Skip to main content

Learning-Based Detection and Tracking in Medical Imaging: A Probabilistic Approach

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 7))

Abstract

Medical image processing tools are playing an increasingly important role in assisting the clinicians in diagnosis, therapy planning and image-guided interventions. Accurate, robust and fast tracking of deformable anatomical objects, such as the heart, is a crucial task in medical image analysis. One of the main challenges is to maintain an anatomically consistent representation of target appearance that is robust enough to cope with inherent changes due to target movement, imaging device movement, varying imaging conditions, and is consistent with the domain expert clinical knowledge. To address these challenges, this chapter presents a probabilistic framework that relies on anatomically indexed component-based object models which integrate several sources of information to determine the temporal trajectory of the deformable target. Large annotated imaging databases are exploited to encode the domain knowledge in shape models and motion models and to learn discriminative image classifiers for the target appearance. The framework robustly fuses the prior information with traditional tracking approaches based on template matching and registration. We demonstrate various medical image analysis applications with focus on cardiology such as 2D auto left heart, catheter detection and tracking, 3D cardiac chambers surface tracking, and 4D complex cardiac structure tracking, in multiple modalities including Ultrasound (US), cardiac Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and X-ray fluoroscopy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akgul Y, Kambhamettu C (2003) A coarse-to-fine deformable contour optimization framework. IEEE Trans Pattern Anal Mach Intell 25(2):174–186

    Article  Google Scholar 

  2. Akhter I, Sheikh Y, Khan S, Kanade T (2008) Nonrigid structure from motion in trajectory space. In: Advances in neural information processing systems, pp 41–48

    Google Scholar 

  3. Black MJ, Jepson AD (1998) Eigentracking: robust matching and tracking of articulated objects using a view-based representation. Int J Comput Vis 26:63–84

    Article  Google Scholar 

  4. Bookstein FL (1989) Principal warps: thin-plate splines and the decomposition of deformation. IEEE Trans Pattern Anal Mach Intell 11(6):567–585

    Article  MATH  Google Scholar 

  5. Briassouli A, Ahuja N (2007) Extraction and analysis of multiple periodic motions in video sequences. IEEE Trans Pattern Anal Mach Intell 29(7):1244–1261

    Article  Google Scholar 

  6. Comaniciu D (2003) Nonparametric information fusion for motion estimation. In: Proceedings of IEEE conference on computer vision and pattern recognition, Madison, Wisconsin, pp 59–66

    Google Scholar 

  7. Comaniciu D, Zhou X, Krishnan S (2004) Robust real-time tracking of myocardial border: an information fusion approach. IEEE Trans Med Imaging 23(7):849–860

    Article  Google Scholar 

  8. Cootes T, Taylor C (2001) Statistical models of appearance for medical image analysis and computer vision. In Proceedings of SPIE medical imaging, pp 236–248

    Google Scholar 

  9. Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Trans Pattern Anal Mach Intell 23(6):681–685

    Article  Google Scholar 

  10. Craene MD, Camara O, Bijnens BH, Frangi AF (2009) Large diffeomorphic FFD registration for motion and strain quantification from 3D-US sequences. In: Functional imaging and modeling of the heart (2009), vol 5528. Springer, pp 437–446

    Google Scholar 

  11. Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, New York

    Google Scholar 

  12. Duan Q, Parker KM, Lorsakul A, Angelini ED, Hyodo E, Homma S, Holmes JW, Laine AF (2009) Quantitative validation of optical flow based myocardial strain measures using sonomicrometry. In: Proceedings of IEEE international symposium on biomedical imaging, pp 454–457

    Google Scholar 

  13. Edwards GJ, Cootes TF, Taylor CJ (1998) Face recognition using active appearance models. In: European conference on computer vision, pp 581–595

    Google Scholar 

  14. Elen A, Choi HF, Loeckx D, Gao H, Claus P, Suetens P, Maes F, D’hooge J (2008) Three-dimensional cardiac strain estimation using spatio-temporal elastic registration of ultrasound images: a feasibility study. IEEE Trans Med Imaging 27(11):1580–1591

    Article  Google Scholar 

  15. Georgescu B, Zhou XS, Comaniciu D, Rao B (2004) Real-time multi-model tracking of myocardium in echocardiography using robust information fusion. In: Proceedings of international conference on medical image computing and computer assisted intervention

    Google Scholar 

  16. Georgescu B, Zhou XS, Comaniciu D, Gupta A (2005) Database-guided segmentation of anatomical structures with complex appearance. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 429–436

    Google Scholar 

  17. Grau V, Becher H, Noble J (2007) Registration of multiview real-time 3-D echocardiographic sequences. IEEE Trans Med Imaging 26(9):11541165

    Article  Google Scholar 

  18. Ionasec R, Voigt I, Georgescu B, Wang Y, Houle H, Fernando-Vega H, Navab N, Comaniciu D (2010) Patient-specific modeling and quantification of the aortic and mitral valves from 4-D cardiac CT and TEE. IEEE Trans Med Imaging 29(9):1636–1651

    Article  Google Scholar 

  19. Jacob G, Noble J, Behrenbruch C, Kelion A, Banning A (2002) A shape-space-based approach to tracking myocardial borders and quantifying regional left-ventricular function applied in echocardiography. IEEE Trans Med Imaging 21(3):226–238

    Article  Google Scholar 

  20. Jepson AD, Fleet DJ, El-Maraghi TF (2003) Robust online appearance models for visual tracking. IEEE Trans Pattern Anal Mach Intell 25:1296–1311

    Article  Google Scholar 

  21. Little SH (2010) Quantifying mitral valve regurgitation: new solutions from the 3rd dimension. J Am Soc Echocardiogr 23(1):9–12

    Article  MathSciNet  Google Scholar 

  22. Lloyd-Jones D, Adams R, Carnethon M, Simone GD, Ferguson TB, Flegal K, Ford E, Furie K, Go A, Greenlund K, Haase N, Hailpern S, Ho M, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott M, Meigs J, Mozaffarian D, Nichol G, ODonnell C, Roger V, Rosamond W, Sacco R, Sorlie P, Stafford R, Steinberger J, Thom T, Wasserthiel-Smoller S, Wong N, Wylie-Rosett J, Hong Y (2009) Heart disease and stroke statistics-2009 update: a report from the american heart association statistics committee and stroke statistics subcommittee. Circulation 119:3

    Google Scholar 

  23. Lu X, Wang Y, Georgescu B, Littman A, Comaniciu D (2011) Automatic delineation of left and right ventricles in cardiac MRI sequences using a joint ventricular model. In: Proceedings IEEE international symposium on biomedical, pp 250–258

    Google Scholar 

  24. Mikić I, Krucinski S, Thomas JD (1998) Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates. IEEE Trans Med Imaging 17(2):274–284

    Article  Google Scholar 

  25. Naftel A, Khalid S (2006) Motion trajectory learning in the DFT-coefficient feature space. In : Proceedings of international conference on computer vision systems, p 47

    Google Scholar 

  26. Peters J, Ecabert O, Meyer C, Kneser R, Weese J (2010) Optimizing boundary detection via simulated search with applications to multi-modal heart segmentation. Med Image Anal 14(1):70–84

    Article  Google Scholar 

  27. Shi J, Tomasi C (1994) Good features to track. In: IEEE conference on computer vision and pattern recognition, pp 593–600

    Google Scholar 

  28. Sidenbladh H, Black MJ, Fleet DJ (2000) Stochastic tracking of 3d human figures using 2D image motion. In: European conference on computer vision, vol 2, pp 702–718

    Google Scholar 

  29. Stauffer C, Grimson WEL (1999) Adaptive background mixture models for real-time tracking. In: IEEE conference on computer vision and pattern recognition, vol 2, pp 246–252

    Google Scholar 

  30. Sun H, Frangi A, Wang H, Sukno F, Tobon-Gomez C, Yushkevich P (2010) Automatic cardiac mri segmentation using a biventricular deformable medial model. In: Proceedings of international conference on medical image computing and computer assisted intervention

    Google Scholar 

  31. Tao H, Sawhney HS, Kumar R (2000) Dynamic layer representation with application to tracking. In: IEEE conference on computer vision and pattern recognition, vol 2, pp 134–141

    Google Scholar 

  32. Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323

    Article  Google Scholar 

  33. Tu Z (2005) Probabilistic boosting-tree: learning discriminative models for classification, recognition, and clustering. In: Proceedings of international conference on computer vision, part II, pp 1589–1596

    Google Scholar 

  34. Veronesi F, Corsi C, Sugeng L, Mor-Avi V, Caiani E, Weinert L, Lamberti C, Lang RM (2009) A study of functional anatomy of aortic-mitral valve coupling using 3D matrix transesophageal echocardiography. Circ Cardiovasc Imaging 2(1):24–31

    Google Scholar 

  35. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: IEEE conference on computer vision and pattern recognition, pp 511–518

    Google Scholar 

  36. Wang L, Geng X, Leckie C, Kotagiri R (2008) Moving shape dynamics: a signal processing perspective. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  37. Wang X, Chen T, Zhang S, Metaxas D, Axel L (2008) LV motion and strain computation from tMRI based on meshless deformable models. In: Proceedings of international conference on medical image computing and computer assisted intervention

    Google Scholar 

  38. Wang P, Chen T, Zhu Y, Zhang W, Zhou S, Comaniciu D (2009) Robust guidewire tracking in fluoroscopy. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 691–698

    Google Scholar 

  39. Wang Y, Georgescu B, Comaniciu D, Houle H (2010) Learning-based 3D myocardial motion flow estimation using high frame rate volumetric ultrasound data. In: Proceedings of IEEE international symposium on biomedical imaging, pp 1097–1100

    Google Scholar 

  40. Wang Y, Georgescu B, Houle H, Comaniciu D (2010) Volumetric myocardial mechanics from 3d+t ultrasound data with multi-model tracking. In: Statistical atlases and computational models of the heart: mapping structure and function (STACOM) + a cardiac electrophysiological simulation, challenge (CESC’10), pp 184–193

    Google Scholar 

  41. Wang P, Zheng Y, John M, Comaniciu D (2012) Catheter tracking via online learning for dynamic motion compensation in transcatheter aortic valve implantation. In: Proceedings of international conference on medical image computing and computer assisted intervention

    Google Scholar 

  42. Wu W, Chen T, Barbu A, Wang P, Strobel N, Zhou S, Comaniciu D (2011) Learning-based hypothesis fusion for robust catheter tracking in 2D X-ray fluoroscopy. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1097–1104

    Google Scholar 

  43. Yang L, Georgescu B, Zheng Y, Wang Y, Meer P, Comaniciu D (2011) Prediction based collaborative trackers (PCT): a robust and accurate approach toward 3D medical object tracking. IEEE Trans Med Imaging 30(11):1921–1932

    Article  Google Scholar 

  44. Zelnik Manor L, Irani M (2004) Temporal factorization vs. spatial factorization. In: European conference on computer vision, part II, pp 434–445

    Google Scholar 

  45. Zhao T, Nevatia R (2002) 3D tracking of human locomotion: a tracking as recognition approach. In: International conference on pattern recognition, part I, pp 546–551

    Google Scholar 

  46. Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2008) Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans Med Imaging 27(11):1668–1681

    Article  Google Scholar 

  47. Zhuang X, Leung K, Rhode K, Razavi R, Hawkes DJ, Ourselin S (2010) A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI. IEEE Trans Med Imaging 29(9):1612–1625

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. David Sahn and Dr. Muhammad Ashraf at OHSU for providing the volumetric ultrasound sequences and sonomicrometry data in the in vitro animal study, Dr. Alan Katz from St. Francis Hospital and Dr. Mani Vannan from OSU Medical Center for fruitful interactions and guidance, and SCR colleagues for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Georgescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wang, Y. et al. (2013). Learning-Based Detection and Tracking in Medical Imaging: A Probabilistic Approach. In: González Hidalgo, M., Mir Torres, A., Varona Gómez, J. (eds) Deformation Models. Lecture Notes in Computational Vision and Biomechanics, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5446-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5446-1_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5445-4

  • Online ISBN: 978-94-007-5446-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics