Skip to main content

Evolution Theory: Its Practical Relevance for Understanding Tumor Development and Specifying Tumor Therapy

  • Chapter
  • First Online:
Evolution-adjusted Tumor Pathophysiology:
  • 519 Accesses

Abstract

At that time the introduction of a cancer evolution concept, has failed to revolutionize cancer research. Models of rational reconstruction within an evolution historical frame can be suggested, if an innovative achievement may be denoted for a complex ‘learning process’. Because such models admit a clear normative reference and action-theoretical interpretation; they may be used for narrative presentations. Three main factors emerged as starting point for evolution theoretical considerations, an unmet medical need (systemically pretreated patients with metastatic tumors), a hypothesis-driven vision (the formal pragmatic communication theory) and technological advances to pursue that vision (biomodulatory therapy approaches, clinical proteomics, epigenetics and molecular imaging techniques). An evolution theory allows for virtualizing the engagement to get experiences and decisions (pragmatic virtualization of communication acts) via implementation of non-normative boundary conditions (for example, biomodulatory therapies). The feasibility to virtualize the engagement to get situate experiences about tumor systems and decisions to tailor biomodulatory therapies (communication-derived tumor pathophysiology), the availability of an evolutionarily adapted modeling of cancer (cellular therapy in situ by adaptive therapies) will continue to increase our understanding of tumor pathophysiology and may contribute to an evolution-oriented design of systems biological strategies to diagnose and clinically manage tumor diseases on a novel personalized level. Basic science is getting directly involved in the reconstructive process, even though an approach has been established directed from bedside to bench aimed at implementing clinical practical care (adaptive trial designs) as scientific object in patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vineis P, Berwick M (2006) The population dynamics of cancer: a Darwinian perspective. Int J Epidemiol 35:1151–1159

    Article  PubMed  Google Scholar 

  2. Heng HH, Stevens JB, Bremer SW, Liu G, Abdallah BY, Ye CJ (2011) Evolutionary mechanisms and diversity in cancer. Adv Cancer Res 112:217–253

    Article  PubMed  CAS  Google Scholar 

  3. Reichle A (2009) Tumor systems need to be rendered usable for a new action-theoretical abstraction: the starting point for novel therapeutic options. Curr Cancer Ther Rev 5:232–242

    Article  CAS  Google Scholar 

  4. Beerenwinkel N, Antal T, Dingli D et al (2007) Genetic progression and the waiting time to cancer. PLoS Comput Biol 3:e225

    Article  PubMed  Google Scholar 

  5. Gerhart J, Kirschner M (2007) The theory of facilitated variation. Proc Natl Acad Sci USA 104(Suppl 1):8582–8589

    Article  PubMed  CAS  Google Scholar 

  6. Cairns J (1979) Mutation selection and the natural history of cancer. Nature 255(5505):197–200

    Article  Google Scholar 

  7. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194(4260):23–28

    Article  PubMed  CAS  Google Scholar 

  8. Crespi B, Summers K (2005) Evolutionary biology of cancer. Trends Ecol Evol 20:545–552

    Article  PubMed  Google Scholar 

  9. Merlo LM, Pepper JW, Reid BJ, Maley CC (2006) Cancer as an evolutionary and ecological process. Nat Rev Cancer 6:924–935

    Article  PubMed  CAS  Google Scholar 

  10. Nowak MA (2006) Five rules for the evolution of cooperation. Science 314:1560–1563

    Article  PubMed  CAS  Google Scholar 

  11. Garcia-Mata R, Boulter E, Burridge K (2001) The ‘invisible hand’: regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol 12:493–504

    Article  Google Scholar 

  12. Gatenby RA, Vincent TL (2003) An evolutionary model of carcinogenesis. Cancer Res 63:6212–6220

    PubMed  CAS  Google Scholar 

  13. Grouchy J (1977) Theodore Boveri and the chromosomal theory of oncogenesis. Nouv Rev Fr Hematol Blood Cells 18:1–4

    PubMed  Google Scholar 

  14. Axelrod R, Axelrod DE, Pienta KJ (2006) Evolution of cooperation among tumor cells. Proc Natl Acad Sci USA 103:13474–13479

    Article  PubMed  CAS  Google Scholar 

  15. Ye CJ, Stevens JB, Liu G et al (2009) Genome based cell population heterogeneity promotes tumorigenicity: the evolutionary mechanism of cancer. J Cell Physiol 219:288–300

    Article  PubMed  CAS  Google Scholar 

  16. Pavlicev M, Cheverud JM, Wagner GP (2011) Evolution of adaptive phenotypic variation patterns by direct selection for evolvability. Proc Biol Sci 278:1903–1912

    Article  PubMed  Google Scholar 

  17. Attolini CS, Michor F (2009) Evolutionary theory of cancer. Ann N Y Acad Sci 1168:23–51

    Article  PubMed  CAS  Google Scholar 

  18. Lin C, Yang L, Tanasa B et al (2009) Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139:1069–1083

    Article  PubMed  CAS  Google Scholar 

  19. Knudson AG, Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–82

    Article  PubMed  Google Scholar 

  20. Armitage P, Doll R (2004) The age distribution of cancer and a multi-stage theory of carcinogenesis. Int J Epidemiol 33:1174–1179

    Article  PubMed  CAS  Google Scholar 

  21. Radisky DC, Levy DD, Littlepage LE et al (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436:123–127

    Article  PubMed  CAS  Google Scholar 

  22. Lacoste S, Wiechec E, Dos Santos Silva AG et al (2010) Chromosomal rearrangements after ex vivo Epstein-Barr virus (EBV) infection of human B cells. Oncogene 29:503–515

    Article  PubMed  CAS  Google Scholar 

  23. Heng HH, Bremer SW, Stevens JB, Ye KJ, Liu G, Ye CJ (2009) Genetic and epigenetic heterogeneity in cancer: a genome-centric perspective. J Cell Physiol 220:538–547

    Article  PubMed  CAS  Google Scholar 

  24. Louhelainen J, Szyfter K, Szyfter W, Hemminki K (1997) Loss of heterozygosity and microsatellite instability in larynx cancer. Int J Oncol 10:247–252

    PubMed  CAS  Google Scholar 

  25. Green MR (2008) Senescence: not just for tumor suppression. Cell 134:562–564

    Article  PubMed  CAS  Google Scholar 

  26. Merlo LM, Maley CC (2010) The role of genetic diversity in cancer. J Clin Invest(120):401–403

    Google Scholar 

  27. Jablonka E, Lamb M (2002) Creating bridges or rifts? Developmental systems theory and evolutionary developmental biology Bioessays 24:290–291

    Google Scholar 

  28. Nicholson MJ, Duesberg P (2009) On the karyotypic origin and evolution of cancer cells. Cancer Genet Cytogenet 194:96–110

    Article  PubMed  CAS  Google Scholar 

  29. Desper R, Gascuel O (2004) Theoretical foundation of the balanced minimum evolution method of phylogenetic inference and its relationship to weighted least-squares tree fitting. Mol Biol Evol 21:587–598

    Article  PubMed  CAS  Google Scholar 

  30. Shibata D, Tavare S (2006) Counting divisions in a human somatic cell tree: how, what and why? Cell Cycle 5:610–614

    Article  PubMed  CAS  Google Scholar 

  31. Kim Y (2007) Rate of adaptive peak shifts with partial genetic robustness. Evolution Int J org Evolution 61:1847–1856

    Article  Google Scholar 

  32. Lee HO, Silva AS, Concilio S et al (2011) Evolution of tumor invasiveness: the adaptive tumor microenvironment landscape model. Cancer Res 71:6327–6337

    Article  PubMed  CAS  Google Scholar 

  33. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  34. Greaves M (2009) Darwin and evolutionary tales in leukemia. The Ham-Wasserman Lecture. Hematology Am Soc Hematol Educ Program 3–12

    Google Scholar 

  35. Heng HH (2009) The genome-centric concept: resynthesis of evolutionary theory. Bioessays 31:512–525

    Article  PubMed  Google Scholar 

  36. Califano A (2011) Rewiring makes the difference. Mol Syst Biol 7:463

    Article  PubMed  Google Scholar 

  37. Goh AM, Coffill CR, Lane DP (2011) The role of mutant p53 in human cancer. J Pathol 223:116–126

    Article  PubMed  CAS  Google Scholar 

  38. Reichle A (2010) Bridging theory and therapeutic practice: from generalized disease models to particular patients. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3. Springer, pp 3–7. doi:10.1007/978–90-481–9531-2_1

    Google Scholar 

  39. Reichle A, Hildebrandt GC (2009) Principles of modular tumor therapy. Cancer Microenviron 2(Suppl 1):227–237

    Article  PubMed  Google Scholar 

  40. Ravandi F, Cortes JE, Jones D et al (2010) Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol 28:1856–1862

    Article  PubMed  CAS  Google Scholar 

  41. Metzelder S, Wang Y, Wollmer E et al (2009) Compassionate use of sorafenib in FLT3-ITD-positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation. Blood 113:6567–6571

    Article  PubMed  CAS  Google Scholar 

  42. Mahon FX, Rea D, Guilhot J et al (2010) Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 11:1029–1035

    Article  PubMed  CAS  Google Scholar 

  43. Falchi L, Rege-Cambrin G, Fava C et al (2010) Sustained molecular remissions are achievable with tyrosine kinase inhibitor therapy in patients with chronic myeloid leukemia and additional cytogenetic clonal evolution. Cancer Genet Cytogenet 199:139–142

    Article  PubMed  CAS  Google Scholar 

  44. Schrattenholz A, Groebe K, Soskic V (2010) Systems biology approaches and tools for analysis of interactomes and multi-target drugs. Methods Mol Biol 662:29–58

    Article  PubMed  CAS  Google Scholar 

  45. Gerber DE, Minna JD (2010) ALK inhibition for non-small cell lung cancer: from discovery to therapy in record time. Cancer Cell 18:548–551

    Article  PubMed  CAS  Google Scholar 

  46. Reichle A, Hildebrandt GC (2008) Systems biology: a therapeutic target for tumor therapy. Cancer Microenviron 1:159–170

    Article  PubMed  Google Scholar 

  47. Reichle A, Vogelhuber M, Feyerabend S et al (2011) A phase II study of imatinib with pioglitazone, etoricoxib, dexamethasone, and low-dose treosulfan: Combined anti-inflammatory, immunomodulatory, and angiostatic treatment in patients (pts) with castration-refractory prostate cancer (CRPC). J Clin Oncol 29(Suppl):abstr 4599

    Google Scholar 

  48. Emmenegger U et al (2010) The biomodulatory capacities of low-dose metronomic chemotherapy: complex modulation of the tumor microenvironment. In: From molecular to modular tumor therapy: the tumor microenvironment vol 3, part 3. Springer, pp 243–262. doi:10.1007/978–90-481–9531-2_11

    Google Scholar 

  49. Beck IME, Haegemann G, de Bosscher K (2010) Molecular cross-talk between nuclear receptors and nuclear factor-NFkappaB. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 3. Springer, pp 191–242. doi:10.1007/978–90-481–9531-2_10

    Google Scholar 

  50. Pitteri SJ, Kelly-Spratt KS, Gurley KE et al (2011) Tumor microenvironment-derived proteins dominate the plasma proteome response during breast cancer induction and progression. Cancer Res 71:5090–5100

    Article  PubMed  CAS  Google Scholar 

  51. Lam LL, Emberly E, Fraser HB, Neumann SM, Chen E, Miller GE, Kobor MS (2012) Factors underlying variable DNA methylation in a human community cohort. Proc Natl Acad Sci USA 109(Suppl 2):17253–60. doi: 10.1073/pnas.1121249109. Epub 2012 Oct 8

    Google Scholar 

  52. Kiessling F, Lederle W (2010) Early detection of systems response: Molecular and functional imaging of angiogenesis. In: Reichle A, (ed) from molecular to modular tumor therapy: the tumor microenvironment. vol 3, part 6. Springer, pp 385–403. doi:10.1007/978–90-481–9531-2_20

    Google Scholar 

  53. Reichle A, Hildebrandt GC (2010) From molecular to modular, from theme-dependent to evolution-adjusted tumor therapy. In: From molecular to modular tumor therapy. the tumor microenvironment, vol 3, part 7. Springer, pp 467–489. doi:10.1007/978–90-481-9531-2_27. 223

    Google Scholar 

  54. Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8:98–101

    PubMed  CAS  Google Scholar 

  55. Chen LL, Blumm N, Christakis NA, Barabasi AL, Deisboeck TS (2009) Cancer metastasis networks and the prediction of progression patterns. Br J Cancer 101:749–758

    Article  PubMed  CAS  Google Scholar 

  56. Coghlin C, Murray GI (2010) Current and emerging concepts in tumour metastasis. J Pathol 222:1–15

    Article  PubMed  CAS  Google Scholar 

  57. Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    Article  PubMed  CAS  Google Scholar 

  58. Raaijmakers MH, Mukherjee S, Guo S et al (2010) Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464:852–857

    Article  PubMed  CAS  Google Scholar 

  59. Shackleton M, Quintana E, Fearon ER, Morrison SJ (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138:822–829

    Article  PubMed  CAS  Google Scholar 

  60. Zipori D (2004) The nature of stem cells: state rather than entity. Nat Rev Genet 5:873–878

    Article  PubMed  CAS  Google Scholar 

  61. Gatenby RA, Gillies RJ, Brown JS (2011) Of cancer and cave fish. Nat Rev Cancer 11:237–238

    Article  PubMed  CAS  Google Scholar 

  62. Kvinlaug BT, Chan WI, Bullinger L et al (2011) Common and overlapping oncogenic pathways contribute to the evolution of acute myeloid leukemias. Cancer Res 71:4117–4129

    Article  PubMed  CAS  Google Scholar 

  63. Sottoriva A, Vermeulen L, Tavare S (2011) Modeling evolutionary dynamics of epigenetic mutations in hierarchically organized tumors. PLoS Comput Biol 7:e1001132

    Article  PubMed  CAS  Google Scholar 

  64. Rubin H (2009) Saturation density of skin fibroblasts as a quantitative screen for human cancer susceptibility. Cancer Epidemiol Biomarkers Prev 18:2366–2372

    Article  PubMed  CAS  Google Scholar 

  65. Michor F, Nowak MA, Iwasa Y (2006) Evolution of resistance to cancer therapy. Curr Pharm Des 12:261–271

    Article  PubMed  CAS  Google Scholar 

  66. Reichle A, Hildebrandt GC (2010) To be an object in a biological system: the necessity of a formal-pragmatic communication theory. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 9. Springer, pp 537–544. doi:10.1007/978–90-481–9531-2_26

    Google Scholar 

  67. Dingli D, Chalub FA, Santos FC, Van SS, Pacheco JM (2009) Cancer phenotype as the outcome of an evolutionary game between normal and malignant cells. Br J Cancer 101:1130–1136

    Article  PubMed  CAS  Google Scholar 

  68. Reichle A, Hildebrandt GC (2010) The comparative uncovering of tumor systems biology by modularly targeting tumor-associated inflammation. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 4. Springer, pp 287–303. doi:10.1007/978–90-481–9531-9532

    Google Scholar 

  69. Reichle A, Hildebrandt GC (2010) Searching for the ‘metabolism’ of evolution. In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 4. Springer, pp 305–309. doi:10.1007/978–90-481–9531-2_14

    Google Scholar 

  70. Reichle A, Hildebrandt GC (2010) Uncovering tumor systems biology by biomodulatory therapy strategies. In: From molecular to modular tumor therapy. The tumor microenvironment, vol 3, part 4. Springer, pp 287–303. doi:10.1007/978–90-481–9531-2_13

    Google Scholar 

  71. Wagner GP, Pavlicev M, Cheverud JM (2007) The road to modularity. Nat Rev Genet 8:921–931

    Article  PubMed  CAS  Google Scholar 

  72. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52

    Article  PubMed  CAS  Google Scholar 

  73. Heinz S, Benner C, Spann N et al (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38:576–589

    Article  PubMed  CAS  Google Scholar 

  74. Weber BN, Chi AW, Chavez A et al (2011) A critical role for TCF-1 in T-lineage specification and differentiation. Nature 476:63–68

    Article  PubMed  CAS  Google Scholar 

  75. Puglisi R, Maccari I, Pipolo S et al (2012) The nuclear form of glutathione peroxidase 4 is associated with sperm nuclear matrix and is required for proper paternal chromatin decondensation at fertilization. J Cell Physiol 227:1420–1427

    Article  PubMed  CAS  Google Scholar 

  76. Spemann H, Mangold H (2001) Induction of embryonic primordia by implantation of organizers from a different species. 1923. Int J Dev Biol(45):13–38

    Google Scholar 

  77. Kar G, Gursoy A, Keskin O (2009) Human cancer protein-protein interaction network: a structural perspective. PLoS Comput Biol 5:e1000601

    Article  PubMed  Google Scholar 

  78. Kitano H (2003) Cancer robustness: tumour tactics. Nature 426:123

    Article  Google Scholar 

  79. Feret J, Danos V, Krivine J, Harmer R, Fontana W (2009) Internal coarse-graining of molecular systems. Proc Natl Acad Sci USA 106:6453–6458

    Article  PubMed  CAS  Google Scholar 

  80. Harmer R, Danos V, Feret J, Krivine J, Fontana W (2010) Intrinsic information carriers in combinatorial dynamical systems. Chaos 20:037108

    Article  PubMed  Google Scholar 

  81. Grauer O, Hau P (2010) Could be systems-directed therapy approaches promising in glioblastoma patients? In: From molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 2. Springer, pp 133–157. doi:10.1007/978–90-481–9531-2_8

    Google Scholar 

  82. Wagner GP, Kenney-Hunt JP, Pavlicev M, Peck JR, Waxman D, Cheverud JM (2008) Pleiotropic scaling of gene effects and the cost of complexity. Nature 452:470–472

    Article  PubMed  CAS  Google Scholar 

  83. Reichle A, Vogt T, Hildebrandt GC (2010) A methodological approach to personalized therapies in metastatic cancer. In: Reichle A, (ed) from molecular to modular tumor therapy: the tumor microenvironment, vol 3, part 8. Springer, pp 507–33. doi:10.1007/978–90-481-9531-2_25

    Google Scholar 

  84. Trosko JE, Chang CC (1978) Environmental carcinogenesis: an integrative model. Q Rev Biol(53):115–141

    Google Scholar 

  85. Vineis P, Xun W (2009) The emerging epidemic of environmental cancers in developing countries. Ann Oncol 20:205–212

    Article  PubMed  CAS  Google Scholar 

  86. Lefevre S, Knedla A, Tennie C et al (2009) Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat Med 15:1414–1420

    Article  PubMed  CAS  Google Scholar 

  87. Rodig SJ, Ouyang J, Juszczynski P et al (2008) AP1-dependent galectin-1 expression delineates classical hodgkin and anaplastic large cell lymphomas from other lymphoid malignancies with shared molecular features. Clin Cancer Res 14:3338–3344

    Article  PubMed  CAS  Google Scholar 

  88. Bacac M, Provero P, Mayran N, Stehle JC, Fusco C, Stamenkovic I (2006) A mouse stromal response to tumor invasion predicts prostate and breast cancer patient survival. PLoS One 1:e32

    Article  PubMed  Google Scholar 

  89. Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 303:1960–1964

    Article  Google Scholar 

  90. Chabner BA, Roberts TG Jr (2005) Timeline: Chemotherapy and the war on cancer. Nat Rev Cancer 5:65–72

    Article  PubMed  CAS  Google Scholar 

  91. Markert CL (1968) Neoplasia: a disease of cell differentiation. Cancer Res 28:1908–1914

    PubMed  CAS  Google Scholar 

  92. Hagemann T, Lawrence T, McNeish I et al (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med 205:1261–1268

    Article  PubMed  CAS  Google Scholar 

  93. Vogelstein B, Fearon ER, Hamilton SR et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532

    Article  PubMed  CAS  Google Scholar 

  94. Chu D (2011) Complexity: against systems. Theory Biosci 130:229–245

    Google Scholar 

  95. Oprea TI, Bauman JE, Bologa CG et al (2011) Drug Repurposing from an Academic Perspective. Drug Discov Today Ther Strateg 8:61–69

    Article  PubMed  Google Scholar 

  96. Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. The American Biology Teacher 35:125–129. http://www.2think.org/dobzhansky.shtml

    Google Scholar 

  97. Chindelevitch L, Ziemek D, Enayetallah A, Randhawa R, Sidders B, Brockel C, Huang ES (2012) Causal reasoning on biological networks: interpreting transcriptional changes. Bioinformatics 28(8):1114–1121

    Article  PubMed  CAS  Google Scholar 

  98. Ewald PW, Swain Ewald HA (2013) Toward a general evolutionary theory of oncogenesis. Evol Appl 6(1):70–81

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Reichle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Reichle, A., Hildebrandt, G. (2013). Evolution Theory: Its Practical Relevance for Understanding Tumor Development and Specifying Tumor Therapy. In: Reichle, A. (eds) Evolution-adjusted Tumor Pathophysiology:. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6866-6_12

Download citation

Publish with us

Policies and ethics