Skip to main content

Solar Diurnal Tides in the Middle Atmosphere: Interactions with the Zonal-Mean Flow, Planetary Waves and Gravity Waves

  • Chapter
Climate and Weather of the Sun-Earth System (CAWSES)

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

  • 1594 Accesses

Abstract

The dynamics of solar tides is investigated with regard to variations of the background atmosphere, including planetary waves (PW), and to the interaction with gravity waves (GW). (1) Using a linear model with a clear cause-effect relationship, it is shown that planetary waves play an important role in tidal dynamics, most importantly by inducing non-migrating tidal components from a migrating thermal forcing. (2) Ray-tracing simulations are used to analyze the GW force on the large-scale flow including the solar tides. In comparison to classic GW parameterizations, the inclusion of time-dependence and horizontal refraction leads to a significant decrease of the GW drag.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achatz, U., Grieger, N., & Schmidt, H. (2008). Mechanisms controlling the diurnal solar tide: analysis using a GCM and a linear model. Journal of Geophysical Research, 113, A08303. doi:10.1029/2007JA012967.

    Article  Google Scholar 

  • Achatz, U., Klein, R., & Senf, F. (2010). Gravity waves, scale asymptotics, and the pseudo-incompressible equations. Journal of Fluid Mechanics, 663, 120–147.

    Article  Google Scholar 

  • Becker, E., & Schmitz, G. (2003). Climatological effects of orography and land-sea heating contrasts on the gravity wave-driven circulation of the mesosphere. Journal of the Atmospheric Sciences, 60, 103–118. doi:10.1175/1520-0469(2003)060.

    Article  Google Scholar 

  • Chapman, S., & Lindzen, R. S. (1970). Atmospheric tides. Dordrecht: Reidel.

    Google Scholar 

  • Eckermann, S. D., & Marks, C. J. (1996). An idealized ray model of gravity wave-tidal interactions. Journal of Geophysical Research, 101, 21195–21212.

    Article  Google Scholar 

  • Fritts, D. C., & Alexander, M. J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics, 41, 1003. doi:10.1029/2001RG000106.

    Article  Google Scholar 

  • Grieger, N., Schmitz, G., & Achatz, U. (2004). The dependence of the nonmigrating diurnal tide in the mesosphere and lower thermosphere on stationary planetary waves. Journal of Atmospheric and Solar-Terrestrial Physics, 66, 733–754. doi:10.1016/j.jastp.2004.01.022.

    Article  Google Scholar 

  • Grimshaw, R. H. J. (1975). Nonlinear internal gravity waves in a rotating fluid. Journal of Fluid Mechanics, 71, 497–512. doi:10.1017/S0022112075002704.

    Article  Google Scholar 

  • Hagan, M. E., & Roble, R. G. (2001). Modelling diurnal tidal variability with the NCAR TIME-GCM. Journal of Geophysical Research, 106, 24869–24882.

    Article  Google Scholar 

  • Hasha, A., Bühler, O., & Scinocca, J. (2008). Gravity wave refraction by three-dimensionally varying winds and the global transport of angular momentum. Journal of the Atmospheric Sciences, 65, 2892–2906. doi:10.1175/2007JAS2561.1.

    Article  Google Scholar 

  • Lindzen, R. S. (1981). Turbulence and stress owing to gravity wave and tidal breakdown. Journal of Geophysical Research, 86, 9707–9714. doi:10.1029/JC086iC10p09707.

    Article  Google Scholar 

  • McLandress, C. (1998). On the importance of gravity waves in the middle atmosphere and their parameterization in general circulation models. Journal of Atmospheric and Solar-Terrestrial Physics, 60, 1357–1383.

    Article  Google Scholar 

  • McLandress, C. (2002a). The seasonal variation of the propagating diurnal tide in the mesosphere and lower thermosphere. Part I: The role of gravity waves and planetary waves. Journal of the Atmospheric Sciences, 59, 893–906.

    Article  Google Scholar 

  • McLandress, C. (2002b). The seasonal variation of the propagating diurnal tide in the mesosphere and lower thermosphere. Part II: The role of tidal heating and zonal mean winds. Journal of the Atmospheric Sciences, 59, 907–922.

    Article  Google Scholar 

  • Miyahara, S., & Forbes, J. (1991). Interactions between gravity waves and the diurnal tide in the mesosphere and lower thermosphere. Journal of the Meteorological Society of Japan, 69(5), 523–531.

    Google Scholar 

  • Oberheide, J., Wu, Q., Ortland, D. A., Killeen, T. L., Hagan, M. E., Roble, R. G., Niciejewski, R. J., & Skinner, W. R. (2005). Non-migrating diurnal tides as measured by the TIMED Doppler interferometer: preliminary results. Advances in Space Research, 35, 1911–1917. doi:10.1016/j.asr.2005.01.063.

    Article  Google Scholar 

  • Oberheide, J., Wu, Q., Killeen, T. L., Hagan, M. E., & Roble, R. G. (2006). Diurnal nonmigrating tides from TIMED Doppler interferometer wind data: monthly climatologies and seasonal variations. Journal of Geophysical Research, 111, A10S03. doi:10.1029/2005JA011491.

    Article  Google Scholar 

  • Ortland, D. A., & Alexander, M. J. (2006). Gravity wave influence on the global structure of the diurnal tide in the mesosphere and lower thermosphere. Journal of Geophysical Research, 111, A10S10.

    Article  Google Scholar 

  • Schmidt, H., Brasseur, G. P., Charron, M., Manzini, E., Giorgetta, M. A., Diehl, T., Fomichev, V. I., Kinnison, D., Marsh, D., & Walters, S. (2006). The HAMMONIA chemistry climate model: sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling. Journal of Climate, 19, 3903–3931. doi:10.1175/JCLI3829.1.

    Article  Google Scholar 

  • Senf, F., & Achatz, U. (2011). On the impact of middle-atmosphere thermal tides on the propagation and dissipation of gravity waves. Journal of Geophysical Research, 116, D24110. doi:10.1029/2011JD015794.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Erich Becker for inspiring discussions and Hauke Schmidt from MPI Hamburg for providing the set of HAMMONIA data. U.A. thanks Deutsche Forschungsgemeinschaft for partial support through the MetStröm Priority Research Program (SPP 1276), and through Grant Ac 71/4-1. U.A. and F.S. thank Deutsche Forschungsgemeinschaft for partial support through the CAWSES Priority Research Program (SPP 1176), and through Grant Ac 71/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Achatz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Achatz, U., Senf, F., Grieger, N. (2013). Solar Diurnal Tides in the Middle Atmosphere: Interactions with the Zonal-Mean Flow, Planetary Waves and Gravity Waves. In: Lübken, FJ. (eds) Climate and Weather of the Sun-Earth System (CAWSES). Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4348-9_27

Download citation

Publish with us

Policies and ethics