Skip to main content

Proteome Analysis Identified the PPARγ Ligand 15d-PGJ2 as a Novel Drug Inhibiting Melanoma Progression and Interfering with Tumor-Stroma Interaction

  • Chapter
  • First Online:
Evolution-adjusted Tumor Pathophysiology:

Abstract

Peroxisome proliferator-activated receptors (PPARs) have been originally thought to be restricted to lipid metabolism or glucose homeostasis. Recently, evidence is growing that PPARγ ligands have inhibitory effects on tumor growth.

To shed light on the potential therapeutic effects on melanoma we tested a panel of PPAR agonists on their ability to block tumor proliferation in vitro. Whereas ciglitazone, troglitazone and WY14643 showed moderate effects on proliferation, 15d-PGJ2 displayed profound anti-tumor activity on four different melanoma cell lines tested.

Additionally, 15d-PGJ2 inhibited proliferation of tumor-associated fibroblasts and tube formation of endothelial cells. 15d-PGJ2 induced the tumor suppressor gene p21, a G2/M arrest and inhibited tumor cell migration.

Shot gun proteome analysis in addition to 2D-gel electrophoresis and immunoprecipitation of A375 melanoma cells suggested that 15d-PGJ2 might exert its effects via modification and/or downregulation of Hsp-90 (heat shock protein 90) and several chaperones. Applying the recently established CPL/MUW database with a panel of defined classification signatures, we demonstrated a regulation of proteins involved in metastasis, transport or protein synthesis including paxillin, angio-associated migratory cell protein or matrix metalloproteinase-2 as confirmed by zymography. Our data revealed for the first time a profound effect of the single compound 15d-PGJ2 on melanoma cells in addition to the tumor-associated microenvironment suggesting synergistic therapeutic efficiency.

PLoS ONE: Research Article, published 25 Sep 2012 10.1371/journal.pone.0046103

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schadendorf D (2009) Peroxisome proliferator-activating receptors: a new way to treat melanoma? J Invest Dermatol 129:1061–1063

    Article  PubMed  CAS  Google Scholar 

  2. Smalley KS, Herlyn M (2005) Targeting intracellular signaling pathways as a novel strategy in melanoma therapeutics. Ann NY Acad Sci 1059:16–25

    Article  PubMed  CAS  Google Scholar 

  3. Nunez NP, Liu H, Meadows GG (2006) PPAR-gamma ligands and amino acid deprivation promote apoptosis of melanoma, prostate, and breast cancer cells. Cancer Lett 236:133–141

    Article  PubMed  CAS  Google Scholar 

  4. Schoonjans K, Martin G, Staels B, Auwerx J (1997) Peroxisome proliferator-activated receptors, orphans with ligands and functions. Curr Opin Lipidol 8:159–166

    Article  PubMed  CAS  Google Scholar 

  5. Torra IP, Chinetti G, Duval C, Fruchart JC, Staels B (2001) Peroxisome proliferator-activated receptors: from transcriptional control to clinical practice. Curr Opin Lipidol 12:245–254

    Article  PubMed  CAS  Google Scholar 

  6. Kihara S, Ouchi N, Funahashi T, Shinohara E, Tamura R et al (1998) Troglitazone enhances glucose uptake and inhibits mitogen-activated protein kinase in human aortic smooth muscle cells. Atherosclerosis 136:163–168

    Article  PubMed  CAS  Google Scholar 

  7. Ristow M, Muller-Wieland D, Pfeiffer A, Krone W, Kahn CR (1998) Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med 339:953–959

    Article  PubMed  CAS  Google Scholar 

  8. Kubota T, Koshizuka K, Williamson EA, Asou H, Said JW et al (1998) Ligand for peroxisome proliferator-activated receptor gamma (troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo. Cancer Res 58:3344–3352

    PubMed  CAS  Google Scholar 

  9. Mossner R, Schulz U, Kruger U, Middel P, Schinner S et al (2002) Agonists of peroxisome proliferator-activated receptor gamma inhibit cell growth in malignant melanoma. J Invest Dermatol 119:576–582

    Article  PubMed  CAS  Google Scholar 

  10. Liu Y, Meng Y, Liu H, Li J, Fu J et al (2006) Growth inhibition and differentiation induced by peroxisome proliferator activated receptor gamma ligand rosiglitazone in human melanoma cell line a375. Med Oncol 23:393–402

    Article  PubMed  Google Scholar 

  11. Goetze S, Eilers F, Bungenstock A, Kintscher U, Stawowy P et al (2002) PPAR activators inhibit endothelial cell migration by targeting Akt. Biochem Biophys Res Commun 293:1431–1437

    Article  PubMed  CAS  Google Scholar 

  12. Panigrahy D, Singer S, Shen LQ, Butterfield CE, Freedman DA et al (2002) PPARgamma ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J Clin Invest 110:923–932

    PubMed  CAS  Google Scholar 

  13. Placha W, Gil D, Dembinska-Kiec A, Laidler P (2003) The effect of PPARgamma ligands on the proliferation and apoptosis of human melanoma cells. Melanoma Res 13:447–456

    Article  PubMed  CAS  Google Scholar 

  14. Smith AG, Beaumont KA, Smit DJ, Thurber AE, Cook AL et al (2009) PPARgamma agonists attenuate proliferation and modulate Wnt/beta-catenin signalling in melanoma cells. Int J Biochem Cell Biol 41:844–852

    Article  PubMed  CAS  Google Scholar 

  15. Hoek KS, Schlegel NC, Brafford P, Sucker A, Ugurel S et al (2006) Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res 19:290–302

    Article  PubMed  CAS  Google Scholar 

  16. Grabacka M, Plonka PM, Urbanska K, Reiss K (2006) Peroxisome proliferator-activated receptor alpha activation decreases metastatic potential of melanoma cells in vitro via down-regulation of Akt. Clin Cancer Res 12:3028–3036

    Article  PubMed  CAS  Google Scholar 

  17. Wimmer H, Gundacker NC, Griss J, Haudek VJ, Stattner S et al (2009) Introducing the CPL/MUW proteome database: interpretation of human liver and liver cancer proteome profiles by referring to isolated primary cells. Electrophoresis 30:2076–2089

    Article  PubMed  CAS  Google Scholar 

  18. Haudek-Prinz VJ, Klepeisz P, Slany A, Griss J, Meshcheryakova A, Paulitschke V, Mitulovic G, Stöckl J, Gerner C (2012) Proteome signatures of inflammatory activated primary human peripheral blood mononuclear cells. J Proteomics 76 Spec No.:150–162. doi:10.1016/j.jprot.2012.07.012. (Epub 2012 Jul 16)

    Google Scholar 

  19. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816

    Article  PubMed  CAS  Google Scholar 

  20. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R et al (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366:701–704

    Article  PubMed  CAS  Google Scholar 

  21. Paulitschke V, Schicher N, Szekeres T, Jager W, Elbling L et al (2010) 3,3′,4,4′,5,5′-Hexahydroxystilbene Impairs Melanoma Progression in a Metastatic Mouse Model. J Invest Dermatol J Invest Dermatol 130(6):1668-79. doi: 10.1038/jid.2009.376. Epub 2009 Dec 3.

    Google Scholar 

  22. Fievet C, Staels B (2009) Efficacy of peroxisome proliferator-activated receptor agonists in diabetes and coronary artery disease. Curr Atheroscler Rep 11:281–288

    Article  PubMed  CAS  Google Scholar 

  23. Bensinger SJ, Tontonoz P (2008) Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454:470–477

    Article  PubMed  CAS  Google Scholar 

  24. Lee TS, Tsai HL, Chau LY (2003) Induction of heme oxygenase-1 expression in murine macrophages is essential for the anti-inflammatory effect of low dose 15-deoxy-Delta 12,14-prostaglandin J2. J Biol Chem 278:19325–19330

    Article  PubMed  CAS  Google Scholar 

  25. Grommes C, Landreth GE, Sastre M, Beck M, Feinstein DL et al (2006) Inhibition of in vivo glioma growth and invasion by peroxisome proliferator-activated receptor gamma agonist treatment. Mol Pharmacol 70:1524–1533

    Article  PubMed  CAS  Google Scholar 

  26. Galli A, Ceni E, Crabb DW, Mello T, Salzano R et al (2004) Antidiabetic thiazolidinediones inhibit invasiveness of pancreatic cancer cells via PPARgamma independent mechanisms. Gut 53:1688–1697

    Article  PubMed  CAS  Google Scholar 

  27. Ferruzzi P, Ceni E, Tarocchi M, Grappone C, Milani S et al (2005) Thiazolidinediones inhibit growth and invasiveness of the human adrenocortical cancer cell line H295R. J Clin Endocrinol Metab 90:1332–1339

    Article  PubMed  CAS  Google Scholar 

  28. Shen D, Deng C, Zhang M (2007) Peroxisome proliferator-activated receptor gamma agonists inhibit the proliferation and invasion of human colon cancer cells. Postgrad Med J 83:414–419

    Article  PubMed  CAS  Google Scholar 

  29. Bundscherer A, Reichle A, Hafner C, Meyer S, Vogt T (2009) Targeting the tumor stroma with peroxisome proliferator activated receptor (PPAR) agonists. Anticancer Agents Med Chem 9:816–821

    Article  PubMed  CAS  Google Scholar 

  30. Prakash J, Bansal R, Post E, de Jager-Krikken A, Lub-de Hooge MN et al (2009) Albumin-binding and tumor vasculature determine the antitumor effect of 15-deoxy-Delta-(12,14)-prostaglandin-J(2) in vivo. Neoplasia 11:1348–1358

    PubMed  CAS  Google Scholar 

  31. Xin X, Yang S, Kowalski J, Gerritsen ME (1999) Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem 274:9116–9121

    Article  PubMed  CAS  Google Scholar 

  32. Bishop-Bailey D, Hla T (1999) Endothelial cell apoptosis induced by the peroxisome proliferator-activated receptor (PPAR) ligand 15-deoxy-Delta12, 14-prostaglandin J2. J Biol Chem 274:17042–17048

    Article  PubMed  CAS  Google Scholar 

  33. Tsuzuki T, Kawakami Y (2008) Tumor angiogenesis suppression by {alpha}-eleostearic acid, a linolenic acid isomer with a conjugated triene system, via peroxisome proliferator-activated receptor {gamma}. Carcinogenesis 29(4):797-806. doi: 10.1093/carcin/bgm298. Epub 2008 Jan 3

    Google Scholar 

  34. Funovics P, Brostjan C, Nigisch A, Fila A, Grochot A et al (2006) Effects of 15d-PGJ(2) on VEGF-induced angiogenic activities and expression of VEGF receptors in endothelial cells. Prostaglandins Other Lipid Mediat 79:230–244

    Article  PubMed  CAS  Google Scholar 

  35. Dadras SS, Paul T, Bertoncini J, Brown LF, Muzikansky A et al (2003) Tumor lymphangiogenesis: a novel prognostic indicator for cutaneous melanoma metastasis and survival. Am J Pathol 162:1951–1960

    Article  PubMed  Google Scholar 

  36. Shields JD, Borsetti M, Rigby H, Harper SJ, Mortimer PS et al (2004) Lymphatic density and metastatic spread in human malignant melanoma. Br J Cancer 90:693–700

    Article  PubMed  CAS  Google Scholar 

  37. Paulitschke V, Kunstfeld R, Gerner C (2010) Secretome proteomics, a novel tool for biomarkers discovery and for guiding biomodulatory therapy approaches. In: From molecular to modular tumor therapy: tumors are reconstructible communicatively evolving systems, vol 3. Springer, pp 405–431

    Google Scholar 

  38. Meyer S, Vogt T, Landthaler M, Berand A, Reichle A et al (2009) Cyclooxygenase 2 (COX2) and Peroxisome Proliferator-Activated Receptor Gamma (PPARG) are stage-dependent prognostic markers of malignant melanoma. PPAR Res 2009:848645

    PubMed  Google Scholar 

  39. Paulitschke V, Kunstfeld R, Mohr T, Slany A, Micksche M et al (2009) Entering a new era of rational biomarker discovery for early detection of melanoma metastases: secretome analysis of associated stroma cells. J Proteome Res 8:2501–2510

    Article  PubMed  CAS  Google Scholar 

  40. Miyata Y, Chambraud B, Radanyi C, Leclerc J, Lebeau MC et al (1997) Phosphorylation of the immunosuppressant FK506-binding protein FKBP52 by casein kinase II: regulation of HSP90-binding activity of FKBP52. Proc Natl Acad Sci USA 94:14500–14505

    Article  PubMed  CAS  Google Scholar 

  41. Tsutsumi S, Neckers L (2007) Extracellular heat shock protein 90: a role for a molecular chaperone in cell motility and cancer metastasis. Cancer Sci 98:1536–1539

    Article  PubMed  CAS  Google Scholar 

  42. Powers MV, Workman P (2006) Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors. Endocr Relat Cancer 13(Suppl 1):S125–135

    Article  Google Scholar 

  43. Gimenez Ortiz A, Montalar Salcedo J (2010) Heat shock proteins as targets in oncology. Clin Transl Oncol 12:166–173

    Article  PubMed  CAS  Google Scholar 

  44. Banerji U (2009) Heat shock protein 90 as a drug target: some like it hot. Clin Cancer Res 15:9–14

    Article  PubMed  CAS  Google Scholar 

  45. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  46. Hofmeister V, Schrama D, Becker JC (2008) Anti-cancer therapies targeting the tumor stroma. Cancer Immunol Immunother 57:1–17

    Article  PubMed  CAS  Google Scholar 

  47. Vandoros GP, Konstantinopoulos PA, Sotiropoulou-Bonikou G, Kominea A, Papachristou GI et al (2006) PPAR-gamma is expressed and NF-kB pathway is activated and correlates positively with COX-2 expression in stromal myofibroblasts surrounding colon adenocarcinomas. J Cancer Res Clin Oncol 132:76–84

    Article  PubMed  CAS  Google Scholar 

  48. Mueller BM, Romerdahl CA, Trent JM, Reisfeld RA (1991) Suppression of spontaneous melanoma metastasis in scid mice with an antibody to the epidermal growth factor receptor. Cancer Res 51:2193–2198

    PubMed  CAS  Google Scholar 

  49. Smalley KS, Brafford P, Haass NK, Brandner JM, Brown E et al (2005) Up-regulated expression of zonula occludens protein-1 in human melanoma associates with N-cadherin and contributes to invasion and adhesion. Am J Pathol 166:1541–1554

    Article  PubMed  CAS  Google Scholar 

  50. Schicher N, Paulitschke V, Swoboda A, Kunstfeld R, Loewe R et al (2009) Erlotinib and bevacizumab have synergistic activity against melanoma. Clin Cancer Res 15:3495–3502

    Article  PubMed  CAS  Google Scholar 

  51. Hoeller C, Pratscher B, Thallinger C, Winter D, Fink D et al (2005) Clusterin regulates drug-resistance in melanoma cells. J Invest Dermatol 124:1300–1307

    Article  PubMed  CAS  Google Scholar 

  52. Petzelbauer P, Bender JR, Wilson J, Pober JS (1993) Heterogeneity of dermal microvascular endothelial cell antigen expression and cytokine responsiveness in situ and in cell culture. J Immunol 151:5062–5072

    PubMed  CAS  Google Scholar 

  53. Hoeth M, Niederleithner H, Hofer-Warbinek R, Bilban M, Mayer H et al (2012) The transcription factor SOX18 regulates the expression of matrix metalloproteinase 7 and guidance molecules in human endothelial cells. PLoS ONE 7:e30982

    Article  PubMed  CAS  Google Scholar 

  54. Groger M, Niederleithner H, Kerjaschki D, Petzelbauer P (2007) A previously unknown dermal blood vessel phenotype in skin inflammation. J Invest Dermatol 127:2893–2900

    Article  PubMed  Google Scholar 

  55. Hoeller C, Thallinger C, Pratscher B, Bister MD, Schicher N et al (2005) The non-receptor-associated tyrosine kinase Syk is a regulator of metastatic behavior in human melanoma cells. J Invest Dermatol 124:1293–1299

    Article  PubMed  CAS  Google Scholar 

  56. Lamprecht MR, Sabatini DM, Carpenter AE (2007) CellProfiler: free, versatile software for automated biological image analysis. Biotechniques 42:71–75

    Article  PubMed  CAS  Google Scholar 

  57. Gerner C, Haudek-Prinz VJ, Lackner A, Losert A, Peter-Vorosmarty B et al (2010) Indications for cell stress in response to adenoviral and baculoviral gene transfer observed by proteome profiling of human cancer cells. Electrophoresis 31:1822–1832

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ichiro Okamoto and Dr. Oliver Schanab for management of patient sample collection, Dr. Mario Mikula and Dr. Alexander Swoboda for isolation of primary cells, Andrea Holzweber, Editha Bayer, Karin Neumüller and Barbara Pratscher for technical assistance and Johannes Griss for bioinformatic support. We thank DI Thomas Mohr for valuable help with the tube formation assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Paulitschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Paulitschke, V. et al. (2013). Proteome Analysis Identified the PPARγ Ligand 15d-PGJ2 as a Novel Drug Inhibiting Melanoma Progression and Interfering with Tumor-Stroma Interaction. In: Reichle, A. (eds) Evolution-adjusted Tumor Pathophysiology:. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6866-6_8

Download citation

Publish with us

Policies and ethics