Skip to main content

Applications of EPR in the Environmental Sciences

  • Chapter
Book cover EPR of Free Radicals in Solids II

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 25))

Abstract

Free radicals may be used as molecular probes of porous media and reactive surfaces, either as relatively stable species (nitroxides) studied by conventional EPR, or transient radicals formed by the addition of muonium (a radioactive hydrogen atom with a positive muon as its nucleus) to unsaturated sorbed precursor molecules and studied by the collective methods of MuSR (μSR). Porous solid materials, representative of those found in the environment, specifically: clays, porous carbon, silica-gel, zeolites, ice, and asbestos materials have been thus studied and motional correlation times and activation energies for reorientation of molecular radicals on their surfaces determined. The results are interpreted in terms of sorption within the pores and the interaction with specific surface sites in these materials. Direct measurements by EPR of radicals sampled directly from the atmosphere are mentioned, and the role of radical species in the toxicity of silica, coal and asbestos particles is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rhodes CJ (2011) Electron spin resonance, part 1: a diagnostic method in the biomedical sciences. Sci Prog 94:16–96

    Article  CAS  Google Scholar 

  2. Finlayson-Pitts BJ, Pitts JN Jr. (2000) Chemistry of the upper and lower atmosphere. Academic Press, London

    Google Scholar 

  3. Rhodes CJ, Dintinger TC, Reid ID, Scott CA (2000) Mobility of dichloroethyl radicals sorbed in kaolin and in silica. Magn Reson Chem 38:281–287

    Article  CAS  Google Scholar 

  4. Walker DC (1983) Muon and muonium chemistry. Cambridge University Press, Cambridge

    Google Scholar 

  5. Roduner E (1988) The positive muon as a probe in free radical chemistry. Lecture Notes in Chemistry. Springer, Heidelberg

    Google Scholar 

  6. Carrington A, McLachlan AD (1979) Introduction to magnetic resonance. Chapman and Hall, London

    Google Scholar 

  7. Harris RK (1983) Nuclear magnetic resonance spectroscopy. Pitman, Melbourne

    Google Scholar 

  8. Rhodes CJ, Dintinger TC, Scott CA (2000) Rates of motion for free radicals in zeolites as directly measured by longitudinal field muon spin relaxation. Magn Reson Chem 38:62–65

    Article  CAS  Google Scholar 

  9. Rhodes CJ, Dintinger TC, Scott CA (2000) Sorption of benzene in cation-exchanged zeolite X, as measured by longitudinal field muon spin relaxation (LF-MuSRx). Magn Reson Chem 38:729–737

    Article  CAS  Google Scholar 

  10. Rhodes CJ, Dintinger TC (2011) Radiolabelling measurements of free radicals derived from aromatic volatile organic compounds (VOCs) adsorbed in zeolite nanomaterials to and above saturation loadings. Prog React Kinet Mech 36: in press

    Google Scholar 

  11. Rhodes CJ, Reid ID (2002) A radiolabelling study of radicals derived from benzene, toluene and benzaldehyde sorbed in model environmental carbon. Spectrochim Acta A 58:1209–1217

    Article  Google Scholar 

  12. Rhodes CJ, Dintinger TC, Reid ID, Scott CA (2000) Spin-labelling studies of benzene sorbed in carbon particles using muonium: a molecular view of sorption by environmental carbons. Magn Reson Chem 38:S58-S64

    Article  CAS  Google Scholar 

  13. Rhodes CJ (2006) Radiolabelling measurements of radicals derived from terpenoid volatile organic compounds (VOCs) adsorbed in porous carbon. Prog React Kinet Mech 31:159–188

    Article  CAS  Google Scholar 

  14. Rhodes CJ, Reid ID, Zimmermann U unpublished results.

    Google Scholar 

  15. Rhodes CJ, Reid ID, Zimmermann U (2002) Muonium addition to DMPO and PBN sorbed in silica-gel. Chem Comm 1092–1093

    Google Scholar 

  16. Roduner E (1993) Polarized positive muons probing free radicals – a variant of magnetic resonance. Chem Soc Rev 22:337–346

    Article  CAS  Google Scholar 

  17. Roduner E, Schwager M, Shelley M (1995) Muon spin resonance of radicals on surfaces. In: Lund A, Rhodes CJ (eds) Radicals on surfaces. Kluwer, Dordrecht

    Google Scholar 

  18. Cox SFJ (1998) Muon spin relaxation studies of interstitial and molecular motion. Solid State Nucl Magn Reson 11:103–121

    Article  CAS  Google Scholar 

  19. Cox SFJ, Sivia DS (1997) Spin-lattice relaxation in hyperfine-coupled systems: applications to interstitial diffusion and molecular dynamics. Appl Magn Reson 12:213–226

    Article  CAS  Google Scholar 

  20. Jayasooriya UA, Stride JA, Aston GM, Hopkins GA, Cox SFJ, Cottrell SP, Scott CA (1997) Muon spin relaxation as a probe of molecular dynamics of organometallic compounds. Hyperfine Interact 106:27–32

    Article  CAS  Google Scholar 

  21. Jayasooriya UA, Aston GM,Stride JA (1997) Molecular dynamics of organometallic compounds using muSR. Appl Magn Reson 13:165–171

    Article  CAS  Google Scholar 

  22. Rhodes CJ, Dintinger TC, Morris H, Scott CA (2002) Molecular motion in some radiolabelled dipeptides: a muon spin relaxation study. Magn Reson Chem 40:421–423

    Article  CAS  Google Scholar 

  23. Clayden NJ, Jayasooriya UA, Cottrell SP (1999) Dynamics of dioleoyl phosphatidylcholine by muon spin relaxation. Phys Chem Chem Phys 1:4379–4382

    Article  CAS  Google Scholar 

  24. Clayden NJ, Jayasooriya UA, Stride JA, King P (2000) Dynamics of polyurethane elastomers by muon spin relaxation. Polymer 41:3455–3461

    Article  CAS  Google Scholar 

  25. Christides C, Cox SFJ, David WIF, Macrae RM, Prasides K (1993) C-60 molecular dynamics studied by muon spin relaxation. J Chim Phys 90:663–669

    CAS  Google Scholar 

  26. Van Dingenen R, Jensen NR, Hjorth J, Raes F (1994) Peroxynitrite formation during the daytime oxidation of dimethylsulfide – its role as a reservoir species for aerosol. J Atmos Chem 18:211–237

    Article  Google Scholar 

  27. Wuebbles DJ (1983) Chlorocarbon emission scenarios – potential impact on stratospheric ozone. J Geophys Res 88:1433–1443

    Article  CAS  Google Scholar 

  28. Tegen I, Fung I (1994) Modeling of mineral dust in the atmosphere – sources, transport and optical thickness. J Geophys Res 99:22897–22914

    Article  Google Scholar 

  29. Townsend RP (1980) Properties and applications of zeolites. Chemical Society, London

    Google Scholar 

  30. Lund A, Rhodes CJ (1985) Radicals on surfaces. Kluwer, Dordrecht

    Google Scholar 

  31. Laszlo P (1987) Chemical reactions in clays. Science 233:1473–1477

    Article  Google Scholar 

  32. Jacobs PH, Forstner U (1999) Concept of subaqueous capping of contaminated sediments with active barrier systems (ABS) using natural and modified zeolites. Water Res 33:2083–2087

    Article  CAS  Google Scholar 

  33. Hester RH, Harrison RM (1995) Volatile organic compounds in the atmosphere. Royal Society of Chemistry, Cambridge

    Google Scholar 

  34. Clarke JKA, Darcy R, Hegarty BF, O’Donoghue E, Amir-Ebrahimi V, Rooney JJ (1986) Free radicals in dimethyl ether on H-ZSM-5 zeolite – a novel dimension of heterogeneous catalysis. J Chem Soc Chem Commun 425–436

    Google Scholar 

  35. Heming M,.Roduner E (1987) Formation and dynamics of a SiO2 adsorbed radical absorbed by muon spin rotation. Surf Sci 189:535–542 (1987)

    Article  Google Scholar 

  36. Rhodes CJ, Roduner E, Reid ID (1993) First direct observation of neutral radicals in a zeolite at ambient temperature. J Chem Soc Chem Commun 512–513

    Google Scholar 

  37. Rhodes CJ, Butcher EC, Morris H, Reid ID (1995) Mobility of radicals in zeolite catalysts: molecular motion studied by muon spectroscopy. Magn Reson Chem 33:S134-S146

    Article  CAS  Google Scholar 

  38. Kochi JK (1975) Configurations and conformations of transient alkyl radicals in solution by electron spin resonance spectroscopy. Adv Free Rad Chem 5:189–317

    CAS  Google Scholar 

  39. Rhodes CJ, Symons MCR (1988) The formation of β-muonium-substituted cyclopentyl and cycloheptyl radicals, and the significance of the A’μ/AH isotope ration in relation to the conformations of muonium-substituted alkyl radicals. J Chem Soc Faraday Trans 1(84):1187–1194

    Google Scholar 

  40. Walker DC (1998) Kinetic isotope effects in solution reactions of muonium atoms as H-isotopes. J Chem Soc Faraday Trans 94:1–9

    Article  CAS  Google Scholar 

  41. Huheey JE (1978) Inorganic chemistry, principles of structure and reactivity. Harper & Row, New York

    Google Scholar 

  42. Tyrrell HJV, Harris KR (1984) Diffusion in liquids. Butterworths, London

    Google Scholar 

  43. Roduner E, Shwager M, Tregenna-Piggott P, Dilger H, Shelley M, Reid ID (1995) Dynamics of the cyclohexadienyl radical adsorbed in porous silica and NaZSM5. Ber Bunsenges Phys Chem 99:1338–1342

    CAS  Google Scholar 

  44. Karger J, Ruthven DM (1992) Diffusion in zeolites - and other microporous solids. Wiley, New York

    Google Scholar 

  45. Barrer RM (1978) Zeolites and clay minerals. Academic Press, London

    Google Scholar 

  46. Hepp MA, Ramamurthy V, Corbin DR, Dybowski C (1992) 2 H NMR invetigations of ion molecule interactions of aromatics included in zeolites. J Phys Chem 96:2629–2632

    Article  CAS  Google Scholar 

  47. Rhodes CJ, Hinds CS, Reid ID, unpublished results

    Google Scholar 

  48. Roduner E (1990) Radical reorientation dynamics studied by positive-muon avoided level-crossing resonance. Hyperfine Ineract 65:857–871

    Article  Google Scholar 

  49. Harrison SR, Pilkington PS, Sutcliffe LH (1984) Electron spin resonance spectroscopy, stability and spin-probe properties of dithiazolyl, dithiadiazolyl, benzodithiazolyl and disulfenimidyl free radicals. J Chem Soc Faraday Trans1 80:669–689

    Google Scholar 

  50. Rhodes CJ, Hinds CS, Reid ID (1996) Muonium adduct of benzaldehyde: a novel probe of cation-molecule interactions in zeolite catalysts and of solvation and electronic substituent effects. J Chem Soc Faraday Trans 92: 4265–4269

    Article  CAS  Google Scholar 

  51. Nagy JB, Derouane EG, Resing HA, Ray Miller G (1983) Motions of ortho-xylenes and para-xylenes in ZSM-5 catalyst – 13 C nuclear magnetic resonance. J Phys Chem 87:833–837

    Article  CAS  Google Scholar 

  52. Eckman RR, Vega AJ (1986) Deuterium solid-state NMR study of the dynamics of molecules adsorbed by zeolites. J Phys Chem 90:4679–4683

    Article  CAS  Google Scholar 

  53. Kustanovich I, Fraenkel D, Luz Z, Vega S (1988) Dynamic properties of p-xylene adsorbed on Na-ZSM-5 by deuterium and proton magic angle sample spinning NMR. J Phys Chem 92:4134–4141

    Article  CAS  Google Scholar 

  54. Rhodes CJ, Reid ID,Jackson RA (1997) Muonium adducts of benzaldehyde: structural correlation with nitroxides. Hyperfine Interact 106:193–201

    Article  CAS  Google Scholar 

  55. Rhodes CJ (2006) Studies of radio-labelled free-radicals derived from a VOC (volatile organic compound), benzaldehyde, adsorbed in cation-exchanged zeolite X. Prog React Kinet Mech 31:139–158

    Article  CAS  Google Scholar 

  56. Bansal RC, Donnet JB, Stoeckli F (1988) Active carbon. Marcel Dekker, Inc., New York

    Google Scholar 

  57. Roduner E, Brinkman GA, Louwrier PWF (1982) Muonium substituted organic free radicals in liquids – muon electron hyperfine coupling-constants and the selectivity of formation of methyl-substituted and fluorine-substituted cyclohexadienyl-type radicals. Chem Phys 73:117–130

    Article  CAS  Google Scholar 

  58. Reid ID, Azuma T, Roduner, E (1990) Probing the behaviour of surface-adsorbed free radicals using ALC-MuSR. Hyperfine Interact 65:879–889

    Article  Google Scholar 

  59. West RC (1985) CRC handbook of chemistry and physics, 66th edn. CRC Press, Boca Raton

    Google Scholar 

  60. Aston GM, Stride JA, Jayasooriya UA, Reid ID (1997) The hyperfine coupling tensors of muonated radicals in single-crystal benzophenone. Hyperfine Interact 106:157–162

    Article  CAS  Google Scholar 

  61. Rhodes CJ, Webster BC (1993) First observation of muoxyisopropyl radicals in a zeolite: Me2COMu in NaX. J Chem Soc Faraday Trans 1283–1284

    Google Scholar 

  62. Keyser LF, Leu MT (1993) Surface-areas and porosities of ice-films used to simulate stratospheric clouds. J Colloid Interface Sci 155:137–145

    Article  CAS  Google Scholar 

  63. Mihelcic D, Musgen, DKP, Patz HW, Volz-Thomas A (1993) Simultaneous measurements of peroxy and nitrate radicals at Schauinsland. J Atm Chem 16:313–335

    Article  CAS  Google Scholar 

  64. Rhodes CJ (2000) Toxicology of the human environment - the critical role of free radicals. Taylor & Francis, London

    Google Scholar 

  65. Gulumian, M., Bhoolia, DJ, Theodorou, P, Rollin, HB, Pollak H, and Vanwyk JA.(1993) Parameters which determine the activity of the transition-metal iron in crocidolite asbestos – ESR, Mossbauer spectroscopic and iron mobilization studies. South Afr J Sci 89:405–409

    CAS  Google Scholar 

  66. Gulumian, M, et al. (1993) ESR and Mossbauer studies on detoxified crocidolite – mechanism of reduced toxicity. J Inorg Biochem 50:133–143

    Article  CAS  Google Scholar 

  67. Gulumian M, Nkosibomvu ZL, Channa K, Pollak H (1997) Can microwave radiation at high temperatures reduce the toxicity of fibrous crocidolite asbestos? Env Health Perspec 105:1041–1044

    Google Scholar 

  68. Ghio AJ, Kadiiska MB, Xiang QH, Mason RP (1998) In vivo evidence of free radical formation after asbestos instillation: an ESR spin trapping investigation. Free Rad Biol Med 24:11–17

    Article  CAS  Google Scholar 

  69. Ottaviani MF, Venturi F (1996) Physicochemical study on the adsorption properties of asbestos. 1. EPR study on the sdsorption of organic radicals. J Phys Chem 100:265–273

    Article  CAS  Google Scholar 

  70. Dalal, NS, Newman J, Pack D, Leonard S, Vallyathan V (1995) Hydroxyl radical generation by coal-mine dust – possible implication to coal-workers pneumoconiosis (CWP). Free Rad Biol Med 18: 11–20

    Article  CAS  Google Scholar 

  71. Shi XL et al (1995) Antioxidant activity of tetrandrine and its inhibition of quartz-induced lipid-peroxidation. J Toxicol Environ Health 46:233–248

    Article  CAS  Google Scholar 

  72. Shi XL, Flynn DC, Porter DW, Leonard SS., Vallyathan V, Castranova V (1997) Efficacy of taurine based compounds as hydroxyl radical scavengers in silica induced peroxidation. Ann Clin Lab Sci 27:365–374

    CAS  Google Scholar 

  73. Chen WM (2003) In: Lund A, Shiotani M (eds) EPR of free radicals in solids, trends in methods and applications. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

Download references

Acknowledgments

I thank my former colleagues, Ivan Reid, Tim Dintinger, Harry Morris, Chantal Hinds, Estelle Butcher, Chris Scott, Ulrich Zimmerman, Steve Cox, Brian Webster and Jas Jayasooriya either for their actual participation in the experiments described, or for their helpful thoughts or both. I further acknowledge financial support from the Leverhulme Trust, the Paul Scherrer Institute, the European Union, the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom, Unilever Research and The Royal Society of Chemistry (for a J.W.T. Jones Travelling Fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Rhodes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rhodes, C.J. (2012). Applications of EPR in the Environmental Sciences. In: Lund, A., Shiotani, M. (eds) EPR of Free Radicals in Solids II. Progress in Theoretical Chemistry and Physics, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4887-3_7

Download citation

Publish with us

Policies and ethics