Skip to main content

Molecule-Based Exchange-Coupled High-Spin Clusters: Conventional, High-Field/High-Frequency and Pulse-Based Electron Spin Resonance of Molecule-Based Magnetically Coupled Systems

  • Chapter
EPR of Free Radicals in Solids II

Abstract

Syntheses and magnetic functionalities of exchange-coupled magnetic systems in a controlled fashion of molecular basis have been the focus of the current topics in chemistry and materials science; particularly extremely large spins in molecular frames and molecular high-spin clusters have attracted much attention among the diverse topics of molecule-based magnetics and high spin chemistry. Magnetic characterizations of molecule-based exchange-coupled high-spin clusters are described in terms of conventional as well as high-field/high-frequency ESR spectroscopy. Off-principal-axis extra lines as a salient feature of fine-structure ESR spectroscopy in non-oriented media are emphasized in the spectral analyses. Pulse-ESR-based two-dimensional electron spin transient nutation spectroscopy applied to molecular high-spin clusters is also dealt with, briefly. Solution-phase fine-structure ESR spectroscopy is reviewed in terms of molecular magnetics. In addition to finite molecular high-spin clusters, salient features of molecule-based low-dimensional magnetic materials are dealt with. Throughout the chapter, electron spin resonance for high-spin systems is treated in a general manner in terms of theory. Hybrid eigenfield method is formulated in terms of direct products, and is described as a powerful and facile approach to the exact numerical calculation of resonance fields and transition probabilities for molecular high spin systems. Exact analytical expressions for resonance fields of high spin systems in their principal orientations are for the first time given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Standard and advanced textbooks. (a) Bolton JR, Wertz JE (1972) Electron paramagnetic resonance. Elementary theory and practical applications. McGraw-Hill, Inc., New York; (b) Weil JA, Bolton JR, Wertz JE (1994) Electron paramagnetic resonance. Elementary theory and practical applications. Wiley, Inc., New York; (c) Atherton NM (1993) Principles of electron spin resonance. Ellis Horwood Ltd., New York; Atherton NM (1973) Electron spin resonance theory and applications. Ellis Horwood Ltd., Chichester; (d) Pilbrow JR (1990) Transition ion electron paramagnetic resonance. Clarendon Press, Oxford; (e) Kuwata K, Itoh K (1978) Introduction to electron spin resonance. Nankou-Dou Inc., Tokyo; (f) Bencini A, Gatteschi D (1990) Electron paramagnetic resonance of exchange coupled systems. Springer, Berlin/Heidelberg; (g) Weltner W Jr (1983) Magnetic atoms and molecules. Scientific and Academic Editions, New York; (h) Date M (1978) Electron spin resonance. Baifuh-Kan, Tokyo

    Google Scholar 

  2. Monographs and books for molecule-based magnetism. (a) Gatteschi D, Kahn O, Miller JS (eds) (1991) Molecular magnetic materials. Kluwer, Dordrecht; (b) Kahn O (1993) Molecular magnetism. Wiley-VCH, New York; (c) Takui T (1994) Organic molecule-based magnetic materials. In: Handbook of opto-electronic organic functionality materials. Asakura Inc., Tokyo; (d) Lahti PM (ed) (1999) Magnetic properties of organic materials. Marcel Dekker Inc., New York; (e) Itoh K, Kinoshita M (eds) (2000) Molecular magnetism: new magnetic materials. Kodansha, Tokyo, Gordon & Breach, Amsterdam; (f) Boca R (1999) Theoretical foundations of molecular magnetism. Elsevier, Amsterdam. Book (f) is the most comprehensive treatise on inorganic-molecule-based magnetism from the group-theoretical side after Ref. [1f]; (g) Takui T, Sato K, Shiomi D, Itoh K (1999) Chap. 11. In Lahti PM (ed) Magnetic properties of organic materials. Marcel Dekker Inc., New York

    Google Scholar 

  3. (a) Shiomi D, Nishizawa M, Sato K, Takui T, Itoh K, Sakurai H, Izuoka A, Sugawara T (1997) A prerequisite for purely organic molecule-based ferrimagnetics: breakdown of simple classical pictures. J Phys Chem B 101:3342–3348; (b) Nishizawa M, Shiomi D, Sato K, Takui T, Itoh K, Sawa H, Kato R, Sakurai H, Izuoka A, Sugawara T (2000) Evidence for the breakdown of simple classical pictures of organic molecule-based ferrimagnetics: low-temperature crystal structure and single-crystal ESR studies of an organic heterospin system. J Phys Chem B 104:503–509; (c) Shiomi D, Sato K, Takui T (2000) Spin-spin correlation function and magnetic susceptibility of quantum ferrimagnetic spin chains as model for organic molecule-based ferrimagnetics. J Phys Chem B 104:1961–1965; (d) Shiomi D, Sato K, Takui T (2001) Quantum ferrimagnetism based on organic biradicals with a spin-0 ground state: Numerical calculations of molecule-based ferrimagnetic spin chains. J Phys Chem B 105:2932–2938; (e) Shiomi D, Sato K, Takui T (2002) A molecular quantum description of spin alignments in molecule-based ferrimagnets: numerical calculations of thermodynamic properties. J Phys Chem A 106:2096–2103; (f) Shiomi D, Kanaya T, Sato K, Mori M, Takeda K, Takui T (2001) Single-component molecule-based ferrimagnetics. J Am Chem Soc 123:11823–11824

    Article  CAS  Google Scholar 

  4. Furukawa K, Shiomi D, Sato K, Yamano H, Takahashi H, Maeda A, Takui T (to be published)

    Google Scholar 

  5. Intramolecularly exchange-coupled organic high-spin systems are exclusively dealt with in the following chapter

    Google Scholar 

  6. Pilawa B (1999) New concepts for molecular magnets. Ann Phys (Leipzig) 8:191–254

    Article  CAS  Google Scholar 

  7. (a) Drillon M, Georges R (1981) New approach for the exchange Hamiltonian of an orbitally degenerate ground-state system (2 T 2g or 3 T 1g). Phys Rev B 24:1278–1286; (b) Drillon M, Georges R (1982) Binuclear unit (Ti2Cl9)3−: a new development for the exchange between orbitally unquenched ions. Phys Rev B 26:3882–3890; (c) Leuenberger B, Gudel HU (1984) Exchange interactions between orbitally degenerate ions in Ti2X 3−9 Ti2Cl 3−9 , Ti2Br 3−9 – a theoretical approach. Mol Phys 51:1–20

    Google Scholar 

  8. (a) Borras-Almenar JJ, Clemente-Juan JM, Coronado E, Palii AV, Tsukerblat BS (2001) Magnetic exchange interaction in clusters of orbitally degenerate ions. I. Effective Hamiltonian. Chem Phys 274:131–144; (b) Borras-Almenar JJ, Clemente-Juan JM, Coronado E, Palii AV, Tsukerblat BS (2001) Magnetic exchange interaction in clusters of orbitally degenerate ions. II. Application of the irreducible tensor operator technique. Chem Phys 274:145–163; (c) Borras-Almenar JJ, Clemente-Juan JM, Coronado E, Palii AV, Tsukerblat BS (2001) Magnetic exchange interaction in a pair of orbitally degenerate ions: Magnetic anisotropy of [Ti2Cl9]−3. J Chem Phys 114:1148–1164; (d) Overparamerization in the analysis of magnetic susceptibility is a crucial problem. Matsuoka H, Onishi H, Kubono K, Sato K, Shiomi D, Yokoi K, Takui T (to be published)

    Google Scholar 

  9. Takui T, Kita S, Ichikawa S, Teki Y, Kinoshita T, Itoh K (1989) Spin distribution of organic high-spin molecules as studied by ENDOR/TRIPLE. Mol Cryst Liq Cryst 176:67–76

    CAS  Google Scholar 

  10. (a) Kurreck H, Kirste B, Lubitz W (1988) Electron double resonance spectroscopy of radicals in solution; application to organic and biological chemistry. VCH, Weinheim; (b) Takui T (1993) Electron nuclear multiple resonance spectroscopy (Chap. 8.5). In: Molecular spectroscopy III, a monograph series of experimental chemistry, 4th edn., vol 8 (Chem Soc Jpn), Maruzen, Tokyo

    Google Scholar 

  11. Teki Y, Takui T, Itoh K (1988) General conditions for the occurrence of off-axis extra lines in powder-pattern electron-spin-resonance fine-structure. J Chem Phys 88:6134–6145

    Article  Google Scholar 

  12. Itoh K (1978) Electronic-structures of aromatic-hydrocarbons with high-spin multiplicities in the electronic ground-state. Pure Appl Chem 50:1251–1259; (b) Takui T (1973) PhD, thesis. Osaka University

    Google Scholar 

  13. Judd BR (1998) Operator techniques in atomic spectroscopy. Princeton University Press, Princeton

    Google Scholar 

  14. Takui T, Itoh K (unpublished)

    Google Scholar 

  15. Yagi H, Teki Y, Takui T, Itoh K (unpublished)

    Google Scholar 

  16. Tanaka K, Sato K, Shiomi D, Takui T (to be published)

    Google Scholar 

  17. Tanaka K, Sato K, Shiomi D, Baumgarten M, Adam W, Takui T (to be published)

    Google Scholar 

  18. (a) Gersmann HM, Swalen JD (1962) Electron paramagnetic resonance spectra of copper complexes. J Chem Phys 36:3221; (b) Rollmann LD, Chan SI (1969) Quadrupole effects in electron paramagnetic resonance spectra of polycrystalline copper and cobalt complexes. J Chem Phys 50:3416–3431; (c) Ovchinnikov IV, Konstantinov VN (1978) Extra absorption peaks in EPR-spectra of systems with anisotropic g-tensor and hyperfine-structure in powders and glasses. J Magn Reson 32:179–190; (d) Itoh K, Takui T (1993) ESR in solids (Chap. 8.4). In: Molecular spectroscopy III, a monograph series of experimental chemistry, 4th edn., vol 8 (Chem Soc Jpn), Maruzen, Tokyo

    Google Scholar 

  19. Matsushita M, Momose T, Shida T, Teki Y, Takui T, Itoh K (1990) Novel organic ions of high-spin states – ESR detection of a monoanion of meta-phenylenebis(phenylmethylene). J Am Chem Soc 112:4700–4702

    Article  CAS  Google Scholar 

  20. Wang Q, Wang JS, Li Y, Wu GS (2002) ESR studies on a new phenyl t-butyl nitroxide biradical based on calyx[4] arene. In: Kawamori A, Yamauchi J, Ohta H (eds) EPR in the 21st century: basics and applications to materials, life and earth sciences. Elsevier, Boston

    Google Scholar 

  21. Scaringe RP, Hodgson DJ, Hatfield WE (1978) Coupled representation matrix of pair Hamiltonian. Mol Phys 35:701–713

    Article  CAS  Google Scholar 

  22. Nakazawa S, Sato K, Shiomi D, Takui T (unpublished)

    Google Scholar 

  23. (a) Nagata K (1972) Bussei Jap 13:149–160; (b) Nagata K (1981) Physics for random systems, Chapter 13. Bifuhkan, Tokyo

    Google Scholar 

  24. Kubo R, Tomita K (1954) A general theory of magnetic resonance absorption. J Phys Soc Jpn 9:888–919

    Article  CAS  Google Scholar 

  25. (a) Mori H (1965) Transport collective motion and Brownian motion. Prog Theor Phys 33:423–455; (b) Mori H (1966) A continued-fraction representation of the time-correlation functions. Prog Theor Phys 34:399–416; (c) Tokuyama M, Mori H (1976) Statistical-mechanical theory of random frequency modulations and generalized Brownian motions. Prog Theor Phys 55:411–429

    Article  Google Scholar 

  26. Rockenbauer A, Pilbrow J (eds) (1999) Computer simulations in EPR spectroscopy. Mol Phys Rep 26

    Google Scholar 

  27. Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Clarendon Press, Oxford

    Google Scholar 

  28. Pilbrow JR (1990) Transition ion electron paramagnetic resonance. Clarendon Press, Oxford

    Google Scholar 

  29. Alderman DW, Solum MS, Grant DM (1986) Methods for analyzing spectroscopic line-shapes – NMR solid powder patterns. J Chem Phys 84:3717–3725

    Article  CAS  Google Scholar 

  30. Mombourquette MJ, Weil JA (1992) Simulation of magnetic-resonance powder spectra. J Magn Reson 99:37–44

    CAS  Google Scholar 

  31. Galindo S, Gonzáles-Tovany L (1981) Monte-Carlo simulation of electron-paramagnetic-res of polycrystalline samples. J Magn Reson 44:250–254

    CAS  Google Scholar 

  32. Wang D, Hanson GR (1995) A new method for simulating randomly oriented powder spectra in magnetic-resonance – the sydney-opera-house (sophe) method. J Magn Reson A 117:1–8

    Article  CAS  Google Scholar 

  33. Gates KE, Griffin M, Hanson GR, Burrage K (1998) Computer simulation of magnetic resonance spectra employing homotopy. J Magn Reson 135:104–112

    Article  CAS  Google Scholar 

  34. Belford GG, Belford RL, Burkhalter JF (1973) Eigenfields – practical direct calculation of resonance fields and intensities for field-swept fixed-frequency spectrometers. J Magn Reson 11:251–265

    CAS  Google Scholar 

  35. McGregor KT, Scaringe RP, Hatfield WE (1975) EPR calculations by eigenfield method. Mol Phys 30:1925–1933

    Article  CAS  Google Scholar 

  36. Teki Y, Fujita I, Takui T, Kinoshita T, Itoh K (1994) Topology and spin alignment in a novel organic high-spin a molecule, 3,4′-bis(phenylmethylene)biphenyl, as studied by ESR and a generalized UHF hubbard calculation. J Am Chem Soc 116:11499–11505

    Article  CAS  Google Scholar 

  37. Sato K (1994) Doctoral thesis. Osaka City University, Japan

    Google Scholar 

  38. Fukuzawa TA, Sato K, Ichimura AS, Kinoshita T, Takui T, Itoh K, Lahti PM (1996) Electronic and molecular structures of quintet bisnitrenes as studied by fine-structure ESR spectra from random orientation: All the documented ZFS constants correct? Mol Cryst Liq Cryst 278:253–260; (b) Takui T (unpublished work)

    Google Scholar 

  39. Matsuoka H, Sato K, Shiomi D, Kojima Y, Hirotsu K, Furuno N, Takui T (2002) CW/pulsed ESR studies on Eu2+-doped SrAl2O4 phosphor. In: Kawamori A, Yamauchi J, Ohta H (eds) EPR in the 21st century: basics and applications to materials, life and earth sciences, Elsevier, Boston

    Google Scholar 

  40. Oda N, Nakai T, Sato K, Shiomi D, Kozaki M, Okada K, Takui T (2002) Molecular and electronic spin structures of high-spin polyphenylene-based oligonitrenes with high symmetry; a semiempirical approach to fine-structure tensors. Mol Cryst Liq Cryst 376:501–506

    CAS  Google Scholar 

  41. Sato K, Takui T, Itoh K Program software package (ESR spectral simulation and exact analytical expressions based on hybrid eigenfield approach). Osaka City University: available on request

    Google Scholar 

  42. Matsuoka H, Sato K, Shiomi D, Takui T (2003) 2-D electron spin transient nutation spectroscopy of lanthanoid ion Eu2+(8 S7/2) in a CaF2 single crystal on the basis of FT-pulsed electron spin resonance spectroscopy: transition moment spectroscopy. Appl Magn Reson 23:517–538

    Article  CAS  Google Scholar 

  43. (a) Rockenbauer A, Simon P (1973) Second-order perturbation treatment of spin Hamiltonian for low symmetry. J Magn Reson 11:217–218; (b) Iwasaki M (1974) Second-order perturbation treatment of general spin Hamiltonian in an arbitrary coordinate system. J Magn Reson 16:417–423

    Google Scholar 

  44. Takui T (1993) Electron nuclear multiple resonance spectroscopy (Chap. 8.5). In: Molecular spectroscopy III – a monograph series of experimental chemistry, 4th edn., vol 8 (Chem Soc Jpn), Maruzen, Tokyo

    Google Scholar 

  45. (a) Weil JA, Bolton JR, Wertz JE (1994) Electron paramagnetic resonance. Elementary theory and practical applications. John Wiley, New York; (b) Atherton NM (1993) Principles of electron spin resonance. Ellis Horwood Ltd., New York

    Google Scholar 

  46. Takui T (unpublished work)

    Google Scholar 

  47. Program Package, Symfonia; Bruker Analytishe Messtehnik GMBH, D-7512 Rheinstetten, FRG

    Google Scholar 

  48. Wasserman E, Snyder LC, Yager WA (1964) ESR of triplet states of randomly oriented molecules. J Chem Phys 41:1763–1772

    Article  CAS  Google Scholar 

  49. Program Package, X’Sophe; Bruker Analytishe Messtehnik GMBH, D-7512 Rheinstetten, FRG

    Google Scholar 

  50. Matta ML, Sukheeja BD, Narchal ML (1973) Exact eigensolutions for Cr3+ ion. J Magn Reson 9:121–127

    CAS  Google Scholar 

  51. Sato K, Shiomi D, Takui T (unpublished work)

    Google Scholar 

  52. Berliner LJ (ed) (1976) Spin labeling. Academic Press, New York

    Google Scholar 

  53. Berliner LJ (ed) (1979) Spin labeling II. Academic Press, New York

    Google Scholar 

  54. Likhtenstein GI (1976) Spin labeling methods in molecular biology. Wiley Interscience, New York

    Google Scholar 

  55. Eaton SS, Eaton GR (1978) Metal-nitroxyl interactions.5. Interaction of spin labels with transition-metals. Coord Chem Rev 26:207–262

    Article  CAS  Google Scholar 

  56. Eaton GR, Eaton SS (1988) Electron-paramagnetic-res studies of long-range intramolecular electron electron exchange interaction. Acc Chem Res 21:107–113

    Article  CAS  Google Scholar 

  57. Weil JA, Bolton JR, Wertz JE (1994) Electron paramagnetic resonance elementary theory and practical applications – Chapter 6. Wiley, New York

  58. Atherton NM (1993) Principles of electron spin resonance. Ellis Horwood, Chichester

    Google Scholar 

  59. Pake GE, Estle TL (1973) The physical principles of electron paramagnetic resonance. W.A. Benjamin, Reading

    Google Scholar 

  60. Salem L, Rowland C (1972) Electronic properties of diradicals. Angew Chem Int Ed Engl 11:92–111

    Article  CAS  Google Scholar 

  61. Borden WT (ed) (1982) Diradicals. Wiley, New York

    Google Scholar 

  62. Heisenberg W (1926) Mehrkörperproblem und resonanz in der quantenmechanik. Z Phys 38:411–426

    Article  Google Scholar 

  63. Dirac PAM (1926) On the theory of quantum mechanics. Proc R Soc 112A:661–677

    Google Scholar 

  64. Dirac PAM (1929) Quantum mechanics of many-electron systems. Proc R Soc 123A:714–733

    Google Scholar 

  65. Van Vleck JH (1945) On the shape of collision-broadened lines. Rev Mod Phys 17:227–236

    Article  Google Scholar 

  66. Van Vleck JH (1932) The theory of electric and magnetic susceptibilities – Chapter XII. Oxford University Press, Oxford

    Google Scholar 

  67. Arai T (1962) Exchange interaction and Heisenbergs spin Hamiltonian. Phys Rev 126:471–488

    Article  CAS  Google Scholar 

  68. Arai T (1964) Cluster expansion in Heitler-London approach to many-electron problems. Phys Rev 134A:824–840

    Article  Google Scholar 

  69. Dupeyre RM, Lemaire H, Rassat A (1965) Nitroxides.14. a stable biradical in nitroxide series. J Am Chem Soc 87:3771–3772

    Article  CAS  Google Scholar 

  70. Briere R, Dupeyre RM, Lemaire H, Morat C, Rassat A, Rey P (1965) Nitroxydes 17 – biradicaux stables du type nitroxide. Bull Soc Chim France 11:3290–3297

    Google Scholar 

  71. Nakajima A, Ohya-Nishiguchi H, Deguchi Y (1972) Magnetic properties of some iminoxyl polyradicals.3. Exchange interaction in iminoxyl biradicals. Bull Chem Soc Jpn 45:713–716

    Article  CAS  Google Scholar 

  72. Luckhurst GR (1966) Alternating linewidths. A novel relaxation process in electron resonance of biradicals. Mol Phys 10:543–550

    CAS  Google Scholar 

  73. Luckhurst GR, Pedulli GF (1970) Interpretation of biradical electron resonance spectra. J Am Chem Soc 92:4738–4739

    Article  CAS  Google Scholar 

  74. Redfield AG (1957) On the theory of relaxation processes. IBM J Res Develop 1:19–31

    Article  Google Scholar 

  75. Freed JH, Frankel GK (1963) Theory of linewidths in electron spin resonance spectra. J Chem Phys 39:326–348

    Article  CAS  Google Scholar 

  76. Freed JH, Frankel GK (1964) Alternating linewidths + related phenomena in electron spin resonance spectra of nitro-substituted benzene anions. J Chem Phys 41:699–716

    Article  CAS  Google Scholar 

  77. Hudson A, Luckhurst GR (1967) Electron resonance spectrum of a triradical. Mol Phys 13:409–416

    Article  CAS  Google Scholar 

  78. Hudson A, Luckhurst GR (1969) Electron resonance line shapes of radicals in solution. Chem Rev 69:191–225

    Article  CAS  Google Scholar 

  79. Heinzer J (1971) Fast computation of exchange-broadened isotropic ESR spectra. Mol Phys 22:167–177

    Article  CAS  Google Scholar 

  80. Heinzer J (1972) QCPE No.209; Quantum Chemistry Program Exchange, Indiana University, Bloomington

    Google Scholar 

  81. Binsch G (1968) Direct method for calculating high-resolution nuclear magnetic resonance spectra. Mol Phys 15:469–478

    Article  CAS  Google Scholar 

  82. Binsch G (1969) A unified theory of exchange effects on nuclear magnetic resonance line shapes. J Am Chem Soc 91:1304–1309

    Article  CAS  Google Scholar 

  83. Kleier DA, Binsch G (1970) General theory of exchange-broadened NMR line shapes II. Exploitation of invariance properties. J Magn Reson 3:146–160

    CAS  Google Scholar 

  84. Sankarapandi S, Chandramouli GVR, Daul C, Manoharan PT (1993) Fast computation of dynamic EPR spectra of biradicals. J Magn Reson A 103:163–170

    Article  CAS  Google Scholar 

  85. Corvaja C, DeMarchi M, Toffoletti A (1997) Conformational dynamics of triradical nitroxides as studied by EPR. Appl Magn Reson 12:1–14

    Article  CAS  Google Scholar 

  86. Gatteschi D, Kahn O, Miller JS, Palacio F (eds) (1991) Molecular magnetic materials. Kluwer Academic, Dordrecht

    Google Scholar 

  87. Iwamura H, Miller JS (eds) (1993) Mol Cryst Liq Cryst 232:1–360; 233:1–360

    Google Scholar 

  88. Miller JS, Epstein AJ (eds) (1995) Mol Cryst Liq Cryst 271:1–222; 272:1–215; 273:1–217; 274:1–211

    Google Scholar 

  89. Itoh K, Miller JS, Takui T (eds.) (1997) Mol Cryst Liq Cryst 305:1–586; 306:1–520

    Google Scholar 

  90. Kahn O (ed) (1999) Mol Cryst Liq Cryst 334:1–702 and 335:1–706

    Google Scholar 

  91. Lahti PM (ed) (1999) Magnetic properties of organic materials. Marcel Dekker, New York

    Google Scholar 

  92. Itoh K, Kinoshita M (eds) (2000) Molecular magnetism. Gordon & Breach, Amsterdam (Kodansha, Tokyo)

    Google Scholar 

  93. Kinoshita M, Turek P, Tamura M, Nozawa K, Shiomi D, Nakazawa Y, Ishikawa M, Takahashi M, Awaga K, Inabe T, Maruyama Y (1991) An organic radical ferromagnet. Chem Lett 1225–1228

    Google Scholar 

  94. Tamura M, Nakazawa Y, Shiomi D, Nozawa K, Hosokoshi Y, Ishikawa M, Takahashi M, Kinoshita M (1991) Bulk ferromagnetism in the beta-phase crystal of the para-nitrophenyl nitronyl nitroxide radical. Chem Phys Lett 186:401–404

    Article  CAS  Google Scholar 

  95. Nakazawa Y, Tamura M, Shirakawa N, Shiomi D, Takahashi M, Kinoshita M, Ishikawa M (1992) Low-temperature magnetic-properties of the ferromagnetic organic radical, p-nitrophenyl nitronyl nitroxide. Phys Rev B 46:8906–8914

    Article  CAS  Google Scholar 

  96. Buchachenko AL (1979) Organic ferromagnets. Dokl Phys Chem 244:107–109

    Google Scholar 

  97. Néel L (1948) Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann Phys 3:137–198

    Google Scholar 

  98. Shiomi D, Nishizawa M, Sato K, Takui T, Itoh K, Sakurai H, Izuoka A, Sugawara T (1997) A prerequisite for purely organic molecule-based ferrimagnetics: breakdown of simple classical pictures. J Phys Chem B 101:3342–3348

    Article  CAS  Google Scholar 

  99. Nishizawa M, Shiomi D, Sato K, Takui T, Itoh K, Sawa H, Kato R, Sakurai H, Izuoka A, Sugawara T (2000) Evidence for the breakdown of simple classical pictures of organic molecule-based ferrimagnetics: low-temperature crystal structure and single-crystal ESR studies of an organic heterospin system. J Phys Chem B 104:503–509

    Article  CAS  Google Scholar 

  100. Shiomi D, Sato K, Takui T (2000) Spin-spin correlation function and magnetic susceptibility of quantum ferrimagnetic spin chains as model for organic molecule-based ferrimagnetics. J Phys Chem B 104:1961–1965

    Article  CAS  Google Scholar 

  101. Shiomi D, Sato K, Takui T (2001) Quantum ferrimagnetism based on organic biradicals with a spin-0 ground state: numerical calculations of molecule-based ferrimagnetic spin chains. J Phys Chem B 105:2932–2938

    Article  CAS  Google Scholar 

  102. Shiomi D, Sato K, Takui T (2002) A molecular quantum description of spin alignments in molecule-based ferrimagnets: numerical calculations of thermodynamic properties. J Phys Chem A 106:2096–2103

    Article  CAS  Google Scholar 

  103. Shiomi D, Nishizawa M, Kamiyama K, Hase S, Kanaya T, Sato K, Takui T (2001) Molecular design of organic ferrimagnets. Synth Met 121:1810–1811

    Article  CAS  Google Scholar 

  104. Hase S, Shiomi D, Sato K, Takui T (2001) Phenol-substituted nitronyl nitroxide biradicals with a triplet (S = 1) ground state. J Mater Chem 11:756–760

    Article  CAS  Google Scholar 

  105. Shiomi D, Ito K, Nishizawa M, Sato K, Takui T, Itoh K (1999) Magnetic coupling of nitronyl nitroxide-based biradical salts. Synth Met 103:2271–2272

    Article  CAS  Google Scholar 

  106. Shiomi D, Nishizawa M, Kamiyama K, Hase S, Kanaya T, Sato K, Takui T (2001) Molecular design of organic ferrimagnets. Synth Met 121:1810–1811

    Article  CAS  Google Scholar 

  107. Shiomi D, Kanaya T, Sato K, Mito M, Takeda K, Takui T (2001) Single-component molecule-based ferrimagnetics. J Am Chem Soc 123:11823–11824

    Article  CAS  Google Scholar 

  108. Kanaya T, Shiomi D, Sato K, Takui T (2001) Single-component ferrimagnetics: triplet-doublet composite molecules as constituents of purely organic molecule-based ferrimagnets. Polyhedron 20:1397–1402

    Article  CAS  Google Scholar 

  109. Shiomi D, Sato K, Takui T to be reported elsewhere

    Google Scholar 

  110. McWeeny R (1970) Spins in chemistry. Academic Press, New York/London

    Google Scholar 

  111. McWeeny R, Sutcliffe BT (1969) Methods of molecular quantum mechanics. Academic Press, New York/London

    Google Scholar 

  112. Kaneda C, Shiomi D, Sato K, Takui T (2003) A stable organic triradical with truncated pi-conjugation as a model for single-component organic molecule-based ferrimagnetics. Polyhedron 22:1809–1816

    Article  CAS  Google Scholar 

  113. Shiomi D, Kaneda C, Sato K, Takui T (2003) Hyperfine structure of ESR spectra as a probe for Heisenberg exchange couplings in nitroxide triradicals serving as building blocks for molecule-based ferrimagnets. Appl Magn Reson 23:495–506

    Article  CAS  Google Scholar 

  114. Bencini A, Gatteschi D (1990) Electron paramagnetic resonance of exchange coupled systems. Springer: Berlin

    Google Scholar 

  115. Hay PJ, Thibeault JC, Hoffmann R (1975) Orbital interactions in metal dimer complexes. J Am Chem Soc 97:4884–4889

    Article  CAS  Google Scholar 

  116. Kahn O (1985) Dinuclear complexes with predictable magnetic-properties. Angew Chem Int Ed 24:834–850

    Article  Google Scholar 

  117. Kitagawa S, Okubo T, Kawata S, Kondo M, Katada M, Kobayashi H (1995) An oxalate-linked copper(II) coordination polymer, [Cu2(oxalate)2(pyrazine)3]n, constructed with two different copper units: x-ray crystallographic and electronic structures. Inorg Chem 34:4790–4796

    Article  CAS  Google Scholar 

  118. Drew MGB, Fowless GWA, Lewis DF (1969) Structure of mu-oxalatobis(oxalato) hexaquodititatnium(3) tetrahydrate – a pentagonal-bipyramidal titanium complex. J Chem Soc Chem D Chem Commun 876–877

    Google Scholar 

  119. Julve M, Kahn O (1983) Synthesis, magnetic properties and EPR of μ-oxalatotetrakis(acetylacetonato)diiron(III). Inorg Chim Acta 76:39–41

    Article  Google Scholar 

  120. Feist M, Troyanov S, Kemnitz E (1996) A binuclear chloroferrate anion with octahedral metal coordination: octachloro(μ-oxalato)diferrate(III), [(FeCl4)2(μ-C2O4)]4−. Inorg Chem 35:3067–3068

    Article  CAS  Google Scholar 

  121. Masters VM, Sharrad CA, Bernhardt PV, Gahan LR, Moubaraki B, Murray KS (1998) Synthesis, structure and magnetism of the oxalato-bridged chromium(III) complex [NBu4n]4[Cr-2 (ox)5]∙2CHCl3. J Chem Soc Dalton Trans 413–416

    Google Scholar 

  122. Triki S, Berezovsky F, Pala JS, Gomez-Garcia CJ, Coronado E, Costuas K, Halet JF (2001) New charge transfer salts based on bis(ethylenedithio)tetrathiafulvalene (ET) and ferro- or antiferromagnetic oxalato-bridged dinuclear anions: syntheses, structures and magnetism of ET5[MM‘(C2O4)(NCS)8] with MM‘= CrIIIFeIII, CrIIICrIII. Inorg Chem 40:5127–5132

    Article  CAS  Google Scholar 

  123. Triki S, Berezovsky F, Pala JS, Coronado E, Gomez-Garcia CJ, Clemente JM, Riou A, Molinie P (2000) Oxalato-bridged dinuclear complexes of Cr(III) and Fe(III): synthesis, structure, and magnetism of [(C2H5)4 N]4[MM‘(ox)(NCS)8] with MM‘= CrCr, FeFe, and CrFe. Inorg Chem 39:3771–3776

    Article  CAS  Google Scholar 

  124. Viswanathan R, Palaniandavar M, Prabakaran P, Muthiah PT (1998) Structure, spectra, and redox behavior of a μ-dimethoxo-bridged diferric complex with an asymmetric Fe2O2 bridge. Inorg Chem 37:3881–3884

    Article  CAS  Google Scholar 

  125. Unamuno I, Gutierrez-Zorrilla JM, Luque A, Roman P, Lezama L, Calvo R, Rojo T (1998) Ion-pair charge-transfer complexes based on (o-phenylenebis(oxamato))cuprate(II) and cyclic diquaternary cations of 1,10-phenanthroline and 2,2′-bipyridine: synthesis, crystal structure, and physical properties. Inorg Chem 37:6452–6460

    Article  CAS  Google Scholar 

  126. Ferrer S, van Koningsbruggen PJ, Haasnoot JG, Reedijk J, Kooijman H, Spek AL, Lezama L, Arif AM, Miller JS (1999) Dimetallic complexes derived from a novel dinucleating chelating symmetric triazole ligand; crystal structure, magnetic properties and ESR study of bis[mu-3,5-diacetylamino-1,2,4-triazolato-O′,N-1,N-2,O ‘’]bis[(nitrato)(aqua)copper(II)]. J Chem Soc Dalton Trans 4269–4276

    Google Scholar 

  127. Horner O, Anxolabehere-Mallart E, Charlot MF, Tchertanov L, Guilhem J, Mattioli TA, Boussac A, Girerd JJ (1999) A new manganese dinuclear complex with phenolate ligands and a single unsupported oxo bridge. Storage of two positive charges within less than 500 mV. Relevance to photosynthesis. Inorg Chem 38:1222–1232

    Article  CAS  Google Scholar 

  128. Asaji T, Wada K, Horiuchi K, Chiba T (1999) Single crystal EPR and polycrystalline 1 H NMR study of a ferromagnetically coupled dinuclear copper(II) complex in [P(C6H5)4][CuCl3]. Phys Chem Chem Phys 1:801–805

    Article  CAS  Google Scholar 

  129. Weder JE, Hambley TW, Kennedy BJ, Lay PA, MacLachlan D, Bramley R, Delfs CD, Murray KS, Moubaraki B, Warwick B, Biffin JR, Regtop HL (1999) Anti-inflammatory dinuclear copper(II) complexes with indomethacin. synthesis, magnetism and EPR spectroscopy. Crystal structure of the N,N-dimethylformamide adduct. Inorg Chem 38:1736–1744

    Article  CAS  Google Scholar 

  130. Ohtsu H, Shimazaki Y, Odani A, Yamauchi O, Mori W, Itoh S, Fukuzumi S (2000) Synthesis and characterization of imidazolate-bridged dinuclear complexes as active site models of Cu,Zn-SOD. J Am Chem Soc 122:5733–5741

    Article  CAS  Google Scholar 

  131. Bernhardt PV (2001) Diverse solid-state and solution structures within a series of hexaamine dicopper(II) complexes. Inorg Chem 40:1086–1092

    Article  CAS  Google Scholar 

  132. Haj MA, Quiros M, Salas JM, Dobado JA, Molina JM, Basallote MG, Manez MA (2002) Structurally different dinuclear copper(II) complexes with the same triazolopyrimidine bridging ligand. Euro J Inorg Chem 811–818

    Google Scholar 

  133. Theil S, Yerande R, Chikate R, Dahan F, Bousseksou A, Padhye S, Tuchagues JP (1997) Synthesis, structure, and magnetic and redox properties of linear bis-dinuclear complexes afforded by schiff base ligands containing catecholate and pyridine or imidazole groups. Inorg Chem 36:6279–6286

    Article  CAS  Google Scholar 

  134. Agterberg FPW, Kluit HAJP, Driessen WL, Oevering H, Buijs W, Lakin MT, Spek AL, Reedijk J (1997) Dinuclear paddle-wheel copper(ii) carboxylates in the catalytic oxidation of carboxylic acids. Unusual polymeric chains found in the single-crystal X-ray structures of [tetrakis(μ-1-phenylcyclopropane-1-carboxylato-O,O′) bis(ethanol-O)dicopper(II)] and catena-poly [[bis(μ-diphenylacetato-O:O′)dicopper](μ3-diphenylacetato-1-O:2-O′:1′-O′)(μ3-diphenylacetato-1-O:2-O′:2′-O′)]. Inorg Chem 36:4321–4328

    Article  CAS  Google Scholar 

  135. Ung VA, Thompson AMWC, Bardwell DA, Gatteschi D, Jeffery JC, McCleverty JA, Totti F, Ward MD (1997) Roles of bridging ligand topology and conformation in controlling exchange interactions between paramagnetic molybdenum fragments in dinuclear and trinuclear complexes. Inorg Chem 36:3447–3454

    Article  CAS  Google Scholar 

  136. Yonemura M, Matsumura Y, Furutachi H, Ohba M, Okawa H, Fenton DE (1997) Migratory transmetalation in diphenoxo-bridged CuIIMII complexes of a dinucleating macrocycle with N(amine)2O2 and N(imine)2O2 metal-binding sites. Inorg Chem 36:2711–2717

    Article  CAS  Google Scholar 

  137. Casanova J, Alzuet G, Latorre J, Borras J (1997) Spectroscopic, magnetic, and electrochemical studies of a dimeric N-substituted-sulfanilamide copper(II) complex. X-ray and molecular structure of the Cu2(sulfathiazolato)4 complex. Inorg Chem 36:2052–2058

    Article  CAS  Google Scholar 

  138. Higgs TC, Helliwell M, McInnes EJL, Mabbs FE, Harding CJ, Garner CD (1997) Synthesis, structural and magnetic characterisation of tris(1-methyl-4,5-diphenylimidazol-2-yl)methanol (L) and [{CuL(NO3)}2][NO3]2. J Chem Soc Dalton Trans 927–933

    Google Scholar 

  139. Knapp MJ, Krzystek J, Brunel LC, Hendrickson DN (1999) High-field EPR study of resonance-delocalized [Fe2(OH)3(tmtacn)2]2+. Inorg Chem 38:3321–3328

    Article  CAS  Google Scholar 

  140. Dei A, Gatteschi D, Massa CA, Pardi LA, Poussereau S, Sorace L (2000) Spontaneous symmetry breaking in the formation of a dinuclear gadolinium semiquinonato complex: synthesis, high-field EPR studies, and magnetic properties. Chem Euro J 6:4580–4586

    Article  CAS  Google Scholar 

  141. Elschenbroich C, Wolf M, Buirghaus O, Harms K, Pebler J (1999) The mono-, di-, and tri([5]trovacenyl)boranes: a study of intermetallic communication across an sp2-hybridized boron atom. Euro J Inorg Chem 2173–2185

    Google Scholar 

  142. Ferrer S, Haasnoot JG, Reedijk J, Muller E, Cingi MB, Lanfranchi M, Lanfredi AMM, Ribas J (2000) Trinuclear N,N-bridged copper(II) complexes involving a Cu3OH core: [Cu33-OH)L3A(H2O)2]A·(H2O)x {L = 3-acetylamino-1,2,4-triazolate; A = CF3SO3, NO3, ClO4; x = 0, 2} synthesis, X-ray structures, spectroscopy, and magnetic properties. Inorg Chem 39:1859–1867

    Article  CAS  Google Scholar 

  143. Raptopoulou CP, Tangoulis V, Psycharis V (2000) Synthesis and structural, spectroscopic, and magnetic characterization of (NH4)[Fe33-OH)(H2L)3(HL)3] (H3L = orotic acid) presenting two novel metal-binding modes of the orotate ligand: the case of a spin-frustrated system. Inorg Chem 39:4452–4459

    Article  CAS  Google Scholar 

  144. Gomez-Garcia CJ, Coronado E, Borras-Almenar JJ (1992) Magnetic characterization of tetranuclear copper(II) and cobalt(II) exchange-coupled clusters encapsulated in heteropolyoxotungstate complexes. Study of the nature of the ground states. Inorg Chem 31:1667–1673

    CAS  Google Scholar 

  145. Belinsky MI (2002) Anisotropic mixing of spin levels in spin-admixed tetrameric iron-sulfur clusters with spin frustration. Chem Phys 277:271–296

    Article  CAS  Google Scholar 

  146. Reynaud F, Mertz D, Celestini F, Debierre JM, Ghorayeb AM, Simon P, Stepanov A, Voiron J, Delmas C (2001) Orbital frustration at the origin of the magnetic behavior in LiNiO2. Phys Rev Lett 86:3638–3641

    Article  CAS  Google Scholar 

  147. Chappel E, Nunez-Regueiro MD, Chouteau G, Darie C, Delmas C, Bianchi V, Caurant D, Baffier N (2001) High magnetic field study of quasi-stoichiometric Li1-xNi1+xO2. Physica B 294:124–127

    Article  Google Scholar 

  148. Inagaki Y, Asano T, Ajiro Y, Kawae T, Takeda K, Nojiri H, Motokawa M, Mitamura H, Goto T, Tanaka M, Matsuda K, Iwamura H (2000) High-field magnetization and high-frequency ESR study on the tetranuclear cluster composed of pi-electrons (S = 1/2) and d-electrons (S = 5/2). Mol Cryst Liq Cryst 343:433–438

    Google Scholar 

  149. Plass W (1997) Competing magnetic exchange interactions in tetranuclear d1 systems: synthesis, structure, and magnetochemistry of a neutral vanadium(IV) complex with a {(VO)43-OR)22-OR)4}2+ Core. Inorg Chem 36:2200–2205

    Article  CAS  Google Scholar 

  150. Powell AK, Heath SL, Gatteschi D, Pardi L, Sessoli R, Spina G, Del Giallo F, Pieralli F (1995) Synthesis, structures, and magnetic properties of Fe2, Fe17, and Fe19 oxo-bridged iron clusters: the stabilization of high ground state spins by cluster aggregates. J Am Chem Soc 117:2491–2502

    Article  CAS  Google Scholar 

  151. Goldberg DP, Caneschi A, Delfs CD, Sessoli R, Lippard SJ (1995) A decanuclear manganese cluster with oxo and halide bridging ligands: magnetic behavior of an s ≥ 12 system. J Am Chem Soc 117:5789–5800

    Article  CAS  Google Scholar 

  152. Delfs C, Gatteschi D, Pardi L, Sessoli R, Wieghardt K, Hanke D (1993) Magnetic properties of an octanuclear iron(III) cation. Inorg Chem 32:3099–3103

    Article  CAS  Google Scholar 

  153. Jones R, Oberg S (1992) Oxygen frustration and the interstitial carbon-oxygen complex in Si. Phys Rev Lett 68:86–89

    Article  CAS  Google Scholar 

  154. Hendrickson DN, Christou G, Schmitt EA, Libby E, Bashkin JS, Wang S, Tsai HL, Vincent JB, Boyd PDW (1992) Photosynthetic water oxidation center: spin frustration in distorted cubane MnIVMn III3 model complexes. J Am Chem Soc 114:2455–2471

    Article  CAS  Google Scholar 

  155. Woo HY, So H, Pope MT (1996) Trimetallo derivatives of lacunary 9-tungstosilicate heteropolyanions. 2. Isotropic nmr shifts in pyridine-type ligands coordinated to the paramagnetic 9-tungsto-3-cuprio(II)silicate anion. J Am Chem Soc 118:621–626

    Article  CAS  Google Scholar 

  156. Cho YH, So HS (1995) Single-crystal EPR-spectra of K12[As2W18O66Cu3(H2O)2]∙11H2O, a copper(II) trimer. Bull Korean Chem Soc 16:243–247

    CAS  Google Scholar 

  157. Robert F, Leyrie M, Herve G (1982) Structure of potassium diaquatricuprooctadecatungstodiarsenate(III)(12-) undecahydrate. Acta Cryst B 38:358–362

    Article  Google Scholar 

  158. Robert F, Teze A (1981) Structure of sodium beta-hydrogenenneatungstosilicate hydrate Na9(β-SiW9O34H)∙23H2O. Acta Cryst B 37:318–322

    Article  Google Scholar 

  159. Rusu D, Craciun C, Barra AL, David L, Rusu M, Rosu C, Cozar O, Marcu G (2001) Spectroscopic and electron paramagnetic resonance behavior of trinuclear metallic clusters encapsulated in [M n+3 (H2O)x(BiW9O33)2]((18–3n)-) heteropolyanion (Mn+ = (VO)II, x = 0 and Mn+ = Cr-III, Mn-II, Fe-III, Co-II, Ni-II, Cu-II, x = 3). J Chem Soc Dalton Trans 2001:2879–2887

    Google Scholar 

  160. Kazansky LP, McGarvey BR (1999) NMR and EPR spectroscopies and electron density distribution in polyoxoanions. Coord Chem Rev 188:157–210

    Article  CAS  Google Scholar 

  161. Clemente-Juan JM, Coronado E (1999) Magnetic clusters from polyoxometalate complexes. Coord Chem Rev 195:361–394

    Article  Google Scholar 

  162. Okubo S, Ohta H, Hazuki K, Sakurai T, Kobayashi N, Hiroi Z (2001) High-field ESR study of kagome-like substance Cu3V2O7(OH)2c∙2H2O. Physica B 294:75–78

    Article  Google Scholar 

  163. Abbati GL, Brunel LC, Casalta H, Cornia A, Fabretti AC, Gatteschi D, Hassan AK, Jansen AGM, Maniero AL, Pardi L, Paulsen C, Segre U (2001) Single-ion versus dipolar origin of the magnetic anisotropy in iron(III)-oxo clusters: a case study. Chem Euro J 7:1796–1807

    Article  CAS  Google Scholar 

  164. Okubo S, Hayashi M, Kimura S, Ohta H, Motokawa M, Kikuchi H, Nagasawa H (1998) Submillimeter wave ESR of triangular-kagome antiferromagnet Cu9X2(cpa)6(X = Cl, Br). Physica B 246:553–556

    Article  Google Scholar 

  165. Mekata M, Abdulla M, Asano T, Kikuchi H, Goto T, Morishita T, Hori H (1998) Magnetic ordering in triangulated kagome lattice compound, Cu9Cl2(cpa)6∙nH2O. J Magn Magn Mater 177:731–732

    Article  Google Scholar 

  166. Ohta H, Sumikawa M, Motokawa M, Kikuchi H, Nagasawa H (1996) High field ESR of kagome antiferromagnets SrCrxGa12-xO19. J Phys Soc Jpn 65:848–852

    Article  CAS  Google Scholar 

  167. Martinez B, Sandiumenge F, Rouco A, Labarta A, Rodriguezcarvajal J, Tovar M, Causa MT, Gali S, Obradors X (1992) Magnetic dilution in the strongly frustrated kagome antiferromagnet SrGa12-xCrxO19. Phys Rev B 46:10786–10792

    Article  CAS  Google Scholar 

  168. McCusker JK, Jang HG, Wang S, Christou G, Hendrickson DN (1992) Ground-state variability in.mu.3-oxide trinuclear mixed-valence manganese complexes: spin frustration. Inorg Chem 31:1874–1880

    Article  CAS  Google Scholar 

  169. Baikie ARE, Hursthouse MB, New DB, Thornton P (1978) Preparation, crystal-structure, and magnetic-properties of a trinuclear mixed-valence manganese carboxylate. J Chem Soc Chem Commun 1978:62–63

    Google Scholar 

  170. Baikie ARE, Hursthouse MB, New L, Thornton P, White RG (1980) Discrete oxidation-states and x-ray crystal-structure of the trinuclear manganese Carboxylate [Mn3(3-ClC5H4N)3O(O2CMe)6]. J Chem Soc Chem Commun 684–685

    Google Scholar 

  171. Vincent JB, Chang HR, Folting K, Huffman JC, Christou G, Hendrickson DN (1987) Preparation and physical properties of trinuclear oxo-centered manganese complexes of general formulation [Mn3O(O2CR)6 L3]0,+ (R = methyl or phenyl; L = a neutral donor group) and the crystal structures of [Mn3O(O2CMe)6(pyr)3](pyr) and [Mn3O(O2CPh)6(pyr)2(H2O)]∙0.5MeCN. J Am Chem Soc 109:5703–5711

    Article  CAS  Google Scholar 

  172. Ribas J, Albela B, Stoeckli-Evans H, Christou G (1997) Synthesis and magnetic properties of six new trinuclear oxo-centered manganese complexes of general formula [Mn3O(X-benzoato)6 L3] (X = 2-F, 2-Cl, 2-Br, 3-F, 3-Cl, 3-Br; L = pyridine or water) and crystal structures of the 2-F, 3-Cl, and 3-Br complexes. Inorg Chem 36:2352–2360

    Article  CAS  Google Scholar 

  173. Burdinski D, Birkelbach F, Weyhermuller T, Florke U, Haupt HJ, Lengen M, Trautwein AX, Bill E, Wieghardt K, Chaudhuri P (1998) Encapsulation by a chromium(III)-containing bicyclic ligand cage. Synthesis, structures, and physical properties of heterometal complexes CrIIIMCrIII [M = (H+)2, Li(I), Mg(II), Cu(II), Ni(II), Ni(IV), Co(III), Fe(II), Fe(III), Mn(II)]. Inorg Chem 37:1009–1020

    Article  CAS  Google Scholar 

  174. Birkelbach F, Florke U, Haupt HJ, Butzlaff C, Trautwein AX, Wieghardt K, Chaudhuri P (1998) Competing exchange interactions and ground-state variability: linear homo- and heterotrinuclear manganese(III, IV) complexes with tris(dimethylglyoximato)metalate(II) tetraanions as bridging ligands. Inorg Chem 37:2000–2008

    Article  CAS  Google Scholar 

  175. Glaser T, Kesting F, Beissel T, Bill E, Weyhermuller T, Meyer-Klaucke W, Wieghardt K (1999) Spin-dependent delocalization in three isostructural complexes [LFeNiFeL]2+/3+/4+ (L = 1,4,7-(4-tert-Butyl-2-mercaptobenzyl)-1,4,7-triazacyclononane). Inorg Chem 38:722–732

    Article  CAS  Google Scholar 

  176. Glaser T, Beissel T, Bill E, Weyhermuller T, Schunemann V, Meyer-Klaucke W, Trautwein AX, Wieghardt K (1999) Electronic structure of linear thiophenolate-bridged heterotrinuclear complexes [LFeMFeL]n + (M = Cr, Co, Fe; n = 1 − 3): localized vs delocalized models. J Am Chem Soc 121:2193–2208

    Article  CAS  Google Scholar 

  177. Glaser T, Bill E, Weyhermuller T, Meyer-Klaucke W, Wieghardt K (1999) Sn(III) and Ge(III) in the thiophenolato-bridged complexes [LFeSnFeL]n + and [LFeGeFeL]n + (n = 2, 3; L = 1,4,7-(4-tert-Butyl-2-mercaptobenzyl)-1,4,7-triazacyclononane). Inorg Chem 38:2632–2642

    Article  CAS  Google Scholar 

  178. van Albada GA, van Koningsbruggen PJ, Mutikainen I, Turpeinen U, Reedijk J (1999) Synthesis, structure, spectroscopy, and magnetism of unique propeller-type linear trinuclear CuII complexes with in-situ prepared formamidine ligands. Euro J Inorg Chem 12:2269–2275

    Google Scholar 

  179. Gutierrez L, Alzuet G, Real JA, Cano J, Borras J, Castineiras A (2000) Countercomplementarity and strong ferromagnetic coupling in a linear mixed μ-acetato, μ-hydroxo trinuclear copper(II) complex. Synthesis, structure, magnetic properties, EPR, and theoretical studies. Inorg Chem 39:3608–3614

    Article  CAS  Google Scholar 

  180. Birkelbach F, Weyhermuller T, Lengen M, Gerdan M, Trautwein AX, Wieghardt K, Chaudhuri P (1997) Linear trinuclear oximato-bridged complexes Mn-III,Mn-IV;M-II;Mn-III,Mn-IV (M = Zn, Cu or Mn): synthesis, structure, redox behaviour and magnetism. J Chem Soc Dalton Trans 4529–4537

    Google Scholar 

  181. Weyland T, Costuas K, Mari A, Halet JF, Lapinte C (1998) [(Cp*)(dppe)Fe(III)-](+) units bridged through 1,3-diethynylbenzene and 1,3,5-triethynylbenzene spacers: ferromagnetic metal-metal exchange interaction. Organometallics 17:5569–5579

    Article  CAS  Google Scholar 

  182. Aubin SMJ, Wemple MW, Adams DM, Tsai HL, Christou G, Hendrickson DN (1996) Distorted MnIVMn III3 cubane complexes as single-molecule magnets. J Am Chem Soc 118:7746–7754

    Article  CAS  Google Scholar 

  183. Recent developments in single-molecule magnetism are overviewed in the following literatures. (a) Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomanet. Oxford University Press, Oxford; (b) Winpenny R (ed) (2006) Single-molecule magnets and related phenomena. Springer (c) Stamopoulos D (ed) (2008) Magnetism and superconductivity in low-dimensional systems; utilization in future applications. Nova Science Publishers, New York; (d) Sessoli R, Powell AK (2009) Strategies towards single molecule magnets based on lanthanide ions. Coord Chem Rev 253:2328–2341; (f) Murrie M, (2010) Cobalt(II) single-molecule magnets. Chem Soc Rev 39:1986–1995; (g) Friedman JR, Sarachik MP (2010) Single-molecule nanomagnets. Annu Rev Condens Matter Phys 1:109–128; (h) Cornia A, Mannini M, Sainctavitc P, Sessoli R (2011) Chemical strategies and characterization tools for the organization of single molecule magnets on surfaces. Chem Soc Rev 40:3076–3091; (i) Sorace L, Benelli C, Gatteschi D (2011) Lanthanides in molecular magnetism: old tools in a new field. Chem Soc Rev 40:3092–3104

    Google Scholar 

  184. Stamatatos TC, Abboud KA, Wernsdorfer W, Christou G (2007) “Spin Tweaking” of a high-spin molecule: an Mn25 single-molecule magnet with an S = 61/2 ground state. Angew Chem Int Ed 46:884–888

    Article  CAS  Google Scholar 

  185. (a) Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y (2003) Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J Am Chem Soc 125:8694–8695; (b) Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y (2004) Mononuclear lanthanide complexes with a long magnetization relaxation time at high temperatures: a new category of magnets at the single-molecular level. J Phys Chem B 108:11265–11271; (c) Ishikawa N, Mizuno Y, Takamatsu S, Ishikawa T, Koshihara S (2008) Effects of chemically induced contraction of a coordination polyhedron on the dynamical magnetism of bis(phthalocyaninato)disprosium, a single-4f-ionic single-molecule magnet with a kramers ground state. Inorg Chem 47:10217–10219

    Google Scholar 

  186. Jones A (1998) Fast searches with nuclear magnetic resonance computers. Science 280:229

    Article  CAS  Google Scholar 

  187. Leuenberger MN, Loss D (2001) Quantum computing in molecular magnets. Nature 410:789–793

    Article  CAS  Google Scholar 

  188. (a) Barra A, Gatteschi D, Sessoli R (1997) High-frequency EPR spectra of a molecular nanomagnet: understanding quantum tunneling of the magnetization. Phys Rev B56:8192–8198; (b) Barra AL, Caneschi A, Gatteschi D, Sessoli R (1998) Very high field EPR study of a molecular nanomagnet. J Magn Magn Mater 177–181:709–710; (c) Sessoli R, Gatteschi D, Caneschi A, Novak MA (1993) Magnetic bistability in a metal-ion cluster. Nature 365:141–143

    Article  Google Scholar 

  189. Hill S, Perenboom JAAJ, Dalal NS, Hathaway T, Stalcup T, Brooks JS (1998) high-sensitivity electron paramagnetic resonance of Mn12-acetate. Phys Rev Lett 80:2453–2456

    Article  CAS  Google Scholar 

  190. Awaga K, Takeda K, Inabe T (1999) Magnetic properties of molecular compounds of Mn12Ph. Mol Cryst Liq Cryst 335:473–482

    Article  Google Scholar 

  191. Aubin SMJ, Sun Z, Pardi L, Krzystek J, Folting K, Brunel LC, Rheingold AL, Christou G, Hendrickson DN (1999) Reduced anionic Mn12 molecules with half-integer ground states as single-molecule magnets. Inorg Chem 38:5329–5340

    Article  CAS  Google Scholar 

  192. Barra AL, Caneschi A, Cornia A, De Biani FF, Gatteschi D, Sangregorio C, Sessoli R, Sorace L (1999) Single-molecule magnet behavior of a tetranuclear iron(III) complex. The origin of slow magnetic relaxation in iron(III) clusters. J Am Chem Soc 121:5302–5310

    Article  CAS  Google Scholar 

  193. Yoo J, Brechin EK, Yamaguchi A, Nakano M, Huffman JC, Maniero AL, Brunel LC, Awaga K, Ishimoto H, Christou G, Hendrickson DN (2000) Single-molecule magnets: a new class of tetranuclear manganese magnets. Inorg Chem 39:3615–3623

    Article  CAS  Google Scholar 

  194. Blinc R, Cevc P, Arcon D, Dalal NS, Achey RM (2001) Excited-state X-band EPR in a molecular cluster nanomagnet, Phys Rev B63:212401/1–212401/4

    Google Scholar 

  195. Kuroda-Sowa T, Lam M, Rheingold AL, Frommen C, Reiff WM, Nakano M, Yoo J, Maniero AL, Brunel LC, Christou G, Hendrickson DN (2001) Effects of paramagnetic ferrocenium cations on the magnetic properties of the anionic single-molecule magnet [Mn12O12(O2CC6F5)16(H2O)4]. Inorg Chem 40: 6469–6480

    Article  CAS  Google Scholar 

  196. Artus P, Boskovic C, Yoo J, Streib WE, Brunel LC, Hnedrickson DN, Christou G (2001) Single-molecule magnets: site-specific ligand abstraction from [Mn12O12(O2CR)16(H2O)4] and the preparation and properties of [Mn12O12(NO3)4(O2CCH2But)12(H2O)4]. Inorg Chem 40:4199–4210

    Article  CAS  Google Scholar 

  197. Yoo J, Yamaguchi A, Nakano M, Krzystek J, Streib WE, Brunel LC, Ishimoto H, Christou G, Hendrickson DN (2001) Mixed-valence tetranuclear manganese single-molecule magnets. Inorg Chem 40:4604–4616

    Google Scholar 

  198. Barra AL, Debrunner P, Gatteschi D, Schulz CE, Sessoli R (1996) Superparamagnetic-like behavior in an octanuclear iron cluster. Europhys Lett 35:133–138

    Article  CAS  Google Scholar 

  199. Barra AL, Gatteschi D, Sessoli R (2000) High-frequency EPR spectra of [Fe8O2(OH)12(tacn)6]Br8: a critical appraisal of the barrier for the reorientation of the magnetization in single-molecule magnets. Chem Eur J 6:1608–1614

    Article  CAS  Google Scholar 

  200. Barra AL, Bencini F, Caneschi A, Gatteshi D, Paulsen C, Sangregorio C, Sessoli R, Sorace L (2001) Tuning the magnetic properties of the high-spin molecular cluster Fe8. ChemPhysChem 2:523–531

    Article  CAS  Google Scholar 

  201. Bouwen A, Caneschi A, Gatteschi D, Goovaerts E, Schoemaker D, Sorace L, Stefan M (2001) Single-crystal high-frequency electron paramagnetic resonance investigation of a tetranuclear iron(III) single-molecule magnet. J Phys Chem B 105:2658–2663

    Article  CAS  Google Scholar 

  202. Yang EC, Kirman C, Lawrence J, Zakharov LN, Rheingold AL, Hill S, Hendrickson DN (2005) Single-molecule magnets: high-field electron paramagnetic resonance evaluation of the single-ion zero-field interaction in a Zn II3 NiII Complex. Inorg Chem 44:3827–3836

    Article  CAS  Google Scholar 

  203. Caneschi A, Gatteschi D, Sessoli R, Barra AL, Brunel LC, Guillot M (1991) Alternating current susceptibility, high field magnetization, and millimeter band EPR evidence for a ground S = 10 state in [Mn12O12(Ch3COO)16(H2O)4].2 CH3COOH4H2O. J Am Chem Soc 113:5873–5874

    Article  CAS  Google Scholar 

  204. Lis T (1980) Preparation, structure, and magnetic properties of a dodecanuclear mixed-valence manganese carboxylate. Acta Crystallogr B36:2042–2046

    CAS  Google Scholar 

  205. Tasiopoulos AJ, Vinslava A, Wernsdorfer W, Abboud KA, Christou G (2004) Giant single-molecule magnets: a {Mn84} torus and its supramolecular nanotubes. Angew Chem Int Ed 43:2117–2121

    Article  CAS  Google Scholar 

  206. Moushi EE, Lampropoulos C, Wernsdorfer W, Nastopoulos V, Christou G, Tasiopoulos AJ (2010) Inducing single-molecule magnetism in a family of loop-of-loops aggregates: heterometallic Mn40Na4 clusters and the homometallic Mn44 analogue. J Am Chem Soc 132:16146–16155

    Article  CAS  Google Scholar 

  207. (a) Soler M, Wernsdorfer W, Folting K, Pink M, Christou G (2004) Single-molecule magnets: a large Mn30 molecular nanomagnet exhibiting quantum tunneling of magnetization. J Am Chem Soc 126:2156–2165; (b) Soler M, Rumberger E, Folting K, Hendrickson DN, Christou G (2001) Synthesis, characterization and magnetic properties of [Mn30O24(OH)8(O2CCH2C(CH3)3)32(H2O)2(CH3NO2)4]: the largest manganese carboxylate cluster. Polyhedron 20:1365–1369

    Google Scholar 

  208. Barra A, Gatteschi D, Sessoli R (1997) High-frequency EPR spectra of a molecular nanomagnet: understanding quantum tunneling of the magnetization. Phys Rev B56:8192–8198

    Google Scholar 

  209. Sessoli R, Tsai HL, Schake AR, Wang S, Vincent JB, Folting K, Gatteschi D, Christou G, Hendrickson DN (1993) High-spin molecules: [Mn12O12(O2CR)16(H2O)4]. J Am Chem Soc 115:1804–1816

    Article  CAS  Google Scholar 

  210. Waldmann O (2007) A criterion for the anisotropy barrier in single-molecule magnets. Inorg Chem 46 10035–10037

    Article  CAS  Google Scholar 

  211. Ako AM, Hewitt IJ, Mereacre V, Cl´erac R, Wernsdorfer W, Anson CE, Powell AK (2006) A ferromagnetically coupled Mn19 aggregate with a record S = 83/2 ground spin state. Angew Chem Int Ed 45:4926–4929

    Article  CAS  Google Scholar 

  212. Milios CJ, Vinslava A, Wernsdorfer W, Moggach S, Parsons S, Perlepes SP, Christou G, Brechin EK (2007) A record anisotropy barrier for a single-molecule magnet. J Am Chem Soc 129:2754–2755

    Article  CAS  Google Scholar 

  213. (a) Friedman J, Sarchik MP, Tejada J, Ziolo R (1996) Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. Phys Rev Lett 76:3830–3833; (b) Friedman J, Sarchik MP, Tejada J, Maciejewski J, Ziolo R (1996) Steps in the hysteresis loops of a high‐spin molecule. J Appl Phys 79:6031–6034

    Google Scholar 

  214. (a) Hernandez JM, Zhang XX, Luis F, Bartolome J, Tejada J, Ziolo R (1996) Field tuning of thermally activated magnetic quantum tunnelling in Mn12 − Ac molecules. Europhys Lett 35:301–306; (b) Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R, Barbara B (1996) Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature 383:145–147; (c) Hernandez J M, Zhang XX, Luis F, Tejada J, Friedman J, Sarachik MP, Ziolo R (1997) Evidence for resonant tunneling of magnetization in Mn12sacetate complex. Phys Rev B55:5858–5865

    Google Scholar 

  215. McInnes EJL, Spectroscopy of single-molecule magnets. Struct Bond 122:69–102

    Google Scholar 

  216. Gatteschi D, Caneschi A, Sessoli R, Cornia A (1996) Magnetism of large iron-oxo clusters. Chem Soc Rev 25:101–109

    Article  CAS  Google Scholar 

  217. Gatteschi D, Barra AL, Caneschi A, Cornia A, Sessoli R, Sorace L, EPR of molecular nanomagnets. Coord Chem Rev 250:1514–1529

    Google Scholar 

  218. McInnes EJL, Piligkos S, Timco GA, Winpenny REP (2006) Studies of chromium cages and wheels. Coord Chem Rev 249:2577–2590

    Google Scholar 

  219. Barra A, Gatteschi D, Sessoli R (1997) High-frequency EPR spectra of a molecular nanomagnet: understanding quantum tunneling of the magnetization. Phys Rev B56:8192–8198

    Google Scholar 

  220. Gatteschi D, Sessoli R (2003) Quantum tunneling of magnetization and related phenomena in molecular materials. Angew Chem Int Ed 42:268–297

    Article  CAS  Google Scholar 

  221. Edwards RS, Hill S, Bhaduri S, Aliaga-Alcalde N, Bolin E, Maccagnano S, Christou G, Hendrickson DN (2003) A comparative high frequency EPR study of monomeric and dimeric Mn4 single-molecule magnets. Polyhedron 22:1911–1916

    Google Scholar 

  222. Rumberger EM, Hill S, Edwards RS, Wernsdorfer W, Zakharov LN, Rheingold AL, Christou G, Hendrickson DN (2003) Search for new iron single-molecule magnets. Polyhedron 22:1865–1870

    Google Scholar 

  223. Feng PL, Beedle CC, Koo C, Lawrence J, Hill S, Hendrickson DN (2008) Origin of magnetization tunneling in single-molecule magnets as determined by single-crystal high-frequency EPR. Inorg Chim Acta 361:3465–3480

    Article  CAS  Google Scholar 

  224. Barra L, Caneschi A, Cornia A, Gatteschi D, Gorini L, Heiniger LP, Sessoli R, Sorace L (2007) The origin of transverse anisotropy in axially symmetric single molecule magnets. J Am Chem Soc 129:10754–10762

    Article  CAS  Google Scholar 

  225. Christou G, Gatteschi D, Hendrickson DN, Sessoli R, (2000) Single-molecule magnets. MRS Bull 25:66–71

    Article  CAS  Google Scholar 

  226. Leuenberger MN, Loss D (2001) Quantum computing in molecular magnets. Nature 410:789–793

    Article  CAS  Google Scholar 

  227. Troiani F, Ghirri A, Affronte M, Carretta S, Santini P, Amoretti G, Piligkos S, Timco G, Winpenny REP (2005) Molecular engineering of antiferromagnetic rings for quantum computation. Phys Rev Lett 94:207208–207211

    Google Scholar 

  228. Lehmann J, Gaita-Ariño A, Coronado E, Loss D (2007) Spin qubits with electrically gated polyoxometalate molecules. Nature Nanotechnol 2:312–317

    Article  CAS  Google Scholar 

  229. Morello A, Stamp PCE, Tupitsyn IS (2006) Pairwise decoherence in coupled spin qubit networks. Phys Rev Lett 97:207206–207209

    Article  CAS  Google Scholar 

  230. Schlegel C, van Slageren J, Manoli M, Brechin EK, Dressel M (2008) Direct observation of quantum coherence in single-molecule magnets. Phys Rev Lett 101: 147203–147206

    Article  CAS  Google Scholar 

  231. Rabi II (1937) Space quantization in a gyrating magnetic field. Phys Rev 51:652–654

    Article  CAS  Google Scholar 

  232. van Slageren J, Vongtragool S, Gorshunov B, Mukhin AA, Karl N, Krzystek J, Telser J, Müller A, Sangregorio C, Gatteschi D, Dressel M (2003) Frequency-domain magnetic resonance spectroscopy of molecular magnetic materials. Phys Chem Chem Phys 5:3837–3843

    Article  CAS  Google Scholar 

  233. Mukhin A, Travkin VD, Zvezdin AK, Lebedev SP, Caneschi A, Gatteschi D (1998) Submillimeter spectroscopy of Mn12-Ac magnetic clusters Europhys Lett 44:778–782

    Google Scholar 

  234. Kirchner N, van Slageren J, Brechin EK, Dressel M (2005) Frequency domain magnetic resonance spectroscopy on [Mn12] and [Mn9]: zero-field splittings and lineshape analysis. Polyhedron 24:2400–2404

    Article  CAS  Google Scholar 

  235. Wernsdorfer W, Sessoli R (1999) Quantum phase interference and parity effects in magnetic molecular clusters. Science 284:133–135

    Article  CAS  Google Scholar 

  236. Mannini M, Pineider F, Danieli C, Totti F, Sorace L, Sainctavit Ph, Arrio MA, Otero E, Joly L, Criginski Cezar J, Cornia A, Sessoli R (2010) Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets. Nature 468:417–421

    Article  CAS  Google Scholar 

  237. Barra AL, Debrunner P, Gatteschi D, Schulz CE, Sessoli R (1996) Superparamagnetic-like behavior in an octanuclear iron cluster. Europhys Lett 35:133–138

    Article  CAS  Google Scholar 

  238. Barra AL, Gatteschi D, Sessoli R (2000) High-frequency EPR spectra of [Fe8O2(OH)12(tacn)6]Br8: a critical appraisal of the barrier for the reorientation of the magnetization in single-molecule magnets. Chem Eur J 6:1608–1614

    Article  CAS  Google Scholar 

  239. Barra AL, Bencini F, Caneschi A, Gatteshi D, Paulsen C, Sangregorio C, Sessoli R, Sorace L (2001) Tuning the magnetic properties of the high-spin molecular cluster Fe8. ChemPhysChem 2:523–531

    Article  CAS  Google Scholar 

  240. Fominaya F, Gandit P, Gaudin G, Chaussy J, Sessoli R, Sangregorio C (1999) Heat capacity anomalies in Fe8 single crystal. J Magn Magn Mater 195:L253–L255

    Article  CAS  Google Scholar 

  241. Sangregorio C, Ohm T, Paulsen C, Sessoli R, Gatteschi D (1997) Quantum tunneling of the magnetization in an iron cluster nanomagnet. Phys Rev Lett 78:4645–4648

    Article  CAS  Google Scholar 

  242. Wernsdorfer W, Sessoli R (1999) Quantum phase interference and parity effects in magnetic molecular clusters. Science 284:133–135

    Article  CAS  Google Scholar 

  243. Wernsdorfer W, Sessoli R, Caneschi A, Gatteschi D, Cornia A (2000) Nonadiabatic Landau-Zener tunneling in Fe8 molecular nanomagnets. Europhys Lett 50:552–558

    Article  CAS  Google Scholar 

  244. Wernsdorfer W, Chiorescu I, Sessoli R, Gatteschi D, Mailly D (2000) Quantum phase interference in magnetic molecular clusters. Physca B 284–288:1231–1232

    Article  Google Scholar 

  245. Wernsdorfer W, Sessoli R, Caneschi A, Gatteschi D, Cornia A, Mailly D (2000) Landau–Zener method to study quantum phase interference of Fe8 molecular nanomagnets. J Appl Phys 87:5481–5486

    Article  CAS  Google Scholar 

  246. Sessoli R, Caneschi A, Gatteschi D, Sorace L, Cornia A, Wernssdorfer W (2001) Isotopic effect on the quantum tunneling of the magnetization of molecular nanomagnets. J Magn Magn Mater 226–230:1954–1960

    Article  Google Scholar 

  247. Maccagnano S, Achey R, Negusse E, Lussier A, Mola MM, Hill S, Dalal NS (2001) Single crystal EPR determination of the spin Hamiltonian parameters for Fe8 molecular clusters. Polyhedron 20:1441–1445

    Article  CAS  Google Scholar 

  248. Barra AL, Debrunner P, Gatteschi D, Schulz E, Sessoli R (1996) Superparamagnetic-like behavior in an octanuclear iron cluster. Europhys Lett 35:133–138

    Article  CAS  Google Scholar 

  249. Barra AL, Gatteschi D, Sessoli R (2000) High-frequency EPR spectra of [Fe8O2(OH)12(tacn)6]Br8: a critical appraisal of the barrier for the reorientation of the magnetization in single-molecule magnets. Chem Eur J 6:1608–1614

    Article  CAS  Google Scholar 

  250. Caciuffo R, Amoretti G, Murani A, Sessoli R, Caneschi A, Gatteschi D (1998) Neutron spectroscopy for the magnetic anisotropy of molecular clusters. Phys Rev Lett 81:4744–4747

    Article  CAS  Google Scholar 

  251. Mukhin A, Gorshunov B, Dressel M, Sangregorio C, Gatteschi D (2001) Optical spectroscopy of crystal-field transitions in the molecular magnet Fe8. Phys Rev B63:214411–214417

    Google Scholar 

  252. Petukhov K, Wernsdorfer W, Barra AL, Mosser V (2005) Resonant photon absorption in Fe8 single-molecule magnets detected via magnetization measurements. Phys Rev B72:052401–052404

    Google Scholar 

  253. Cage B, Russek SE, Zipse D, Dalal NS (2005) Advantages of superconducting quantum interference device-detected magnetic resonance over conventional high-frequency electron paramagnetic resonance for characterization of nanomagnetic materials. J Appl Phys 97:10 M507–10M507-3

    Google Scholar 

  254. Cage B, Russek SE, Zipse D, North JM, Dalal NS (2005) Resonant microwave power absorption and relaxation of the energy levels of the molecular nanomagnet Fe8 using superconducting quantum interference device-based magnetometry. Appl Phys Lett 87:082501–082503

    Google Scholar 

  255. Artus P, Boskovic C, Yoo J, Streib WE, Brunel LC, Hnedrickson DN, Christou G (2001) Single-molecule magnets: site-specific ligand abstraction from [Mn12O12(O2CR)16(H2O)4] and the preparation and properties of [Mn12O12(NO3)4(O2CCH2But)12(H2O)4]. Inorg Chem 40:4199–4210

    Article  CAS  Google Scholar 

  256. Chakov NE, Lee SE, Harter A, Kuhns PL, Reyes AP, Hill SO, Dalal NS, Wernsdorfer W, Abboud KA, Christou G (2006) The properties of the [Mn12O12(O2CR)16(H2O)4] single-molecule magnets in truly axial symmetry: [Mn12O12(O2CCH2Br)16(H2O)4]·4CH2Cl2. J Am Chem Soc 128:6975–6989

    Article  CAS  Google Scholar 

  257. Tasiopoulos AJ, Wernsdorfer W, Abboud K, Christou G (2004) A reductive-aggregation route to [Mn12O12(OMe)2(O2CPh)16(H2O)2]2− single-molecule magnets related to the [Mn12] family Angew Chem Int Ed 43:6338–6342. (b) Tasiopoulos AJ, Wernsdorfer W, Abboud K, Christou G (2005) [Mn12O12(OMe)2(O2CPh)16(H2O)2]2− single-molecule magnets and other manganese compounds from a reductive aggregation procedure. Inorg Chem 44:6324–6338

    Article  CAS  Google Scholar 

  258. Stamatatos TC, Foguet-Albiol D, Stoumpos CC, Raptopoulou CP, Terzis A, Wernsdorfer W, Perlepes SP, Christou G (2005) Initial example of a triangular single-molecule magnet from ligand-induced structural distortion of a [Mn III3 O]7+ Complex. J Am Chem Soc 127:15380–15381

    Article  CAS  Google Scholar 

  259. Aubin SMJ, Wemple MW, Adams DM, Tsai HL, Christou G, Hendrickson DN (1996) Distorted MnIVMn III3 cubane complexes as single-molecule magnets. J Am Chem Soc 118:7746–7754

    Article  CAS  Google Scholar 

  260. Lecren L, Wernsdorfer W, Li YG, Roubeau O, Miyasaka H, Clérac R (2005) Quantum tunneling and quantum phase interference in a [Mn II2 Mn III2 ] single-molecule magnet. J Am Chem Soc 127:11311–11317

    Article  CAS  Google Scholar 

  261. Milios CJ, Vinslava A, Wernsdorfer W, Moggach S, Parsons S, Perlepes SP, Christou G, Brechin EK (2007) A record anisotropy barrier for a single-molecule magnet. J Am Chem Soc 129: 2754–2755

    Article  CAS  Google Scholar 

  262. Saalfrank RW, Scheurer A, Prakash R, Heinemann FW, Nakajima T, Hampel F, Leppin R, Pilawa B, Rupp H, Müller P (2007) Synthesis, redox, and magnetic properties of a neutral, mixed-valent heptanuclear manganese wheel with S = 27/2 high-spin ground state. Inorg Chem 46:1586–1592

    Article  CAS  Google Scholar 

  263. Murugesu M, Wernsdorfer W, Christou G, Brechin EK (2007) New derivatives of an enneanuclear Mn SMM. Polyhedron 26:1845–1848

    Article  CAS  Google Scholar 

  264. Sanudo EC, Wernsdorfer W, Abboud KA, Christou G (2004) Synthesis, structure, and magnetic properties of a Mn21 single-molecule magnet. Inorg Chem 43:4137–4144

    Article  CAS  Google Scholar 

  265. Soler M, Wernsdorfer W, Folting K, Pink M, Christou G (2004) Single-molecule magnets: a large Mn30 molecular nanomagnet exhibiting quantum tunneling of magnetization. J Am Chem Soc 126:2156–2165

    Article  CAS  Google Scholar 

  266. Barra AL, Debrunner P, Gatteschi D, Schulz CE, Sessoli R (1996) Superparamagnetic-like behavior in an octanuclear iron cluster. Europhys Lett 35:133–138

    Article  CAS  Google Scholar 

  267. Zhu YY, Guo X, Cui C, Wang BW, Wang ZM, Gao S (2011) An enantiopure Fe III4 single-molecule magnet. Chem Commun 47:8049–8051

    Article  CAS  Google Scholar 

  268. Powell GW, Lancashire HN, Brechin EK, Collison D, Heath SL, Mallah T, Wernsdorfer W (2004) Building molecular minerals: all ferric pieces of molecular magnetite. Angew Chem Int Ed 43:5772–5775

    Article  CAS  Google Scholar 

  269. Kanegawa S, Karasawa S, Nakano M, Koga N (2006) Magnetic properties of 1:4 Complexes of CoIIX2 (X = NCO, NCS, and Br) with 4-(n-tert-butylaminoxyl)pyridine antiferromagnets in crystalline states and single-molecule magnets in frozen solutions. Bull Chem Soc Jpn 79:1372–1382

    Article  CAS  Google Scholar 

  270. Tobinaga H, Suehiro M, Ito T, Zhou G, Karasawa S, Koga N (2007) Magnetic property of 1:2 mixture of Co(p-tolsal)2; p-tolsal = n-p-tolylsalicylideniminato, and cyclic pentacarbene–pyridine with S = 10/2 in dilute frozen solution. Polyhedron 26:1905–1911

    Article  CAS  Google Scholar 

  271. Oshio H, Nihei M, Yoshida A, Nohiri H, Nakano M, Yamaguchi A, Karaki Y, Ishimoto H (2005) A dinuclear MnIII–CuII single-molecule magnet. Chem Eur J 11:843–848

    Article  CAS  Google Scholar 

  272. Sokol JJ, Hee AG, Long JR (2002) A cyano-bridged single-molecule magnet: slow magnetic relaxation in a trigonal prismatic MnMo6(CN)18 Cluster. J Am Chem Soc 124:7656–7657

    Article  CAS  Google Scholar 

  273. Freedman DE, Jenkins DM, Iavarone AT, Long JR (2008) A redox-switchable single-molecule magnet incorporating [Re(CN)7]3-. J Am Chem Soc 130:2884–2885

    Article  CAS  Google Scholar 

  274. Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7:179–186

    Article  CAS  Google Scholar 

  275. Sakai M, Toyada J, Mitsumi M, Nakasuji K, Furukawa K, Shiomi D, Sato K, Takui T (2001) Low-dimensional molecule-based magnets with hydrogen-bonded network. Synth Metals 121:1776–1777

    Article  CAS  Google Scholar 

  276. Matsuoka H, Yoshida T, Kubono K, Sato K, Shiomi D, Furukawa K, Kato T, Yokoi K, Takui T (2003) Pseudo-octahedral high-spin Co(II) complexes with orbitally degenerate ground states as studied by SQUID and ESR spectroscopy. Synth Met 137:1213–1214

    Article  CAS  Google Scholar 

  277. Sakai M, Toyada J, Furukawa K, Mitsumi M, Sato K, Shiomi D, Nakasuji K, Takui T (to be published)

    Google Scholar 

  278. Hirota N, Weissman SI (1964) Electronic interaction in ketyl radicals. J Am Chem Soc 86:2538–2545

    Article  CAS  Google Scholar 

  279. For pulse-ESR based electron spin transient nutation spectroscopy and applications to transition assignments of fine structure ESR spectra, refer to the following chapter and also see (a) Isoya J, Kanda H, Norris JR, Tang J, Bowman MK (1990) Fourier-transform and continuous-wave EPR studies of nickel in synthetic diamond – site and spin multiplicity. Phys Rev B 41:3905–3913; (b) Astashkin AV, Schweiger A (1990) Electron-spin transient nutation – a new approach to simplify the interpretation of ESR-spectra. Chem Phys Lett 174:595–602; (c) Sato K, Shiomi D, Takui T, Itoh K, Kaneko T, Tsuchida E, Nishide H (1994) FT pulsed EPR/transient quantum spin nutation spectroscopy applied to inorganic high-spin systems and a high-spin polymer as models for organic ferromagnets. J Spectrosc Soc Jpn 43:280–291

    Google Scholar 

  280. For pulse-ESR based electron spin transient nutation spectroscopy applied to hyperfine fine-structure spectroscopy, see Matsuoka H, Sato K, Shiomi D, Takui T (2003) 2-D electron spin transient nutation spectroscopy of lanthanoid ion Eu2+(8 S7/2) in a CaF2 single crystal on the basis of FT-pulsed electron spin resonance spectroscopy: transition moment spectroscopy. Appl Magn Reson 23:517–538

    Google Scholar 

  281. Nakazawa S, Sato K, Shiomi D, Yano M, Kinoshita T, Franco MLTMB, Lazana MCRLR, Shohoji MCBL, Itoh K, Takui T (2011) Organic polyanionic high-spin molecular clusters: topological-symmetry controlled models for organic ferromagnetic metals. Phys Chem Chem Phys 13:1424–1433; (b) Shohoji MCBL, Franco MLTMB, Lazana MCRLR, Nakazawa S, Sato K, Shiomi D, Itoh K, Takui T (to be published)

    Google Scholar 

  282. Nakazawa S, Sato K, Shiomi D, Franco MLTMB, Lazana MCRLR, Shohoji MCBL, Itoh K, Takui T (2008) Electronic and molecular structures of C60-based polyanionic high-spin molecular clusters: direct spin identification and electron spin transient nutation spectroscopy for high-spin chemistry. Inorg Chim Acta 361:4031–4037

    Article  CAS  Google Scholar 

  283. Nakamura T, Nakazawa S, Sato K, Shiomi D, Takui T, Shida T, Itoh K unpublished work

    Google Scholar 

  284. Morita Y, Aoki T, Fukui K, Nakazawa S, Tamaki K, Suzuki S, Fuyuhiro A, Yamamoto K, Sato K, Shiomi D, Naito A, Takui T, Nakasuji K (2002) A new trend in phenalenyl chemistry: a persistent neutral radical, 2,5,8-tri-tert-butyl-1,3-diazaphenalenyl, and the excited triplet state of the gable syn-dimer in the crystal of column motif. Angew Chem Int Ed 41:1793–1796

    Article  CAS  Google Scholar 

  285. Goto K, Kubo T, Yamamoto K, Nakasuji K, Sato K, Shiomi D, Takui T, Kubota M, Kobayashi T, Yakushi K, Ouyang J (1999) A stable neutral hydrocarbon radical: Synthesis, crystal structure, and physical properties of 2,5,8-tri-tert-butyl-phenalenyl. J Am Chem Soc 121:1619–1620

    Article  CAS  Google Scholar 

  286. Kubo R, Tomita K (1954) A general theory of magnetic resonance absorption. J Phys Soc Jpn 9:888–919

    Article  CAS  Google Scholar 

  287. (a) Pilawa B, Ziegler J (1996) Spin and charge distribution in hexaperylene hexafluorophosphate, (C20H12)6PF6. Syn Met 82:53–58; (b) Wolter A, Fasol U, Jaeppelt R, Dormann E (1996) Perylene radical cation salts with a five-eighths-filled conduction band: an ESR analysis. Phys Rev B 54:12272–12282

    Google Scholar 

  288. (a) Shiomi D, Nishizawa M, Sato K, Takui T, Itoh K, Sakurai H, Izuoka A, Sugawara T (1997) A prerequisite for purely organic molecule-based ferrimagnetics: breakdown of simple classical pictures. J Phys Chem B 101:3342–3348; (b) Nishizawa M, Shiomi D, Sato K, Takui T, Itoh K, Sawa H, Kato R, Sakurai H, Izuoka A, Sugawara T (2000) Evidence for the breakdown of simple classical pictures of organic molecule-based ferrimagnetics: low-temperature crystal structure and single-crystal ESR studies of an organic heterospin system. J Phys Chem B 104:503–509

    Google Scholar 

  289. Nagata K, Tazuke Y (1972) Short-range order effects on EPR frequencies in Heisenberg linear chain antiferromagnets. J Phys Soc Jpn 32:337–345

    Article  CAS  Google Scholar 

  290. Only typical examples are cited in the following: (a) Oshima K, Okuda K, Date M (1976) g-shift in low dimensional antiferromagnets at low-temperatures. J Phys Soc Jpn 41:475–480; (b) Pilawa B, Pietrus T (1995) Magnetic-properties of the one-dimensional Heisenberg-antiferromagnet tetraphenylverdazyl. J Magn Magn Mat 150:165–174; (c) Stanger JL, Andre JJ, Turek P, Hosokoshi Y, Tamura M, Kinoshita M, Rey P, Cirujeda J, Veciana J (1997) Role of the demagnetizing field on the EPR of organic radical magnets. Phys Rev B 55:8398–8405

    Article  Google Scholar 

  291. Benner H, Boucher JP (1990) In: de Jongh LJ (ed) Magnetic properties of layered transition metal compounds. Kluwer Academic, Dordrecht

    Google Scholar 

  292. Turek P (1993) Spin correlations in organic radical magnets. Mol Cryst Liq Cryst 232:551–567

    Google Scholar 

  293. (a) Latimer MJ, DeRose VJ, Mukerji I, Yachandra VK, Sauer K, Klein MP (1995) Evidence for the proximity of calcium to the manganese cluster of photosystem II – determination by x-ray-absorption spectroscopy. Biochemistry 34:10898–10909; (b) Tyryshkin AM, Watt RK, Baranov SV, Dasgupta J, Hendrich MP, Dismukes GC (2006) Spectroscopic evidence for Ca2+ involvement in the assembly of the Mn4Ca cluster in the photosynthetic water-oxidizing complex. Biochemistry 45:12876–12889; (c) Kulik LV, Epel B, Lubitz W, Messinger J (2005) Mn-55 pulse ENDOR at 34 GHz of the S0 and S2 states of the oxygen-evolving complex in photosystem II. J Am Chem Soc 127:2392–2393; (d) Kulik LV, Epel B, Lubitz W, Messinger J (2007) Electronic structure of the Mn4OxCa cluster in the S0 and S2 states of the oxygen-evolving complex of photosystem II based on pulse Mn-55-ENDOR and EPR Spectroscopy. J Am Chem Soc 129:13421–13435; (e) Schinzel S, Schraut J, Arbuznikov AV, Siegbahn PEM, Kaupp M (2010) Density functional calculations of (55)Mn, (14)N and (13)C electron paramagnetic resonance parameters support an energetically feasible model system for the S2 state of the oxygen-evolving complex of photosystem II. Chem A Eur J 16:10424–10438; (f) Boussac A, Sugiura M, Rutherford AW, Dorlet R (2009) Complete EPR Spectrum of the S3-tate of the oxygen-evolving photosystem II. J Am Chem Soc 131:5050–5051; (g) Joliot P, Barbieri G, Chabaud R (1969) A new model of photochemical centers in system-2. Photochem Photobiol 10:309–329

    Article  Google Scholar 

  294. Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic o2 evolution.1. a linear 4step mechanism. Photochem Photobiol 11:457–475

    Article  CAS  Google Scholar 

  295. Debus RJ (1992) The manganese and calcium-ions of photosynthetic oxygen evolution. Biochim Biophys Acta 1102:269–352

    Article  CAS  Google Scholar 

  296. Witt HT (1996) Primary reactions of oxygenic photosynthesis. Ber Bunsenges Phys Chem 100:1923–1942

    Article  CAS  Google Scholar 

  297. Britt RD (1996) In: Ort DR Yocum (eds) Oxygenic photosynthesis – the light reactions, Kluwer, Dordrecht, pp 137–164

    Google Scholar 

  298. Yachandra VK, Sauer K, Klein MP (1996) Manganese cluster in photosynthesis: where plants oxidize water to dioxygen. Chem Rev 96:2927–2950

    Article  CAS  Google Scholar 

  299. Saygin Ö, Witt HT (1985) Sequence of the redox changes of manganese and pattern of the changes of charges during water cleavage in photosynthesis – optical events in the UV and the red region in the presence and absence of hydroxylamine. Photobiochem Photobiophys 10:71–81

    CAS  Google Scholar 

  300. Beck WF, Brudvig GW (1987) Reactions of hydroxylamine with the electron-donor side of photosystem-II. Biochemistry 26:8285–8295

    Article  CAS  Google Scholar 

  301. Messinger J, Renger G (1993) Generation, oxidation by the oxidized form of the tyrosine of polypeptide D2, and possible electronic configuration of the redox state-S0, state-S1, and state-S2 of the water oxidase in isolated spinach thylakoids. Biochemistry 32:9379–9386

    Article  CAS  Google Scholar 

  302. Riggs-Gelasco PJ, Mei R, Yocum CF, Penner-Hahn JE (1996) Reduced derivatives of the Mn cluster in the oxygen-evolving complex of photosystem II: An EXAFS study. J Am Chem Soc 118:2387–2399

    Article  CAS  Google Scholar 

  303. Messinger J, Seaton G, Wydrzynski T, Wacker U, Renger G (1997) S3 state of the water oxidase in photosystem II. Biochemistry 36:6862–6873

    Article  CAS  Google Scholar 

  304. Yachandra VK, Sauer K, Klein MP (1996) Manganese cluster in photosynthesis: where plants oxidize water to dioxygen. Chem Rev 96:2927–2950

    Article  CAS  Google Scholar 

  305. Schiller H, Dettmer J, Iuzzolino L, Dörner W, Meyer-Klaucke W, Solé VA, Nolting HF, Dau H (1998) Structure and orientation of the oxygen-evolving manganese complex of green algae and higher plants investigated by X-ray absorption linear dichroism spectroscopy on oriented photosystem II membrane particles. Biochemistry 37:7340–7350

    Article  CAS  Google Scholar 

  306. Penner-Hahn JE (1998) In Hill HAO, Sadler PJ, Thomson AJ (eds) Metal sites in proteins and models-redox centres. Springer, Berlin, pp 1–36

    Google Scholar 

  307. DeRose VJ, Mukerji I, Latimer MJ, Yachandra VK, Sauer K, Klein MP (1994) Comparison of the manganese oxygen-evolving complex in photosystem-II of spinach and synechococcus sp with multinuclear manganese model compounds by X-ray-absorption spectroscopy. J Am Chem Soc 116:5239–5249

    Article  CAS  Google Scholar 

  308. Dismukes GC, Siderer Y (1981) Intermediates of a polynuclear manganese center involved in photosynthetic oxidation of water. Proc Natl Acad Sci USA 78:274–278

    Article  CAS  Google Scholar 

  309. Review Article; Debus RJ (1992) The manganese and calcium-ions of photosynthetic oxygen evolution. Biochim Biophys Acta 1102:269–352

    Article  CAS  Google Scholar 

  310. Peloquin JM, Campbell KA, Randall DW, Evanchik MA, Pecoraro VL, Armstrong WH, Britt RD (2000) Mn-55 ENDOR of the S2-state multiline EPR signal of photosystem II: implications on the structure of the tetranuclear Mn cluster. J Am Chem Soc 122:10926–10942

    Article  CAS  Google Scholar 

  311. Haddy A, Dunham WR, Sands RH, Aasa R (1992) Multifrequency ESR investigations into the origin of the S2-state signal at g = 4 of the O2-evolving complex. Biochim Biophys Acta 1099:25–34

    Article  CAS  Google Scholar 

  312. Astashkin AV, Kodera Y, Kawamori A (1994) Pulsed EPR study of manganese g = 4.1 signal in plant photosystem-II. J Magn Reson 105:113–119

    Article  CAS  Google Scholar 

  313. Hansson O, Aasa R, Vanngard T (1987) The origin of the multiline and g = 4.1 electron-paramagnetic resonance signals from the oxygen-evolving system of photosystem-II. Biophys J 51:825–832

    Article  CAS  Google Scholar 

  314. Smith PJ, Ǻhrling KA, Pace RJ (1993) Nature of the S2 state electron-paramagnetic-resonance signals from the oxygen-evolving complex of photosystem-II – Q-band and oriented X-band studies. J Chem Soc Faraday Trans I 89:2863–2868

    Article  CAS  Google Scholar 

  315. Boussac A, Un S, Horner O, Rutherford AW (1998) High-spin states (S > = 5/2) of the photosystem II manganese complex. Biochemistry 37:4001–4007

    Article  CAS  Google Scholar 

  316. Messinger J, Nugent JHA, Evans MCW (1997) Detection of an EPR multiline signal for the S-0 state in photosystem II. Biochemistry 36:11055–11060

    Article  CAS  Google Scholar 

  317. Ǻhrling KA, Peterson S, Styring S (1997) An oscillating manganese electron paramagnetic resonance signal from the S0 state of the oxygen evolving complex in photosystem II. Biochemistry 36:13148–13152

    Article  Google Scholar 

  318. Messinger J, Robblee JH, Yu WO, Sauer K, Yachandra VK, Klein MP (1997) The S-0 state of the oxygen-evolving complex in photosystem II is paramagnetic: detection of EPR multiline signal. J Am Chem Soc 119:11349–11350

    Article  CAS  Google Scholar 

  319. Ǻhrling KA, Peterson S, Styring S (1998) The S0 state EPR signal from the Mn cluster in photosystem II arises from an isolated S = 1/2 ground state. Biochemistry 37:8115–8120

    Article  Google Scholar 

  320. Campbell KA, Peloquin JM, Pham DP, Debus RJ, Britt RD (1998) Parallel polarization EPR detection of an S1-state “multiline” EPR signal in photosystem II particles from Synechocystis sp. PCC 6803. J Am Chem Soc 120:447–448

    Article  CAS  Google Scholar 

  321. Campbell KA, Gregor W, Pham DP, Peloquin JM, Debus RJ, Britt RD (1998) The 23 and 17 kDa extrinsic proteins of photosystem II modulate the magnetic properties of the S1-state manganese cluster. Biochemistry 37:5039–5045

    Article  CAS  Google Scholar 

  322. Dexheimer SL, Klein MP (1992) Detection of a paramagnetic intermediate in the s1-state of the photosynthetic oxygen-evolving complex. J Am Chem Soc 114:2821–2826

    Article  CAS  Google Scholar 

  323. Yamauchi T, Mino H, Matsukawa T, Kawamori A, Ono T (1997) Parallel polarization electron paramagnetic resonance studies of the S1-state manganese cluster in the photosynthetic oxygen-evolving system. Biochemistry 36:7520–7526

    Article  CAS  Google Scholar 

  324. Matsukawa T, Mino H, Yoneda D, Kawamori A (1999) Dual-mode EPR study of new signals from the S3-state of oxygen-evolving complex in photosystem II. Biochemistry 38:4072–4077

    Article  CAS  Google Scholar 

  325. Ioannidis N, Petrouleas V (2000) Electron paramagnetic resonance signals from the S3 state of the oxygen-evolving complex. A broadened radical signal induced by low-temperature near-infrared light illumination. Biochemistry 39:5246–5254

    CAS  Google Scholar 

  326. Messinger J, Robblee JH, Bergmann U, Fernandez C, Glatzel P, Visser H, Cinco RM, McFarlane KL, Bellacchio E, Pizarro SA, Cramer SP, Sauer K, Klein MP, Yachandra VK (2001) Absence of Mn-centered oxidation in the S-2 - > S-3 transition: implications for the mechanism of photosynthetic water oxidation. J Am Chem Soc 123:7804–7820

    Article  CAS  Google Scholar 

  327. Morita Y, Suzuki S, Fukui K, Nakazawa S, Sato K, Shiomi D, Takui T, Nakasuji K (to be published)

    Google Scholar 

  328. (a) Ishimaru Y, Inoue K, Koga N, Iwamura H (1994) Structures and magnetic-properties of bis(hexafluoroacetylacetonato)manganese(II) ligated with n-[3- and 4-(n-tert-butyl-n-oxyaminophenyl)]imidazole. Chem Lett 1693–1696; (b) Kitano M, Ishimaru Y, Inoue K, Koga N, Iwamura H (1994) Exchange interaction in metal radical systems – chloro(meso-tetraphenylporphyrinato)chromium(III)s and (hexafluoroacetylacetonato)manganese(II) ligated with 3-(n-oxy-n-tert- and 4-(n-oxy-n-tert-butylamino)pyridines. Inorg Chem 33:6012–6019; (c) Iwamura H, Koga N (1999) The metal-dependent regiospecificity in the exchange coupling of manganese(II), copper(II), and chromium (III) ions with the aminoxyl radical attached as a substituent on the aromatic base ligands. Mol Cryst Liq Cryst 334:437–457

    Google Scholar 

  329. Field LM, Lahti PM, Palacio F (2002) 1:1 Complexes of 5-(4-[N-tert-butyl-N-aminoxyl]phenyl) pyrimidine with manganese(II) and copper(II) hexafluoroacetonylacetonate. J Chem Soc (Chem Commun) 2002:636–637

    Google Scholar 

  330. Sato K, Shiomi D, Takui T (to be published)

    Google Scholar 

  331. Ayabe K, Nishida S, Sato K, Ise T, Nakazawa S, Sugisaki K, Morita Y, Toyota K, Shiomi D, Kitagawa M, Takui T (2012) Pulsed electron spin nutation spectroscopy of weakly exchange-coupled biradicals: a general theoretical approach and determination of the spin dipolar interaction. Phys Chem Chem Phys 14:9137–9148

    Google Scholar 

Download references

Acknowledgments

This work has been supported by Grants-in-Aid for Scientific Research (B, C) and Scientific Research on Innovative Areas, “Quantum Cybernetics” from MEXT, Japan. The support by JST through Core Research for Evolutional Science and Technology (CREST) project, “Implementation of Molecular Spin Quantum Computers” and the support by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) project on “Quantum Information Processing”, JSPS, Japan are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeji Takui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Takui, T., Nakazawa, S., Matsuoka, H., Furukawa, K., Sato, K., Shiomi, D. (2012). Molecule-Based Exchange-Coupled High-Spin Clusters: Conventional, High-Field/High-Frequency and Pulse-Based Electron Spin Resonance of Molecule-Based Magnetically Coupled Systems. In: Lund, A., Shiotani, M. (eds) EPR of Free Radicals in Solids II. Progress in Theoretical Chemistry and Physics, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4887-3_3

Download citation

Publish with us

Policies and ethics