Skip to main content

Calibrating a System of Satellite Instruments

  • Chapter
  • First Online:
Satellite-based Applications on Climate Change

Abstract

Satellite instrument calibration is the essential and fundamental process to convert the Earth view sensor response in voltage and counts to radiance and reflectance. Calibration accuracy directly affects the quality of the satellite Level 1b data used for numerical weather prediction and climate change detection. Therefore, ideally all calibration should be made traceable to the International System of Units (SI). However, since each satellite instrument is calibrated separately with different methodologies and at different times in history, there is often disagreement between satellite measurements which could cause errors in both weather and climate applications. This chapter provides an overview of the fundamentals of satellite instrument calibration and reviews some of the challenges in establishing consistent satellite measurements across a system of satellites. Examples are used to demonstrate the progress made in inter-satellite calibration in recent years to support climate change detection studies and to contribute to the Global Earth Observation System of Systems (GEOSS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnes RA, Eplee RE, Patt FS, Kieffer HH, Stone TC, Meister G, Butler JJ, McClain CR (2004) Comparison of SeaWiFS measurements of the moon with the U.S. Geological survey lunar model. Appl Opt 43:5838–5854

    Article  Google Scholar 

  • Cao C, Heidinger A (2002) Inter-comparison of the longwave infrared channels of MODIS and AVHRR/NOAA-16 using simultaneous nadir observations at orbit intersections, Earth observing systems VII. In: Barnes W (ed) Proceedings of SPIE, vol 4814, Seattle, 2002, pp 306–316

    Google Scholar 

  • Cao C, Tobin D (2008) Inter-calibration of instruments. In: Ohring G (ed) Achieving satellite instrument calibration for climate change. NOAA/NESDIS/STAR Publication, p 144

    Google Scholar 

  • Cao C, Weinreb M, Sullivan J (2001) Solar contamination effects on the infrared channels of the AVHRR. J Geophys Res 106(D24):33463–33469

    Article  Google Scholar 

  • Cao C, Weinreb M, Xu H (2004) Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the inter-satellite calibration of radiometers. J Atmos Ocean Technol 21:537–542

    Article  Google Scholar 

  • Cao C, Ciren P, Goldberg M, Weng F, Zou C (2005a) Simultaneous nadir overpasses for NOAA-6 to NOAA-17 satellites from 1980 to 2003 for the inter-satellite calibration of radiometers. NOAA technical report NESDIS 118, p 74

    Google Scholar 

  • Cao C, Xu H, Sullivan J, McMillin L, Ciren P, Hou Y (2005b) Inter-satellite radiance biases for the High-Resolution Infrared Radiation Sounders (HIRS) on board NOAA-15,-16 and -17 from simultaneous nadir observations. J Atmos Ocean Technol 22:381–395

    Article  Google Scholar 

  • Cao C, Xiong X, Wu A, Wu X (2008a) Assessing the consistency of AVHRR and MODIS L1B reflectance for generating fundamental climate data records. J Geophys Res 113:D09114. doi:10.1029/2007JD009363, 10 pp

    Article  Google Scholar 

  • Cao C, Goldberg M, Wang L (2008b) Spectral bias estimation of historical HIRS using IASI observations for improved fundamental climate data records. J Atmos Ocean Technol 26:1378–1387

    Article  Google Scholar 

  • Cao C, Vermote E, Xiong X (2009) Using AVHRR lunar observations for NDVI long-term climate change detection. J Geophys Res 114:D20105. doi:10.1029/2009JD012179, 9 pp

    Article  Google Scholar 

  • Cao C, Uprety S, Xiong X, Wu A, Jing P, Smith D, Chander G, Fox N, Ungar S (2010) Establishing the Antarctic Dome C community reference standard site towards consistent measurements from earth observation satellites. Can J Remote Sens 36:498–513

    Article  Google Scholar 

  • Christy JR, Spencer RW, Lobel ES (1998) Analysis of the merging procedure for the MSU daily temperature time series. J Climate 11:2016–2041

    Article  Google Scholar 

  • Green RO, Pavri B (2002) AVIRIS in-flight calibration experiment results for 2001. In: Green RO (ed) Proceedings of the 11th JPL airborne earth science workshop, JPL Pub. 03-4, Jet Propulsion Laboratory, Pasadena, pp 125–137

    Google Scholar 

  • Gunshor MM, Schmit TJ, Menzel WP (2004) Inter-calibration of the infrared window and water vapor channels on operational geostationary environmental satellites using a single polar-orbiting satellite. J Atmos Ocean Technol 21:61–68

    Article  Google Scholar 

  • Heidinger A, Cao C, Sullivan J (2002) Using MODIS to calibrate AVHRR reflectance channels. J Geophys Res 107(D23):4702. doi:10.1029/2001JD002035, 10 pp

    Article  Google Scholar 

  • Iacovazzi R, Cao C (2007) Quantifying EOS-aqua and NOAA POES AMSU – a brightness temperature biases for weather and climate applications utilizing the SNO method. J Atmos Ocean Technol. doi:10.1175/JTECH2095.1

  • Jaross G, Krueger AJ, Flittner D (1998) Multispectral calibration of remote-sensing instruments over Antarctica. Metrologia 35:625–629

    Article  Google Scholar 

  • Kieffer HH (1997) Photometric stability of the lunar surface. Icarus 130(2):323–327

    Article  Google Scholar 

  • Masonis SJ, Warren SG (2001) Gain of the AVHRR visible channel as tracked using bidirectional reflectance of Antarctica and Greenland snow. Int J Remote Sens 22(8):1495–1520

    Google Scholar 

  • Shi L, Bates J, Cao C (2008) Scene temperature dependent HIRS inter-satellite biases. J Atmos Ocean Technol 25:2219–2229

    Article  Google Scholar 

  • Tobin DC, Revercomb HE, Moeller CC, Pagano T (2006) Use of atmospheric infrared sounder high-spectral resolution spectra to assess the calibration of moderate resolution imaging spectroradiometer on EOS aqua. J Geophys Res 111:D09S05. doi:10.1029/2005JD006095, 15 pp

    Article  Google Scholar 

  • Trishchenko AP, Fedosejevs G, Li Z, Cihlar J (2002) Trends and uncertainties in thermal calibration of AVHRR radiometers onboard NOAA-9 to NOAA-16. J Geophys Res 107:4778. doi:10.1029/2002JD002353, 13 pp

    Article  Google Scholar 

  • Vinnikov KY, Grody NC (2003) Global warming trend of mean tropospheric temperature observed by satellites. Science 302(5643):269–272

    Article  Google Scholar 

  • Wang L, Cao C (2008) On-orbit calibration assessment of AVHRR longwave channels on MetOp– a using IASI. IEEE Trans Geosci Remote Sens 46(12):4005–4013

    Google Scholar 

  • Xiong X, Che N, Barnes WL (2005) Terra MODIS on-orbit spatial characterization and performance. IEEE Trans Geosci Remote Sens 43:355–365

    Article  Google Scholar 

  • Zou C, Goldberg M, Cheng Z, Grody N, Sullivan J, Cao C, Tarpley D (2006) Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses. J Geophys Res 111:D19114. doi:10.1029/2005JD006798, 24 pp

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. Pubu Ciren, Likun Wang, and Bob Iacovazzi for providing part of the data used in this chapter. We also thank Dr. Lawrence Flynn of NOAA/NESDIS/STAR and Dr. Shucai Guan of NOAA/NCEP/NCO for a critical review of the manuscript with constructive comments and suggestions. The manuscript contents are solely the opinions of the author and do not constitute a statement of policy, decision, or position on behalf of NOAA or the US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyong Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cao, C., Chen, R., Uprety, S. (2013). Calibrating a System of Satellite Instruments. In: Qu, J., Powell, A., Sivakumar, M. (eds) Satellite-based Applications on Climate Change. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5872-8_2

Download citation

Publish with us

Policies and ethics