Skip to main content

Monitoring a Sentinel Species from Satellites: Detecting Emiliania huxleyi in 25 Years of AVHRR Imagery

  • Chapter
  • First Online:
Satellite-based Applications on Climate Change

Abstract

Blooms of the coccolithophore Emiliania huxleyi were detected around the world from 1982 through 2006 using Advanced Very High Resolution Radiometer (AVHRR) remote sensing reflectances. The annually averaged surface area of these blooms has decreased over the past 25 years in regions where E. huxleyi blooms are most prevalent – the Bering Sea, the North Atlantic south of Iceland, the Norwegian and Barents Sea, and the Patagonian Shelf. Though less sensitive than satellite ocean color sensors, AVHRR offers the longest continuous global dataset of visible reflectances and has been used previously to identify regional E. huxleyi blooms. This declining long-term trend in bloom surface area was correlated to warm sea-surface temperature anomalies. The trend was weakly correlated to increased mixed-layer depths. There were mixed results when comparing bloom surface area to climate indices. Previous studies associated individual E. huxleyi blooms to warmer temperatures and increased stratification. This apparently contrary result may indicate that the dynamics of large-scale changes are different from those of individual, local blooms. The decreased extent of blooms could also mean that E. huxleyi respond to additional factors over the long term, such as ocean chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balch WM, Gordon HR, Bowler BC, Drapeau DT, Booth ES (2005) Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data. J Geophys Res 110. doi:10.1029/2004JC002560

  • Barcelos e Ramos J, Muller MN, Riebesell U (2010) Short-term response of the coccolithophore Emiliania huxleyi to an abrupt change in seawater carbon dioxide concentrations. Biogeosciences 7:177–186

    Article  Google Scholar 

  • Broerse ATC, Tyrrell T, Young JR, Poulton AJ, Merico A, Balch WM, Miller PI (2003) The cause of bright waters in the Bering Sea in winter. Cont Shelf Res 23:1579–1596. doi:10.1016/j.csr.2003.07.001

    Article  Google Scholar 

  • Brown CW, Yoder JA (1994) Coccolithophorid blooms in the global ocean. J Geophys Res 99:7467–7482

    Article  Google Scholar 

  • Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Wea Rev 136:2999–3017

    Article  Google Scholar 

  • Charalampopoulou A, Tyrrell T, Poulton A, Lucas M (2010) Investigating the response of coccolithophores to variable carbonate chemistry between UK and Svalbard, AGU 2010 Ocean Science Meeting, Portland, OR. BO15A-07

    Google Scholar 

  • Delworth TL, Dixon KW (2000) Implications of the recent trend in the Arctic/North Atlantic Oscillation for the North Atlantic thermohaline circulation. J Climate 13:3721–3727

    Article  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192. doi:10.1146/annurev.marine.010908.163834

    Article  Google Scholar 

  • Draper NR, Smith H (1981) Applied regression analysis. Wiley, New York

    Google Scholar 

  • Hays GC, Richardson AJ, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol 20:337–344

    Article  Google Scholar 

  • Heidinger AK, Cao C, Sullivan JT (2002) Using Moderate Resolution Imaging Spectrometer (MODIS) to calibrate advanced very high resolution radiometer reflectance channels. J Geophys Res 107. doi:10.1029/2001JD002035

  • Holligan PM, Viollier M, Harbour DS, Camus P, Champagne-Philippe M (1983) Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature 304:339–342

    Article  Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Hurrell JW, Deser C (2009) North Atlantic climate variability: the role of the North Atlantic Oscillation. J Mar Syst 78(1):28–41. doi:10.1016/j.jmarsys.2008.11.026

    Article  Google Scholar 

  • Iglesias-Rodriguez MD, Brown CW, Doney SC, Kleypas J, Kolber D, Kolber Z, Hayes PK, Falkowski PG (2002) Representing key phytoplankton functional groups in ocean carbon cycle models: coccolithophorids. Global Biogeochem Cycles 16(4):1100. doi:10.1029/2001GB001454

    Article  Google Scholar 

  • Iglesias-Rodriguez MD, Halloran PR, Rickaby REM, Hall IR, Colmenero-Hidalgo E, Gittins JR, Green DRH, Tyrrell T, Gibbs SJ, von Dassow P, Rehm E, Armbrust EV, Boessenkool KP (2008) Phytoplankton calcification in a high-CO2 world. Science 320:336–340. doi:10.112/science.1154122

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal oscillation with impacts on salmon production. Bull Am Meteor Soc 78:1069–1079

    Article  Google Scholar 

  • Merico A, Tyrrell T, Brown CW, Groom SB, Miller PI (2003) Analysis of satellite imagery for Emiliania huxleyi blooms in the Bering Sea before 1997. Geophys Res Lett 30(6):1337. doi:10.1029/2002GL016648

    Article  Google Scholar 

  • Napp JM, Hunt GL (2001) Anomalous conditions in the south-eastern Bering Sea 1997: linkages among climate, weather, ocean, and biology. Fish Oceanogr 10(1):61–68

    Article  Google Scholar 

  • Platt T, Sathyendranath S (2008) Ecological indicators for the pelagic zone of the ocean from remote sensing. Remote Sens Environ 112(8):3426–3436

    Article  Google Scholar 

  • Platt T et al (2009) The phenology of phytoplankton blooms: ecosystem indicators from remote sensing. Ecol Model 220(21):3057–3069

    Article  Google Scholar 

  • Platt T et al (2010) Diagnostic properties of phytoplankton time series from remote sensing. Estuaries Coasts 33(2):428–439

    Article  Google Scholar 

  • Raitsos DE, Lavender SJ, Pradhan Y, Tyrell T, Reid PC, Edwards M (2006) Coccolithophore bloom size variation in response to the regional environment of the subarctic North Atlantic. Limnol Oceanogr 51(5):2122–2130

    Article  Google Scholar 

  • Reynolds RW, Smith TM (1994) Improved global sea surface temperature analyses. J Climate 7:929–948

    Article  Google Scholar 

  • Riebesell U, Bellerby RGJ, Engel A, Fabry VJ, Hutchins DA, Reusch TBH, Schulz KG, Morel FMM (2008) Comment on “phytoplankton calcification in a high-CO2 world”. Science 322:1466b. doi:10.112/science.1161096

    Article  Google Scholar 

  • Sapiano MRP, Brown CW, Schollaert Uz S, Vargas M (2012) Establishing a global climatology of marine phytoplankton phonological characteristics. J Geophys Res. doi:10.1029/2012JC007958

  • Smyth TJ, Tyrrell T, Tarrant B (2004) Time series of coccolithophore activity in the Barents Sea, from twenty years of satellite imagery. Geophys Res Lett 31:L11302. doi:10.1029/2004GL019725

    Article  Google Scholar 

  • Trenberth KE, Hurrell JW (1994) Decadal atmosphere–ocean variations in the Pacific. Clim Dyn 9:303–319

    Article  Google Scholar 

  • Tynan CT et al (2001) Endangered right whales on the southeastern Bering Sea shelf. Science 294(5548):1894

    Article  Google Scholar 

  • Tyrrell T, Merico A (2004) Emiliania huxleyi: bloom observations and the conditions that induce them. In: Thiertein HR, Young J (eds) Coccolithophores: from molecular processes to global impact. Springer, Heidelberg, pp 75–97

    Chapter  Google Scholar 

  • Vargas M, Brown CW, Sapiano MRP (2009) Phenology of marine phytoplankton from satellite ocean color measurements. Geophys Res Lett 36:L01608. doi:10.1029/2008GL036006

    Article  Google Scholar 

  • Westbroek P, Young JR, Linschooten K (1989) Coccolith production (biomineralization) in the marine alga Emiliania huxleyi. J Protozool 36:368–373

    Google Scholar 

  • Westbroek P, Brown CW, van Bleijswijk J, Brownlee C, Brummer GJ, Conte M, Egge J, Fernandez E, Jordan R, Knappertsbusch M, Stefels J, Veldhuis M, van der Wal P, Young J (1993) A model system approach to biological climate forcing: the example of Emiliania huxleyi. Global Planet Change 8(1–2):27–46

    Article  Google Scholar 

  • Wolter K, Timlin MS (1998) Measuring the strength of ENSO events – how does 1997/98 rank? Weather 53:315–324

    Article  Google Scholar 

Download references

Acknowledgments

This study benefited from many discussions with Mete Uz. The AVHRR data were specially processed for R rs by Aleksander Jelenak and William Straka. This research was supported by the Office of Global Program’s NOAA Climate and Global Change Program. The views, opinions, and findings contained in this paper are those of the authors and should not be construed as an official National Oceanic and Atmospheric Administration or US Government position or decision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Schollaert Uz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Uz, S.S., Brown, C.W., Heidinger, A.K., Smyth, T.J., Murtugudde, R. (2013). Monitoring a Sentinel Species from Satellites: Detecting Emiliania huxleyi in 25 Years of AVHRR Imagery. In: Qu, J., Powell, A., Sivakumar, M. (eds) Satellite-based Applications on Climate Change. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5872-8_18

Download citation

Publish with us

Policies and ethics