Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 840 Accesses

Abstract

The thesis so far has treated the relative feedback between nonlinearity and disorder in the radiation-matter interaction processes by using a perturbative approach for what concerns the theoretical analysis. Furthermore, we dealt with a limited number of localizations. In the previous chapter, for example, we studied the interaction of a single localized wave-form (just one soliton) with the surface Anderson localizations. We have treated both nonlinearity that disorder as a perturbation. One can argue if is it possible to study the emerging phenomena by treating nonlinearity and disorder on the same level. What happens if we simultaneously consider the light-matter interaction when a large number of localizations are taken into account? Is it possible to employ some method dealing with physical systems with multiple bodies? In order to apply the mean-field theories for many bodies systems, we treat with a standard Random Laser (RL). Later we discuss with details the physical features of this kind of laser, for now it is enough to know that a RL is an optical device sustaining laser action in a disordered medium. This system presents a large number of electromagnetic modes with overlapping resonances. So the RL displays all the features we are looking for: many disorderly distributed states interacting in a nonlinear manner. We are dealing with a complex system and we need an analytical framework able to treat the multi bodies problem. Through some approximations, it is possible to express the interacting light in the disordered resonant system via very general equations, relating to a mean-field spin-glass model [1]. The Spin-Glass theory is an approach to obtain the dynamical and thermodynamical behaviors of a complex system. We solve our model with the replica method, a subtle trick for which the physical system is replicated n-times in order to calculate the partition function and all the physical observables. By operating on the degree of disorder and nonlinearity (through the energy furnished to the system), we are able to obtain the phase-diagram of the RL, describing the very interesting complex landscape of behavior of the nonlinear waves in random systems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A factor of \(8\) has to be considered because of the over-counting of terms in Ref. [7].

References

  1. Mézard M, Parisi G, Virasoro MA (1987) Spin glass theory and beyond. World Scientific, Singapore

    MATH  Google Scholar 

  2. Cao H (2003) Waves in random media and complex media, vol 13, p R1

    Google Scholar 

  3. John S, Pang G (1996) Phys Rev A 54:3642

    Article  ADS  Google Scholar 

  4. Lubatsch A, Kroha J, Busch K (2005) Phys Rev A 71:184201

    ADS  Google Scholar 

  5. Wiersma DS, Vanalbada MP, Lagendijk A (1995) Nature 373:203

    Article  ADS  Google Scholar 

  6. Lepri S, Cavalieri S, Oppo G, Wiersma D (2007) Phys Rev A 75:063820

    Article  ADS  Google Scholar 

  7. Angelani L, Conti C, Ruocco G, Zamponi F (2006) Phys Rev Lett 96:065702

    Article  ADS  Google Scholar 

  8. Beenakker CWJ (1998) Phys Rev Lett 81:1829

    Article  ADS  Google Scholar 

  9. Zhang D et al (1995) Opt Commun 118:462

    Article  Google Scholar 

  10. Polson RC, Vardeny ZV (2004) Appl phys lett 85:1289

    Article  ADS  Google Scholar 

  11. Siddique M, Alfano RR, Berger GA, Kempe M, Genack AZ (1996) Opt Lett 21:450

    Google Scholar 

  12. Florescu L, John S (2004) Phys Rev Lett 93:013602

    Article  ADS  Google Scholar 

  13. Deych LI (2005) Phys Rev Lett 95:043902

    Article  ADS  Google Scholar 

  14. Tureci HE, Ge L, Rotter S, Stone AD (2008) Science 320:643

    Article  ADS  Google Scholar 

  15. Patra M (2002) Phys Rev A 65:0403809

    Article  ADS  Google Scholar 

  16. Hackenbroich G, Viviescas C, Elattari B, Haake F (2001) Phys Rev Lett 86:5262

    Article  ADS  Google Scholar 

  17. Berger GA, Kempe M, Genack AZ (1997) Phys Rev E 56:6118

    Article  ADS  Google Scholar 

  18. Conti C, Leonetti M, Fratalocchi A, Angelani L, Ruocco G (2008) Phys Rev Lett 101:143901

    Article  ADS  Google Scholar 

  19. Wiersma DS (2008) Nat Phys 4:359

    Article  Google Scholar 

  20. Ambartsumyan R, Basov N, Kryukov P, Lethokov S (1996) IEEE J Quantum Electron 2:442

    Article  ADS  Google Scholar 

  21. Schawlow AL, Townes CH (1958) Phys Rev 112:1940

    Article  ADS  Google Scholar 

  22. Haken H (1978) Synergetics. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  23. Weill R, Rosen A, Gordon A, Gat O, Fischer B (2005) Phys Rev Lett 95:013903

    Article  ADS  Google Scholar 

  24. Angelani L, Conti C, Prignano L, Ruocco G, Zamponi F (2007) Phys Rev B 76:064202

    Article  ADS  Google Scholar 

  25. Haus HA (2000) IEEE J Quantum Electron 6:1173

    Article  Google Scholar 

  26. Cao H, Jiang X, Ling Y, Xu JX, Soukoulis CM (2003) Phys Rev B 67:161101R

    Article  ADS  Google Scholar 

  27. Gordon A, Fischer B (2003) Opt Comm 223:151

    Article  ADS  Google Scholar 

  28. Angelani L, Conti C, Ruocco G, Zamponi F (2006) Phys Rev B 74:104207

    Article  ADS  Google Scholar 

  29. Gardner E (1985) Nucl Phys B 257:747

    Article  ADS  Google Scholar 

  30. Crisanti A, Sommers H-J (1992) Zeit Phys B 87:341

    Article  ADS  Google Scholar 

  31. Gordon A, Fischer B (2002) Phys Rev Lett 8:103901

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viola Folli .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Folli, V. (2012). Glassy Behavior of Laser. In: Nonlinear Optics and Laser Emission through Random Media. Springer Theses. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4513-1_8

Download citation

Publish with us

Policies and ethics