Skip to main content

Symmetries

  • Chapter
  • 7461 Accesses

Part of the book series: Theoretical and Mathematical Physics ((TMP))

Abstract

Symmetries play a fundamental role in the study of the dynamics of physical systems, because they give rise to conserved quantities. In the Hamiltonian context, these conserved quantities are encoded in what is called a momentum mapping. This mapping generalizes well-known constants of motion, like momentum or angular momentum. We start with a discussion of momentum mappings and the related Witt-Artin decomposition of the tangent space. Then, we present the classical result of Marsden, Weinstein and Meyer on symmetry reduction in the case of a free action. To generalize this result to nonfree actions, we prove the Symplectic Tubular Neighbourhood Theorem (or Symplectic Slice Theorem), derive the Marle-Guillemin-Sternberg normal form of the momentum mapping and present the theory of singular reduction in detail. Thereafter, we apply this theory to a number of examples: the geodesic flow on the three-sphere, the Kepler problem (including the Moser regularization), the Euler top, the spherical pendulum and a model of gauge theory, which can be viewed as obtained from an approximation of gauge theory on a finite lattice. Finally, we give an introduction to the study of qualitative dynamics of systems with symmetries in terms of the energy-momentum mapping.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In the sequel, we shall cite important contributions to the subject. However, for a quite exhaustive list of references and also for a lot of historical remarks, we refer the reader to [196] and [232].

  2. 2.

    Also called the Symplectic Slice Theorem.

  3. 3.

    See Definition 6.2.6.

  4. 4.

    The notion of momentum mapping has a long history, see [309] and [194].

  5. 5.

    If a momentum mapping J is fixed, we may include it in the tuple, thus writing (M,ω,Ψ,J).

  6. 6.

    If Ψ is a right action, J is a homomorphism.

  7. 7.

    Since is an initial submanifold of \(\mathfrak{g}^{\ast}\), J restricts to a smooth mapping , denoted by the same symbol.

  8. 8.

    And δ is called the coboundary operator.

  9. 9.

    Note that this decomposition need not be orthogonal with respect to the G m -invariant scalar product chosen above. If one wants to have an orthogonal Witt-Artin decomposition, one has to redefine the original scalar product by choosing a scalar product on each component and taking the orthogonal direct sum.

  10. 10.

    When working with scalar products, this would require the scalar product on \({\rm T}_{\varPsi _{g}(m_{0})} M\) to be defined by \(\langle\varPsi_{g^{-1}}' \cdot, \varPsi_{g^{-1}}' \cdot \rangle\), which makes sense, because 〈⋅,⋅〉 is \(G_{m_{0}}\)-invariant.

  11. 11.

    Alternatively, one may observe that, on Killing vector fields, \((\iota_{\mu}^{\ast}\omega)_{m}\) coincides with the pull-back of ω to the orbit Gm and apply Corollary 10.1.5.

  12. 12.

    In the sequel, for convenience, we write VV m .

  13. 13.

    Induced by the injection \(\mathfrak{g}_{m} \to \mathfrak{g}\).

  14. 14.

    As before, for simplicity we denote HG m .

  15. 15.

    The authors of [232] call this statement Sjamaar’s principle, because it first appeared in the thesis of Sjamaar [274] in the context of compact group actions and zero level reduction.

  16. 16.

    Note that \(\mathfrak{h}^{0}\) coincides with the subspace of H-invariant elements of the annihilator of \(\mathfrak{h}\) in \(\mathfrak{g}\).

  17. 17.

    Which need not be equivariant, see Remark 10.5.8/ 2.

  18. 18.

    Here, a subtlety occurs: whereas J −1(μ) can be simply viewed as a topological subspace of M, has to be endowed with the initial topology induced by the mapping J. If μ is regular and G acts freely on M, this is consistent with endowing with the initial submanifold structure provided by the Transversal Mapping Theorem 1.8.2.

  19. 19.

    A Poisson space is a topological space together with a Poisson algebra of continuous functions.

  20. 20.

    More precisely, we have faithful representations of these Lie algebras in the Poisson algebra of smooth functions on phase space.

  21. 21.

    We use the simplified notation for the element of \(\mathfrak {so}(3)\) corresponding to the vector .

  22. 22.

    A pair (L,ω), fulfilling this differential equation, is called a Lax pair and the equation is called Lax equation, see Sect. 11.2.

  23. 23.

    With the gravitational acceleration set equal to 1.

  24. 24.

    A subset of ℝn defined by equations and inequalities is said to be semialgebraic.

  25. 25.

    This is part of a research program which aims at developing a non-perturbative approach to quantum gauge theory in the Hamiltonian framework, with special attention paid to the role of non-generic gauge orbit strata [144, 161164], see also [254256].

  26. 26.

    See [161].

  27. 27.

    In particular, \({\hat{P}}\) is an orbifold.

  28. 28.

    Cf. Remark 6.6.2/5.

  29. 29.

    Resetting \(H = \tilde{H}\) and \(J = \tilde{J}\).

References

  1. Abraham, R., Marsden, J.E.: Foundations of Mechanics. Benjamin-Cummings, Reading (1978)

    MATH  Google Scholar 

  2. Arms, J.M., Cushman, R., Gotay, M.J.: A universal reduction procedure for Hamiltonian group actions. In: Ratiu, T.S. (ed.) The Geometry of Hamiltonian Systems, pp. 33–51. Springer, Berlin (1991)

    Chapter  Google Scholar 

  3. Bates, L., Lerman, E.: Proper group actions and symplectic stratified spaces. Pac. J. Math. 181, 201–229 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Charzynski, Sz., Kijowski, J., Rudolph, G., Schmidt, M.: On the stratified classical configuration space of lattice QCD. J. Geom. Phys. 55, 137–178 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Charzynski, Sz., Rudolph, G., Schmidt, M.: On the topology of the reduced classical configuration space of lattice QCD. J. Geom. Phys. 58, 1607–1623 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Cordani, B.: The Kepler Problem. Birkhäuser, Basel (2003)

    Book  MATH  Google Scholar 

  7. Cushman, R.H., Bates, L.M.: Global Aspects of Classical Integrable Systems. Birkhäuser, Basel (1997)

    Book  MATH  Google Scholar 

  8. Fischer, E., Rudolph, G., Schmidt, M.: A lattice gauge model of singular Marsden-Weinstein reduction. Part I. Kinematics. J. Geom. Phys. 57, 1193–1213 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Florentino, C.A.A., Lawton, S.: The topology of moduli spaces of free group representations. Math. Ann. 345, 453–489 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goldstein, H.: Prehistory of the Runge-Lenz vector. Am. J. Phys. 43, 737–738 (1975)

    Article  ADS  Google Scholar 

  11. Goldstein, H.: More on the prehistory of the Runge-Lenz vector. Am. J. Phys. 44, 1123–1124 (1976)

    Article  ADS  Google Scholar 

  12. Guillemin, V., Sternberg, S.: A normal form for the momentum map. In: Sternberg, S. (ed.) Differential Geometric Methods in Mathematical Physics. Mathematical Physics Studies, vol. 6. Reidel, Dordrecht (1984)

    Google Scholar 

  13. Guillemin, V., Sternberg, S.: Variations on a Theme by Kepler. AMS Colloquium Publications, vol. 42 (1990)

    Google Scholar 

  14. Huebschmann, J.: Kähler Spaces, Nilpotent Orbits, and Singular Reduction. Mem. Am. Math. Soc., vol. 172(814) (2004)

    Google Scholar 

  15. Huebschmann, J., Rudolph, G., Schmidt, M.: A lattice gauge model for quantum mechanics on a stratified space. Commun. Math. Phys. 286, 459–494 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Kijowski, J., Rudolph, G.: On the Gauß law and global charge for QCD. J. Math. Phys. 43, 1796–1808 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Kijowski, J., Rudolph, G.: Charge superselection sectors for QCD on the lattice. J. Math. Phys. 46, 032303 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  18. Jarvis, P.D., Kijowski, J., Rudolph, G.: On the structure of the observable algebra of QCD on the lattice. J. Phys. A, Math. Gen. 38, 5359–5377 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Rudolph, G., Schmidt, M.: On the algebra of quantum observables for a certain gauge model. J. Math. Phys. 50, 052102 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  20. Kogut, J., Susskind, L.: Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D 11, 395–408 (1975)

    Article  ADS  Google Scholar 

  21. Kummer, M.: On the regularization of the Kepler problem. Commun. Math. Phys. 84, 133–152 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  22. Kustaanheimo, P., Stiefel, E.: Perturbation theory of Kepler motion based on spinor regularization. J. Reine Angew. Math. 218, 609–636 (1965)

    MathSciNet  Google Scholar 

  23. Libermann, P., Marle, C.-M.: Symplectic Geometry and Analytical Mechanics. Reidel, Dordrecht (1987)

    Book  MATH  Google Scholar 

  24. Ligon, T., Schaaf, M.: On the global symmetry of the classical Kepler problem. Rep. Math. Phys. 9, 281–300 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Marle, C.-M.: Normal forms generalizing action-angle coordinates for Hamiltonian actions of Lie groups. Lett. Math. Phys., 7, 55–62 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Marle, C.-M.: Le voisinage d’une orbite d’une action hamiltonienne d’un groupe de Lie. In: Dazord, P., Desolneux-Moulis, N. (eds.) Séminaire Sud-Rhodanien de Geometrie II, pp. 19–35 (1984)

    Google Scholar 

  27. Marle, C.-M.: Modèle d’action hamiltonienne d’un groupe de Lie sur une variété symplectique. Rend. Semin. Mat. (Torino) 43(2), 227–251 (1985)

    MathSciNet  MATH  Google Scholar 

  28. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Texts in Applied Mathematics, vol. 17. Springer, Berlin (1999)

    MATH  Google Scholar 

  29. Marsden, J.E., Weinstein, A.: Reduction of symplectic manifolds with symmetries. Rep. Math. Phys. 5, 121–130 (1974)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Marsden, J.E., Weinstein, A.: Some comments on the history, theory and applications of symplectic reduction. In: Landsman, N.P., Pflaum, M.J., Schlichenmaier, M. (eds.) Quantization of Singular Symplectic Quotients. Progress in Mathematics, vol. 198, pp. 1–19. Birkhäuser, Basel (2001)

    Chapter  Google Scholar 

  31. Meyer, K.R.: Symmetries and integrals in mechanics. In: Peixoto, M.M. (ed.) Dynamical Systems, pp. 259–273. Academic Press, San Diego (1973)

    Google Scholar 

  32. Moser, J.: Regularization of Kepler’s problem and the averaging method on a manifold. Commun. Pure Appl. Math. 23, 609–636 (1970)

    Article  ADS  MATH  Google Scholar 

  33. Ortega, J.-P., Ratiu, T.S.: Momentum Maps and Hamiltonian Reduction. Progress in Mathematics, vol. 222. Birkhäuser, Basel (2004)

    MATH  Google Scholar 

  34. Pflaum, M.J.: Analytic and Geometric Study of Stratified Spaces. Lecture Notes in Mathematics, vol. 1768. Springer, Berlin (2001)

    MATH  Google Scholar 

  35. Procesi, C.: Lie Groups. An Approach Through Invariants and Representations. Springer, Berlin (2007)

    MATH  Google Scholar 

  36. Rudolph, G., Schmidt, M., Volobuev, I.P.: Classification of gauge orbit types for SU(n)-gauge theories. Math. Phys. Anal. Geom. 5, 201–241 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rudolph, G., Schmidt, M., Volobuev, I.P.: Partial ordering of gauge orbit types for SU(n)-gauge theories. J. Geom. Phys. 42, 106–138 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Rudolph, G., Schmidt, M., Volobuev, I.P.: On the gauge orbit space stratification: a review. J. Phys. A, Math. Gen. 35, R1–R50 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Sjamaar, R.: Singular orbit spaces in Riemannian and symplectic geometry. Ph.D. thesis, Rijksuniversiteit te Utrecht (1990)

    Google Scholar 

  40. Sjamaar, R., Lerman, E.: Stratified symplectic spaces and reduction. Ann. Math. 134, 375–422 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  41. Smale, S.: Topology and mechanics I. Invent. Math. 10, 305–331 (1970)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Smale, S.: Topology and mechanics II. Invent. Math. 11, 45–64 (1970)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Vivarelli, M.: The KS-transformation in hypercomplex form. Celest. Mech. 29, 45–50 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Weinstein, A.: Sophus Lie and symplectic geometry. Expo. Math. 1, 95–96 (1983)

    MATH  Google Scholar 

  45. Weyl, H.: The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton (1939)

    Google Scholar 

  46. Whitehead, J.H.C.: Certain equations in the algebra of a semi-simple infinitesimal group. Quart. J. Math. Oxford 8, 220–237 (1932)

    Article  Google Scholar 

  47. Woodhouse, N.M.J.: Geometric Quantization. Clarendon Press, Oxford (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rudolph, G., Schmidt, M. (2013). Symmetries. In: Differential Geometry and Mathematical Physics. Theoretical and Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5345-7_10

Download citation

Publish with us

Policies and ethics