoma grade 3. Blood 99(10):3806–3812

    PubMed  CAS  Google Scholar 

  145. Karube K et al (2007) CD10-MUM1+ follicular lymphoma lacks BCL2 gene translocation and shows characteristic biologic and clinical features. Blood 109(7):3076–3079

    PubMed  CAS  Google Scholar 

  146. Karube K et al (2008) BCL6 gene amplification/3q27 gain is associated with unique clinicopathological characteristics among follicular lymphoma without BCL2 gene translocation. Mod Pathol 21(8):973–978

    PubMed  CAS  Google Scholar 

  147. Kim BK et al (2005) Clinicopathologic, immunophenotypic, and molecular cytogenetic fluorescence in situ hybridization analysis of primary and secondary cutaneous follicular lymphomas. Am J Surg Pathol 29(1):69–82

    PubMed  Google Scholar 

  148. Cook JR, Shekhter-Levin S, Swerdlow SH (2004) Utility of routine classical cytogenetic studies in the evaluation of suspected lymphomas: results of 279 consecutive lymph node/extranodal tissue biopsies. Am J Clin Pathol 121(6):826–835

    PubMed  Google Scholar 

  149. Hoglund M et al (2004) Identification of cytogenetic subgroups and karyotypic pathways of clonal evolution in follicular lymphomas. Genes Chromosomes Cancer 39(3):195–204

    PubMed  Google Scholar 

  150. Schwaenen C et al (2009) Microarray-based genomic profiling reveals novel genomic aberrations in follicular lymphoma which associate with patient survival and gene expression status. Genes Chromosomes Cancer 48(1):39–54

    PubMed  CAS  Google Scholar 

  151. Davies AJ et al (2007) Transformation of follicular lymphoma to diffuse large B-cell lymphoma proceeds by distinct oncogenic mechanisms. Br J Haematol 136(2):286–293

    PubMed  CAS  Google Scholar 

  152. Elenitoba-Johnson KS et al (1998) Homozygous deletions at chromosome 9p21 involving p16 and p15 are associated with histologic progression in follicle center lymphoma. Blood 91(12):4677–4685

    PubMed  CAS  Google Scholar 

  153. Mannouji K et al (2009) Transformation from follicular lymphoma to high-grade B-cell lymphoma/leukemia with additional t(2;8)(p12;q24), with inverse expressions of c-MYC and BCL-2, and light-chain switch. Pathol Int 59(4):261–264

    PubMed  CAS  Google Scholar 

  154. Sander CA et al (1993) p53 mutation is associated with progression in follicular lymphomas. Blood 82(7):1994–2004

    PubMed  CAS  Google Scholar 

  155. Young KH et al (2008) Transformation of follicular lymphoma to precursor B-cell lymphoblastic lymphoma with c-myc gene rearrangement as a critical event. Am J Clin Pathol 129(1):157–166

    PubMed  Google Scholar 

  156. Li L et al (2006) Serial cytogenetic alterations resulting in transformation of a low-grade follicular lymphoma to Burkitt lymphoma. Cancer Genet Cytogenet 170(2):140–146

    PubMed  CAS  Google Scholar 

  157. Quintanilla-Martinez L et al (2003) Sequestration of p27Kip1 protein by cyclin D1 in typical and blastic variants of mantle cell lymphoma (MCL): implications for pathogenesis. Blood 101(8):3181–3187

    PubMed  CAS  Google Scholar 

  158. Williams ME, Swerdlow SH, Meeker TC (1993) Chromosome t(11;14)(q13;q32) breakpoints in centrocytic lymphoma are highly localized at the bcl-1 major translocation cluster. Leukemia 7(9):1437–1440

    PubMed  CAS  Google Scholar 

  159. Fu K et al (2005) Cyclin D1-negative mantle cell lymphoma: a clinicopathologic study based on gene expression profiling. Blood 106(13):4315–4321

    PubMed  CAS  Google Scholar 

  160. Salaverria I et al (2007) Specific secondary genetic alterations in mantle cell lymphoma provide prognostic information independent of the gene expression-based proliferation signature. J Clin Oncol 25(10):1216–1222

    PubMed  CAS  Google Scholar 

  161. Hartmann EM et al (2010) Pathway discovery in mantle cell lymphoma by integrated analysis of high-resolution gene expression and copy number profiling. Blood 116(6):953–961

    PubMed  CAS  Google Scholar 

  162. Perez-Galan P, Dreyling M, Wiestner A (2011) Mantle cell lymphoma: biology, pathogenesis, and the molecular basis of treatment in the genomic era. Blood 117(1):26–38

    PubMed  CAS  Google Scholar 

  163. Camacho E et al (2002) ATM gene inactivation in mantle cell lymphoma mainly occurs by truncating mutations and missense mutations involving the phosphatidylinositol-3 kinase domain and is associated with increasing numbers of chromosomal imbalances. Blood 99(1):238–244

    PubMed  CAS  Google Scholar 

  164. Bigoni R et al (2001) Secondary chromosome changes in mantle cell lymphoma: cytogenetic and fluorescence in situ hybridization studies. Leuk Lymphoma 40(5–6):581–590

    PubMed  CAS  Google Scholar 

  165. Wang X et al (2010) Gene expression profiling and chromatin immunoprecipitation identify DBN1, SETMAR and HIG2 as direct targets of SOX11 in mantle cell lymphoma. PLoS One 5(11):e14085

    PubMed  Google Scholar 

  166. Gustavsson E et al (2010) SOX11 expression correlates to promoter methylation and regulates tumor growth in hematopoietic malignancies. Mol Cancer 9:187

    PubMed  Google Scholar 

  167. Huang JZ et al (2002) The t(14;18) defines a unique subset of diffuse large B-cell lymphoma with a germinal center B-cell gene expression profile. Blood 99(7):2285–2290

    PubMed  CAS  Google Scholar 

  168. Tagawa H et al (2005) Comparison of genome profiles for identification of distinct subgroups of diffuse large B-cell lymphoma. Blood 106(5):1770–1777

    PubMed  CAS  Google Scholar 

  169. Bea S et al (2005) Diffuse large B-cell lymphoma subgroups have distinct genetic profiles that influence tumor biology and improve gene-expression-based survival prediction. Blood 106(9):3183–3190

    PubMed  CAS  Google Scholar 

  170. Lo Coco F et al (1994) Rearrangements of the BCL6 gene in diffuse large cell non-Hodgkin’s lymphoma. Blood 83(7):1757–1759

    PubMed  CAS  Google Scholar 

  171. Kramer MH et al (1998) Clinical relevance of BCL2, BCL6, and MYC rearrangements in diffuse large B-cell lymphoma. Blood 92(9):3152–3162

    PubMed  CAS  Google Scholar 

  172. Tibiletti MG et al (2009) BCL2, BCL6, MYC, MALT 1, and BCL10 rearrangements in nodal diffuse large B-cell lymphomas: a multicenter evaluation of a new set of fluorescent in situ hybridization probes and correlation with clinical outcome. Hum Pathol 40(5):645–652

    PubMed  CAS  Google Scholar 

  173. Tzankov A et al (2009) Prognostic importance of BCL6 rearrangements in diffuse large B-cell lymphoma with respect to Bcl6 protein levels and primary lymphoma site. Hum Pathol 40(7):1055–1056, author reply 1056

    PubMed  CAS  Google Scholar 

  174. Akasaka H et al (2000) Molecular anatomy of BCL6 translocations revealed by long-distance polymerase chain reaction-based assays. Cancer Res 60(9):2335–2341

    PubMed  CAS  Google Scholar 

  175. Akasaka T et al (2000) Nonimmunoglobulin (non-Ig)/BCL6 gene fusion in diffuse large B-cell lymphoma results in worse prognosis than Ig/BCL6. Blood 96(8):2907–2909

    PubMed  CAS  Google Scholar 

  176. Kawasaki C et al (2001) Rearrangements of bcl-1, bcl-2, bcl-6, and c-myc in diffuse large B-cell lymphomas. Leuk Lymphoma 42(5):1099–1106

    PubMed  CAS  Google Scholar 

  177. Barrans S et al (2010) Rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma treated in the era of rituximab. J Clin Oncol 28(20):3360–3365

    PubMed  CAS  Google Scholar 

  178. Obermann EC et al (2009) Aberrations of the MYC gene in unselected cases of diffuse large B-cell lymphoma are rare and unpredictable by morphological or immunohistochemical assessment. J Clin Pathol 62(8):754–756

    PubMed  CAS  Google Scholar 

  179. Scandurra M et al (2010) Genomic profiling of Richter’s syndrome: recurrent lesions and differences with de novo diffuse large B-cell lymphomas. Hematol Oncol 28(2):62–67

    PubMed  CAS  Google Scholar 

  180. McClure RF et al (2005) Adult B-cell lymphomas with burkitt-like morphology are phenotypically and genotypically heterogeneous with aggressive clinical behavior. Am J Surg Pathol 29(12):1652–1660

    PubMed  Google Scholar 

  181. Lin P et al (2012) Prognostic value of MYC rearrangement in cases of B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma. Cancer 118(6):1566–1573

    PubMed  CAS  Google Scholar 

  182. Green TM et al (2012) High levels of nuclear MYC protein predict the presence of MYC rearrangement in diffuse large B-cell lymphoma. Am J Surg Pathol 36(4):612–619

    PubMed  Google Scholar 

  183. Bogusz AM et al (2009) Plasmablastic lymphomas with MYC/IgH rearrangement: report of three cases and review of the literature. Am J Clin Pathol 132(4):597–605

    PubMed  CAS  Google Scholar 

  184. Guiter C et al (2004) Constitutive STAT6 activation in primary mediastinal large B-cell lymphoma. Blood 104(2):543–549

    PubMed  CAS  Google Scholar 

  185. Joos S et al (1996) Primary mediastinal (thymic) B-cell lymphoma is characterized by gains of chromosomal material including 9p and amplification of the REL gene. Blood 87(4):1571–1578

    PubMed  CAS  Google Scholar 

  186. Weniger MA et al (2007) Gains of REL in primary mediastinal B-cell lymphoma coincide with nuclear accumulation of REL protein. Genes Chromosomes Cancer 46(4):406–415

    PubMed  CAS  Google Scholar 

  187. Weniger MA et al (2006) Gains of the proto-oncogene BCL11A and nuclear accumulation of BCL11A(XL) protein are frequent in primary mediastinal B-cell lymphoma. Leukemia 20(10):1880–1882

    PubMed  CAS  Google Scholar 

  188. Savage KJ (2006) Primary mediastinal large B-cell lymphoma. Oncologist 11(5):488–495

    PubMed  CAS  Google Scholar 

  189. De Paepe P et al (2003) ALK activation by the CLTC-ALK fusion is a recurrent event in large B-cell lymphoma. Blood 102(7):2638–2641

    PubMed  Google Scholar 

  190. Haralambieva E et al (2005) Clinical, immunophenotypic, and genetic analysis of adult lymphomas with morphologic features of Burkitt lymphoma. Am J Surg Pathol 29(8):1086–1094

    PubMed  Google Scholar 

  191. Hummel M et al (2006) A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med 354(23):2419–2430

    PubMed  CAS  Google Scholar 

  192. Baudino TA et al (2003) Myc-mediated proliferation and lymphomagenesis, but not apoptosis, are compromised by E2f1 loss. Mol Cell 11(4):905–914

    PubMed  CAS  Google Scholar 

  193. Leucci E et al (2008) MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation. J Pathol 216(4):440–450

    PubMed  CAS  Google Scholar 

  194. Cools J et al (2002) Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 34(4):354–362

    PubMed  CAS  Google Scholar 

  195. Falini B et al (1999) Lymphomas expressing ALK fusion protein(s) other than NPM-ALK. Blood 94(10):3509–3515

    PubMed  CAS  Google Scholar 

  196. Hernandez L et al (1999) TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood 94(9):3265–3268

    PubMed  CAS  Google Scholar 

  197. Lamant L et al (1999) A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood 93(9):3088–3095

    PubMed  CAS  Google Scholar 

  198. Lamant L et al (2003) Non-muscle myosin heavy chain (MYH9): a new partner fused to ALK in anaplastic large cell lymphoma. Genes Chromosomes Cancer 37(4):427–432

    PubMed  CAS  Google Scholar 

  199. Pulford K et al (2004) The emerging normal and disease-related roles of anaplastic lymphoma kinase. Cell Mol Life Sci 61(23):2939–2953

    PubMed  CAS  Google Scholar 

  200. Tort F et al (2001) Molecular characterization of a new ALK translocation involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab Invest 81(3):419–426

    PubMed  CAS  Google Scholar 

  201. Stern MH et al (1993) MTCP-1: a novel gene on the human chromosome Xq28 translocated to the T cell receptor alpha/delta locus in mature T cell proliferations. Oncogene 8(9):2475–2483

    PubMed  CAS  Google Scholar 

  202. Soulier J et al (2001) A complex pattern of recurrent chromosomal losses and gains in T-cell prolymphocytic leukemia. Genes Chromosomes Cancer 31(3):248–254

    PubMed  CAS  Google Scholar 

  203. Herling M et al (2008) High TCL1 expression and intact T-cell receptor signaling define a hyperproliferative subset of T-cell prolymphocytic leukemia. Blood 111(1):328–337

    PubMed  CAS  Google Scholar 

  204. Navas IC et al (2000) p16(INK4a) gene alterations are frequent in lesions of mycosis fungoides. Am J Pathol 156(5):1565–1572

    PubMed  CAS  Google Scholar 

  205. Scarisbrick JJ et al (2000) Loss of heterozygosity on 10q and microsatellite instability in advanced stages of primary cutaneous T-cell lymphoma and possible association with homozygous deletion of PTEN. Blood 95(9):2937–2942

    PubMed  CAS  Google Scholar 

  206. Sommer VH et al (2004) In vivo activation of STAT3 in cutaneous T-cell lymphoma. Evidence for an antiapoptotic function of STAT3. Leukemia 18(7):1288–1295

    PubMed  CAS  Google Scholar 

  207. Stilgenbauer S et al (1997) Biallelic mutations in the ATM gene in T-prolymphocytic leukemia. Nat Med 3(10):1155–1159

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zhang M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Peker, D., Tao, J., Zhang, L. (2014). Molecular Diagnostics of Lymphoid Neoplasms. In: Coppola, D. (eds) Molecular Pathology and Diagnostics of Cancer. Cancer Growth and Progression, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7192-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7192-5_17

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7191-8

  • Online ISBN: 978-94-007-7192-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics