We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

More About Linear Stability Theory: Studies of The Initial-Value Problem | SpringerLink
Skip to main content

More About Linear Stability Theory: Studies of The Initial-Value Problem

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
  • 3791 Accesses

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The normal-mode method of the linear stability theory, which was considered in Chap. 2, deals only with special “wave-like” infinitesimal disturbances of a given laminar flow. This method equates the strict instability of a steady flow to the existence of at least one wave-like disturbance (proportional to \( {{e}^{-}}^{i\omega t} \) and, in the case of homogeneity in the streamwise direction Ox, also to e ikx which grows exponentially as t → ∞ or, in the spatial formulation, as \(x\to \infty \)), and states that ordinary instability means that there exists a wave-like disturbance which is not damped at infinity. (The adjectives “strict” and “ordinary” will be omitted below in all cases where the difference between two types of instability is unimportant or it is clear from context which instability is considered.) However, is this definition of instability always appropriate? Is it not more reasonable to call a flow unstable, if there exists at least one small disturbance of any form which grows without bound after a long-enough time? Moreover, in practice even a bounded but large-enough initial growth of a small disturbance can violate the applicability of the linear stability theory, and make the flow unstable whatever be the asymptotic behavior of this disturbance according to linear theory. In Sect. 2.5 we have already noted in this respect that practical usefulness of the method of normal modes must not be exaggerated. In this chapter this topic will be considered at greater length.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    According to Lyapunov, a trajectory \( {{U}_{0}}(t),0\le t<\infty , \) of a dynamic system in a phase space with a norm \( ||U|| \)is stable, if for any \( \varepsilon>0 \) there exists a number \( \delta (\varepsilon )>0 \) such that for any initial value \( U(0) \) satisfying the inequality \( ||U(0)-{{U}_{0}}(0)||<\delta (\varepsilon ) \) the inequality \( ||U(t)-{{U}_{0}}(t)||<\varepsilon\) is valid for any t. For more details about such stability and discussion of its application to fluid mechanics, see Sect. 4.1 in Chap. 4 of this series. Lyapunov’s stability clearly depends on the selection of the norm \( ||U|| \) which in studies by Dikii included the absolute values of the function and its two derivatives on z.

  2. 2.

    It is true that Eq. (3.13) implies only that if the initial values of \( |w|,\ |w'| \) and \( |w''| \) are small enough, then their root-mean-square values will be bounded by some small constants at any value of t. However, using results of the initial-value-problem investigations, it is possible to prove that in fact the values of these functions of t and z will be uniformly bounded by some small constants for all t > 0 and 0 < z < H; see, e.g., Dikii (1976).

  3. 3.

    They are not identical to normal modes since the functions c(k) do not coincide with the discrete eigenvalues of Rayleigh’s eigenvalue problem, which do not exist in many important cases. In fact, functions c(k) correspond to limits, as \( \operatorname{Re}\to \infty , \) of discrete eigenvalues of the Orr-Sommerfeld eigenvalue problem for given profile U(z); their determination from the Rayleigh equation requires careful examination of the analytic continuation fo this equation into the complex-variable plane.

  4. 4.

    These results were found for the plane-parallel model of the Blasius boundary layer. In reality the thickness of a boundary layer increases with x and this must lead to gradual weakening of the influence of viscosity. This effect was studied by Luchini (1996) who found that in the model of a boundary layer with the thickness depending on x a three-dimensional disturbance can exist which algebraic growth produced by the lift-up effect overcomes the viscous damping. Therefore, within the limits of the linear stability theory and of the model of a boundary layer of infinite streamwise extent, this disturbance is growing at all times.

  5. 5.

    The physical mechanism of the “force effect” is rather simple: If \( U'\ne 0, \) the vertical velocity w leads to vertical displacements of fluid particles transferring their original streamwise velocity to a new height with different mean velocity U, i.e., producing additional disturbances of the streamwise velocity (Landahl’s lift-up effect mentioned in Sect. 3.2). If \( U'\ne 0, \) and \( \partial w/\partial y\ne 0, \) then the lift-up effect will vary with the span wise coordinate y creating regions of non-zero derivative \( \partial u/\partial y \) and hence acting as a source of vertical vorticity. Note also that the first Eq. (3.53) describes forced streamwise velocity oscillations where the force on the right side represents the lift-up effect.

  6. 6.

    Note that the properties of self-adjointness and normality of an operator L depend not only on the operator itself but also on the norm (and scalar product) introduced in the space H. Thus, both these properties can be lost (or gained) when the norm is changed.

  7. 7.

    The situation is different in the case of stability problems four Couette-Taylor flow between two rotating coaxial cylinders and for convection in a layer of fluid heated from below. This fact leads to a fundamental difference between these two problems and stability problems for parallel shear flows, and means that the initial-problem approach is not useful in the case of the former two problems.

References

  • Arnold, V. I. (1972) Notes on the three-dimensional flow pattern of a perfect fluid in the presence of a small perturbation of the initial velocity field. Prikladnoi Mathematik Mekh, 36, 255–262 (Trans.: Appl. Math. Mech.,36, 236–242, 1972).

    Google Scholar 

  • Baggett, J. S. & Trefethen, L. N. (1997) Low-dimensional models of subcritical transition to turbulence. Physics of Fluids, 9, 1043–1053.

    MathSciNet  MATH  Google Scholar 

  • Baggett, J. S., Driscoll, T. A. & Trefethen, L. N. (1995) A mostly linear model of transition to turbulence. Physics of Fluids, 7, 833–838.

    MathSciNet  MATH  Google Scholar 

  • Benjamin, T. B. (1961) The development of three-dimensional disturbances in an unstable film of liquid flowing down an inclined plane. Journal of Fluid Mechanics, 10, 401–419.

    MathSciNet  MATH  Google Scholar 

  • Benney, D. J. & Gustavsson, L. H. (1981) A new mechanism for linear and nonlinear hydrodynamic instability. Studies in Applied Mathematics, 64, 185–209.

    MathSciNet  MATH  Google Scholar 

  • Bergström, L. (1992) Initial algebraic growth of small angular-dependent disturbances in pipe Poiseuille flow. Studies in Applied Mathematics, 87, 61–79.

    MathSciNet  Google Scholar 

  • Bergström, L. (1993a) Optimal growth of small disturbances in pipe Poiseuille flow. Physics of Fluids, 5, 2710–2720

    MATH  Google Scholar 

  • Bergström, L. (1993b) Evolution of laminar disturbances in pipe Poiseuille flow. European Journal of Mechanics-B/Fluids, 12, 749–768.

    Google Scholar 

  • Bergström, L. (1995) Transient properties of a developing laminar disturbance in pipe Poiseuille flow. European Journal of Mechanics - B/Fluids, 14, 601–615.

    Google Scholar 

  • Betchov, R. & Criminale, W.O. (1967) Stability of Parallel Flows, New York: Academic Press.

    Google Scholar 

  • Boberg, L. & Brosa, U. (1988) Onset of turbulence in a pipe. Zeitschrift fur Naturforschung A: Journal of Physical Sciences, 43, 697–726.

    Google Scholar 

  • Bogdat’eva, N. N. & Dikii, L. A. (1973) Note on the stability of three-dimensional flows of an ideal fluid. Prikladnoi Mathematik Mekh, 37, 557–558 (Trans.: Appl. Math. Mech., 37, 536–537, 1973).

    Google Scholar 

  • Booker, J. R. & Bretherton, F.P. (1967) The critical layer for internal gravity waves in a shear flow. Journal of Fluid Mechanics, 27, 517–539.

    Google Scholar 

  • Breuer, K. S. & Haritonidis, J. H. (1990) The evolution of localized disturbances in a laminar boundary layer. Part 1. Weak disturbances. Journal of Fluid Mechanics, 220, 569–594.

    Google Scholar 

  • Breuer, K. S. & Kuraishi, T. (1994) Transient growth in two-and three-dimensional boundary layers. Physics of Fluids, 6, 1983–1993.

    MATH  Google Scholar 

  • Brevdo, L. (1995a) Initial-boundary-value stability problem for the Blasius boundary laeyr. Zeitschrift fur Angewandte Mathematik und Mechanik, 75, 371–378.

    MathSciNet  MATH  Google Scholar 

  • Brevdo, L. (1995b) Convectively unstable wave packets in the Blasius boundary layer. Zeitschrift fur Angewandte Mathematik und Mechanik, 75, 423–436.

    MathSciNet  MATH  Google Scholar 

  • Brown, S. N. & Stewartson, K. (1980) On the algebraic decay of disturbances in a stratified linear shear flow. Journal of Fluid Mechanics, 100, 811–816.

    MathSciNet  MATH  Google Scholar 

  • Bun, Y. & Criminale, W. O. (1994) Early-period dynamics of an incompressible mixing layer. Journal of Fluid Mechanics, 273, 31–82.

    MathSciNet  MATH  Google Scholar 

  • Burger, A. P. (1962) Instability associated with the continuous spectrum in a baroclinic flow. Journal of Atmospheric Science, 23, 272–277.

    Google Scholar 

  • Burridge, D. M. & Drazin, P. G. (1969) Comments on “Stability of pipe Poiseuille flow”. Physics of Fluids, 12, 264–265.

    Google Scholar 

  • Busse, F. H. (1969) Bounds on the transport of mass and momentum by turbulent flow between parallel plates. Zeitschrift fur Angewandte Mathematik und Physik, 20, 1–14.

    MATH  Google Scholar 

  • Butler, K. M. & Farrell, B. F. (1992) Three-dimensional optimal perturbations in viscous shear flow. Physics of Fluids: A, 4, 1637–1650.

    Google Scholar 

  • Butler, K. M. & Farrell, B. F. (1993) Optimal perturbations and streak spacing in wall-bounded turbulent shear flow. Physics of Fluids: A, 5, 774–777.

    Google Scholar 

  • Case, K. M. (1960a) Stability of inviscid plane Couette flow. Physics of Fluids, 3, 143–148.

    MathSciNet  Google Scholar 

  • Case, K. M. (1960b) Stability of idealized atmosphere. I. Discussion of results. Physics of Fluids, 3, 149–154.

    MathSciNet  MATH  Google Scholar 

  • Chimonas, G. (1979) Algebraic disturbances in stratified shear flows. Journal of Fluid Mechanics, 90, 1–19.

    MathSciNet  MATH  Google Scholar 

  • Chin, W. C. (1980) Effect of dissipation and dispersion on slowly-varying wavetrains. Journal of AIAA, 18, 149–158.

    MathSciNet  MATH  Google Scholar 

  • Craik, A. D. D. (1981) The development of wavepackets in unstable flows. Proceedings of the Royal Society of London Series A, 373, 457–476.

    MathSciNet  MATH  Google Scholar 

  • Craik, A. D. D. (1982) The growth of localized disturbances in unstable flows. Journal of Applied Mechanics, 49, 284–290.

    MATH  Google Scholar 

  • Craik, A. D. D. & Criminale, W. O. (1986) Evolution of wavelike disturbances in shear flows: a class of exact solutions of the Navier-Stokes equations. Proceedings of the Royal Society of London Series A, 406, 13–26.

    MathSciNet  MATH  Google Scholar 

  • Criminale, W. O. (1960) Three-dimensional laminar instability, AGARD Rep. No. 266.

    Google Scholar 

  • Criminale, W. O., & Drazin, P. G. (1990) The evolution of linearized perturbations of parallel flows. Studies in Applied Mathematics, 83, 123–157.

    MathSciNet  MATH  Google Scholar 

  • Criminale, W. O. & Kovasznay, L. S. G. (1962) The growth of localized disturbances in a laminar boundary layer. Journal of Fluid Mechanics, 14, 59–80.

    MathSciNet  MATH  Google Scholar 

  • Criminale, W. O. & Smith, F. I. P. (1994) Fundamental solutions in perturbed shear flows. Fluid Dynamics Research, 13, 167–195.

    Google Scholar 

  • Criminale, W. O., Jackson, T. L. & Lasseigne, D. G. (1995) Towards enhancing and delaying disturbances in free shear flows. Journal of Fluid Mechanics, 294, 283–300.

    MathSciNet  MATH  Google Scholar 

  • Criminale, W. O., Jackson, T. L., Lasseigne, D. G. & Joslin, R. D. (1997) Perturbation dynamics in viscous channel flows. Journal of Fluid Mechanics, 339, 55–75.

    MathSciNet  MATH  Google Scholar 

  • Criminale, W. O., Long, B. & Zhu, M. (1991) General three-dimensional disturbances to inviscid Couette flow. Studies in Applied Mathematics, 85, 249–267.

    MathSciNet  MATH  Google Scholar 

  • Davey, A. & Reid, W. H. (1977) On the stability of stratified viscous plane Couette flow. Part 1. Constant buoyancy frequency. Journal of Fluid Mechanics, 80, 509–525.

    MATH  Google Scholar 

  • Deissler, R. J. (1987) The convective nature of instability in plane Poiseuille flow. Physics of Fluids, 30, 2303–2305.

    Google Scholar 

  • Diedrichs, B. (1996) Three-dimensional disturbances; considering starting profiles and optimal profiles in Couette and Poiseuille flow. Physics of Fluids, 8, 1149–1158.

    MATH  Google Scholar 

  • Dikii, L. A. (1960a) Stability of plane-parallel flows of an inhomogeneous fluid. Prikladnoi Mathematik Mekh, 24, 249–257 (Trans.: Appl. Math. Mech., 24, 357–369, 1960).

    MathSciNet  Google Scholar 

  • Dikii, L. A. (1960b) Stability of plane-parallel flows of an ideal fluid. Doklady Akademii Nauk SSSR, 135, 1068–1071 (trans.: Sov. Phys. Dokl., 5, 1179–1182, 1960)

    Google Scholar 

  • Dikii, L. A. (1960c) The roots of the Whittaker functions and the Macdonald functions with a complex index. Izvestia Akademii Nauk SSSR, ser. Matem, 24, 943–954

    MathSciNet  Google Scholar 

  • Dikii, L. A. (1976) Hydrodynamic Stability and Dynamics of the Atmosphere, Gidrometizdat, Leningrad (in Russian).

    Google Scholar 

  • Di Prima, R. C. & Habetler, G.J. (1969) A completeness theorem for non-selfadjoint eigenvalue problems in hydrodynamic stability. Archive for Rational Mechanics and Analysis, 34, 218–227.

    MathSciNet  MATH  Google Scholar 

  • Drazin, P. G. & Howard, L. N. (1966) Hydrodynamic stability of parallel flows of inviscid fluid. Advances in Applied Mechanics, 9, 1–89.

    Google Scholar 

  • Drazin, P. G. & Reid, W. H. (1981) Hydrodynamic Stability. Cambridge: Cambridge university Press.

    MATH  Google Scholar 

  • Dunford, N. & Schwartz, J. T. (1958, 1971) Linear Operators. Vols. 1–3, New York: Wiley-Interscience.

    Google Scholar 

  • Dunford, N. & Schwartz, J. T. (1971) Linear Operators. Vols. 1–3, New York: Wiley-Interscience.

    Google Scholar 

  • Dyson, F. J. (1960) Stability of idealized atmosphere. II. Zeros of the confluent hypergeometric function. Physics of Fluids, 3, 155–158.

    MathSciNet  MATH  Google Scholar 

  • Easthope, P. F. & Criminale, W. O. (1992) An alternative approach to disturbances in boundary layers. In: T. B. Gatski, S. Sarkar, & C. G. Speciale (eds). Studies in Turbulence (pp. 582–602) New York: Springer.

    Google Scholar 

  • Eckhaus, W. (1965) Studies in Non-Linear Stability Theory, Berlin: Springer.

    MATH  Google Scholar 

  • Eliassen, A., Høiland, E. & Riis, E. (1953) Two-dimensional perturbation of a flow with constant shear of a stratified fluid. Institute for Weather, Climate Research, Oslo, Publ. No. 1, 1–30.

    Google Scholar 

  • Ellingsen, T. & Palm, E. (1975) Stability of linear flow. Physics of Fluids, 18, 487–488.

    MATH  Google Scholar 

  • Engevik, L. (1966) On the Stability of Plane Inviscid Couette Flow, Rep. No. 12, The Department of Applied Mathematics, Bergen University.

    Google Scholar 

  • Faddeev, L. D. (1972) On the theory of the stability of stationary plane-parallel flows of an ideal fluid. Report of Scientific Seminars Leningrad Branch Mathematical Institute, 21, 164–172 (English Trans.: J. Soviet Math., 1, 518–525, 1973).

    Google Scholar 

  • Farrell, B. F. (1982) The initial growth of disturbances in a baroclinic flow. Journal of Atmospheric Science, 39, 1663–1686.

    Google Scholar 

  • Farrell, B. F. (1987) Developing disturbances in shear. Journal of Atmospheric Sciences, 44, 2191–2199.

    Google Scholar 

  • Farrell, B. F. (1988a) Optimal excitation of perturbations in viscous shear flow. Physics of Fluids, 31, 2039–2102.

    Google Scholar 

  • Farrell, B. F. (1988b) Optimal excitation of neutral Rossby waves. Journal of Atmospheric Science, 45, 163–172.

    Google Scholar 

  • Farrell, B. F. (1989) Optimal excitation of baroclinic waves. Journal of Atmospheric Science, 46, 1194–1206.

    Google Scholar 

  • Farrell, B. F. & Ioannou, P. J. (1993a) Transient development of perturbations in stratified shear flow. Journal of Atmospheric Science, 50, 2201–2214.

    MathSciNet  Google Scholar 

  • Farrell, B. F. & Ioannou, P. J. (1993b) Optimal excitation of three-dimensional perturbations in viscous constant shear flow. Physics of Fluids, 5, 1390–1400.

    MATH  Google Scholar 

  • Farrell, B. F. & Ioannou, P. J. (1993c) Perturbation growth in shear flow exhibits universality. Physics of Fluids, 5, 2298–2300.

    Google Scholar 

  • Farrell, B. F. & Moore, A. M. (1992) An adjoint method of obtaining the most rapidly growing perturbation to oceanic flows. Journal of Physical Oceanography, 22, 318–349.

    Google Scholar 

  • Fasel, H. F., Rist, U. & Konzelmann, U. (1987) Numerical investigation of the three-dimensional development in boundary-layer transition. AIAA Paper No. 87–1203.

    Google Scholar 

  • Gaster, M. (1965) On the generation of spatially growing waves in a boundary layer. Journal of Fluid Mechanics, 22, 433–441.

    MathSciNet  MATH  Google Scholar 

  • Gaster, M. (1968a) The development of three-dimensional wave packets in a boundary layer. Journal of Fluid Mechanics, 32, 173–184.

    MATH  Google Scholar 

  • Gaster, M. (1968b) Growth of disturbances in both space and time. Physics of Fluids, 11, 723–727.

    Google Scholar 

  • Gaster, M. (1975) A theoretical model of a wave packet in the boundary layer on a flat plate. Proceedings of the Royal Society of London Series A, 347, 271–289

    Google Scholar 

  • Gaster, M. (1979) The propagation of linear wave-packets in laminar boundary layers—asymptotic theory for nonconservative wave systems. AIAA Paper No.79–1492.

    Google Scholar 

  • Gaster, M. (1981) Propagation of linear wave packets in laminar boundary layers. AIAA Journal, 19, 419–423.

    MATH  Google Scholar 

  • Gaster, M. (1982a) Estimates of the errors incurred in various asymptotic representations of wave packets. Journal of Fluid Mechanics, 121, 365–377.

    MathSciNet  MATH  Google Scholar 

  • Gaster, M. (1982b) The development of a two-dimensional wavepacket in a growing boundary layer. Proceedings of the Royal Society of London Series A, 384, 317–332.

    MATH  Google Scholar 

  • Gaster, M. & Davey, A. (1968) The development of three-dimensional wave-packets in unbounded parallel flows. Journal of Fluid Mechanics, 32, 801–808.

    MATH  Google Scholar 

  • Gaster, M. & Grant, I. (1975) An experimental investigation of the formation and development of a wave packet in a laminar boundary layer. Proceedings of the Royal Society of London Series A, 347, 253–269.

    Google Scholar 

  • Gaster, M. & Jordinson, R. (1975) On the eigenvalues of the Orr-Sommerfeld equation. Journal of Fluid Mechanics, 72, 121–133.

    MATH  Google Scholar 

  • Gebhardt, T. & Grossmann, S. (1994) Chaos transition despite linear stability. Physical Review E, 50, 3705–3711.

    Google Scholar 

  • Gel’fand, I. M. & Shilov, G.E. (1958) Generalized Functions. Vol. 3. Theory of Differential Equations, Moscow: Gostekhizdat (Trans.: Academic Press, New York, 1967).

    Google Scholar 

  • Goldstein, S. (1931) On the stability of superimposed streams of fluids of different densities. Proceedings of the Royal Society of London Series A, 132, 524–548.

    Google Scholar 

  • Grossmann, S. (1995) Wie entsteht eigentlich Turbulenz? Physikalische Blätter, 51, 641–646.

    MathSciNet  Google Scholar 

  • Grossmann, S. (1996) Instability without instability? In: J. Parisi, S. C. Müller, & W. Zimmermann, (eds.)Nonlinear Physics of Complex Systems. Current Status and Future Trends, (pp. 10–22), Berlin: Springer.

    Google Scholar 

  • Gustavsson, L. H. (1978) On the evolution of disturbances in boundary layer flows, Tech. Rep. TRITA-MEK 78–02, Royal Institute of Technology, Stockholm.

    Google Scholar 

  • Gustavsson, L. H. (1979) Initial-value problem for boundary layer flows. Physics of Fluids, 22, 1602–1605.

    MathSciNet  MATH  Google Scholar 

  • Gustavsson, L. H. (1981) Resonant growth of three-dimensional disturbances in plane Poiseuille flow. Journal of Fluid Mechanics, 112, 253–264.

    MATH  Google Scholar 

  • Gustavsson, L. H. (1986) Excitation of direct resonances in plane Poiseuille flow. Studies in Applied Mathematics, 75, 227–248.

    MathSciNet  MATH  Google Scholar 

  • Gustavsson, L. H. (1989) Direct resonance of nonaxisymmetric disturbances in pipe flow. Studies in Applied Mathematics, 80, 95–108.

    MathSciNet  MATH  Google Scholar 

  • Gustavsson, L. H. (1991) Energy growth of three-dimensional disturbances in plane Poiseuille flow. Journal of Fluid Mechanics, 224, 241–260.

    MATH  Google Scholar 

  • Gustavsson, L. H. & Hultgren, L. S. (1980) A resonance mechanism in plane Couette flow. Journal of Fluid Mechanics, 98, 149–159.

    MathSciNet  MATH  Google Scholar 

  • Hagen, G. (1839) Über die Bewegung des Wassers in engen zylindrischen Röhren. Pogg. Annales, 46, 423–442.

    Google Scholar 

  • Hartman, R. J. (1975) Wave propagation in a stratified shear flow. Journal of Fluid Mechanics, 71, 89–104.

    MATH  Google Scholar 

  • Henningson, D. S. (1988) The inviscid initial value problem for a piecewise linear mean flow. Studies in Applied Mathematics, 78, 31–56

    MathSciNet  MATH  Google Scholar 

  • Henningson, D. S. (1991) An eigenfunction expansion of localized disturbances. In: A.V. Johansson and P.H. Alfredsson, (eds)Advances in Turbulence 3, (pp. 162–169), Berlin: Springer.

    Google Scholar 

  • Henningson, D. S. (1995) Bypass transition and linear growth mechanism. In: R. Benzi (ed) Advances in Turbulence, 5, (pp. 190–204), Kluwer, Dordrecht.

    Google Scholar 

  • Henningson, D. S. (1996) Comments on “Transition in shear flows. Nonlinear normality versus non-normal linearity”. Physics of Fluids, 8, 2257–2258.

    MathSciNet  Google Scholar 

  • Henningson, D. S. & Alfredsson, P. H. (1996) Stability and transition, Chap. 2 In: M. Hallbäck, D. S. Henningson, A. V. Johansson, & P. H. Alfredsson, (eds)Turbulence and Transition Modelling, (pp. 13–80), Dordrecht: Kluwer.

    Google Scholar 

  • Henningson, D. S. & Reddy, S. C. (1994) On the role of linear mechanisms in transition to turbulence. Physics of Fluids, 6, 1396–1398.

    MathSciNet  MATH  Google Scholar 

  • Henningson, D. S. & Schmid, P. J. (1992) Vector eigenfunction expansions for plane channel flows. Studies in Applied Mathematics, 87, 15–43.

    MathSciNet  MATH  Google Scholar 

  • Henningson, D. S. & Schmid, P. J. (1994) A note on measures of disturbance size in spatially evolving flows. Physics of Fluids, 6, 2862–2864.

    MATH  Google Scholar 

  • Henningson, D. S., Gustavsson, L. H. & Breuer, K. S. (1994) Localized disturbances in parallel shear flows. Applied Scientific Research, 53, 51–97.

    MATH  Google Scholar 

  • Henningson, D. S., Johansson, A. V. & Lundbladh, A. (1990) On the evolution of localized disturbances in laminar shear flows. In: D. Arnal & R. Michel (eds). Turbulent-Laminar Transitions (Proc. 3rd Int. Symp., ), (pp. 279–284) Berlin: Springer.

    Google Scholar 

  • Henningson, D. S., Lundbladh, A. & Johansson, A. V. (1993) A mechanism for bypass transition from localized disturbances in wall-bounded shear flows. Journal of Fluid Mechanics, 250, 169–207.

    MATH  Google Scholar 

  • Herron, I. H. (1980) A completeness observation on the stability equations for stratified viscous shear flows. Physics of Fluids, 23, 836–837.

    MathSciNet  MATH  Google Scholar 

  • Herron, I. H. (1982) A completeness theorem for the linear stability of nearly parallel flows. Journal of Mathematics Analysis and Applications, 86, 168–175

    MathSciNet  MATH  Google Scholar 

  • Herron, I. H. (1983) Expansion problems in the linear stability of boundary layer flows. Advances in Applied Mathematics, 4, 260–297.

    MathSciNet  MATH  Google Scholar 

  • Howard, L. N. (1961) Note on a paper of John W. Miles. Journal of Fluid Mechanics, 10, 509–512.

    MathSciNet  MATH  Google Scholar 

  • Hultgren, L. H., & Gustavsson, L. H. (1981) Algebraic growth of disturbances in a laminar boundary layer. Physics of Fluids, 24, 1000–1004.

    MATH  Google Scholar 

  • Jang, P. S., Benney, D. J., & Gran, R.L. (1986) On the origin of streamwise vortices in a turbulent  boundary layer. Journal of Fluid Mechanics, 169, 109–123.

    MATH  Google Scholar 

  • Jiang, F. (1991) Asymptotic evaluation of three-dimensional wave packets in parallel flows. Journal of Fluid Mechanics, 226, 573–590.

    MathSciNet  MATH  Google Scholar 

  • Jimenez, J., & Whitham, G. B. (1976) An averaged Lagrangian method for dissipative wavetrains. Proceedings of the Royal Society of London Series A, 349, 277–287.

    MathSciNet  MATH  Google Scholar 

  • Jones, C. A. (1988) Multiple eigenvalues and mode classification in plane Poiseuille flow. Quarterly Journal of Mechanics and Applied Mathematics, 41, 363–382.

    MathSciNet  MATH  Google Scholar 

  • Joseph, D. D. (1966) Nonlinear stability of the Boussinesq equation by the method of energy. Archive for Rational Mechanics and Analysis, 22, 163–184.

    MathSciNet  MATH  Google Scholar 

  • Joseph, D. D. (1976) Stability of Fluid Motions, Vols. 1–2, Berlin: Springer.

    Google Scholar 

  • Joseph, D. D. & Carmi, S. (1969) Stability of Poiseuille flow in pipes, annuli and channels. Quarterly of Applied Mathematics, 26, 575–599.

    MATH  Google Scholar 

  • Kato, T. (1976) Perturbation Theory for Linear Operators. Berlin: Springer.

    MATH  Google Scholar 

  • Kato, T. (1982) A Short Introduction to Perturbation Theory of Linear Operators. Berlin: Springer.

    Google Scholar 

  • Kelvin, Lord (Thomson, W.) (1871) Hydrokinetic solutions and observations. Philosophical Magazine, (4), 42, 362–377.

    Google Scholar 

  • Kelvin, Lord (Thomson, W.) (1887a) Rectilinear motion of viscous fluid between two parallel planes. Philosophical Magazine, (5) 24, 188–196.

    Google Scholar 

  • Kelvin, Lord (Thomson, W.) (1887b) Broad river flowing down an inclined plane bed. Philosophical Magazine,(5) 24, 272–278 (also in Mathematical and Physical Papers, Vol. IV, pp. 69–85, 321–330, and 330–337, Cambr. Univ. Press, 1910).

    Google Scholar 

  • Kline, S. J., Reynolds, W.C., Schraub, F.A. & Runstadler, P.W. (1967) The structure of turbulent boundary layers. Journal of Fluid Mechanics, 30, 741–773.

    Google Scholar 

  • Klingmann, B. G. B. (1992) On transition due to three-dimensional disturbances in plane Poiseuille flow. Journal of Fluid Mechanics, 240, 167–195.

    Google Scholar 

  • Klingmann, B. G. B. & Alfredsson, P. H. (1991) Experiments on the evolution of a point-like disturbance in plane turbulent flow into a turbulent spot. In: A. V. Johansson & P. H. Alfredsson, (eds.) Advances in Turbulence 3 , (pp. 182–188). Berlin: Springer.

    Google Scholar 

  • Koch, W. (1986) Direct resonances in Orr-Sommerfeld problems. Acta Mechanica, 59, 11–29.

    MATH  Google Scholar 

  • Konzelmann, U. (1990) Numerische Entwicklung dreidimensionaler Wellenpakete in einer Plattengrenzschichtströmung, Dr.-Ing. Dissertation, Institut A für Mechanik, Germany: Universität Stuttgart.

    Google Scholar 

  • Kuo, H. L. (1963) Perturbations of plane Couette flow in stratified fluid and origin of cloud streets. Physics of Fluids, 6, 195–211.

    MathSciNet  MATH  Google Scholar 

  • Landahl, M. T. (1972) Wave mechanics of breakdown. Journal of Fluid Mechanics, 56, 775–802.

    MATH  Google Scholar 

  • Landahl, M. T. (1975) Wave breakdown and turbulence. SIAM Journal on Applied Mathematics, 28, 735–756.

    MATH  Google Scholar 

  • Landahl, M. T. (1980) A note on an algebraic instability of inviscid parallel shear flows. Journal of Fluid Mechanics, 98, 243–251.

    MathSciNet  MATH  Google Scholar 

  • Landahl, M. T. (1982) The application of kinematic wave theory to wave trains and packets with small dissipation. Physics of Fluids, 25, 1512–1516.

    MathSciNet  MATH  Google Scholar 

  • Landahl, M. T. (1985) The growth of instability waves in a slightly nonuniform medium. In: V.V. Kozlov, (ed) Laminar-Turbulent Transition (Proc. 2nd Int. Symp.), (pp. 133–140). Berlin: Springer.

    Google Scholar 

  • Landahl, M. T. (1990) On sublayer streaks. Journal of Fluid Mechanics, 212, 593–614.

    MATH  Google Scholar 

  • Landahl, M. T. (1993a) Model for the wall-layer structure of a turbulent shear flow. European Journal of Mechanics - B/Fluids, 12, 85–96.

    MATH  Google Scholar 

  • Landahl, M. T. (1993b) Role of algebraic instability in transition and turbulence. In: Th. Dracos & A. Tsinober, (eds.) New Approaches and Concepts in Turbulence, (pp. 251–263). Basel: Birkhäuser.

    Google Scholar 

  • Landahl, M. T. (1996) Role of non-wave-like disturbances in transition, In: J. Grue, B. Gjevik & J. E. Weber, (eds.) Waves and Nonlinear Processes in Hydrodynamics, (pp. 255–266). Dordrecht: Kluwer.

    Google Scholar 

  • Landahl, M. T. (1997) private communication.

    Google Scholar 

  • Landahl, M. T. & Mollo-Christensen, E. (1992) Turbulence and Random Processes in Fluid Mechanics, 2nd edition, Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Landau, L. D. & Lifshitz, E. M. (1958) Fluid Mechanics. London: Pergamon Press (1st English edition).

    Google Scholar 

  • Landau, L. D. & Lifshitz, E. M. (1987) Fluid Mechanics. London: Pergamon Press (revised English edition).

    MATH  Google Scholar 

  • Lenz, K. (1986) Numerische Simulation des Ausbreitung von Wellenpaketen in einer laminaren Grenzschichtströmung, Dissertation. Universität Stuttgart, Germany.

    Google Scholar 

  • Luchini, P. (1996) Reynolds-number-independent instability of the boundary layer over a flat surface. Journal of Fluid Mechanics, 327, 101–115.

    MATH  Google Scholar 

  • Lundbladh, A. (1993) Growth of a weak localized disturbance in inviscidly stable shear flow, paper 4 in: Lundbladh, A., Simulation of Bypass Transition to Turbulence in Wall Bounded Shear Flows (Doctoral Thesis), pp. 1–21, TRITA-MEK Tech. Rep. 1993:8, Sweden: Royal Inst. Technol., Stockholm.

    Google Scholar 

  • Lundbladh, A., Schmid, P. J., Berlin, S. & Henningson, D. S. (1994) Simulation of bypass transition for spatially evolving disturbances. AGARD Conference Proceedings, CP 551, pp. 18.1–18.13.

    Google Scholar 

  • Marcus, P. S. & Press, W. H. (1977) On Green’s function for small disturbances of plane Couette flow. Journal of Fluid Mechanics, 79, 525–534.

    MATH  Google Scholar 

  • Miles, J. W. (1958). On the distorted motion of a plane vortex sheet. Journal of Fluid Mechanics, 4, 538–552.

    MathSciNet  MATH  Google Scholar 

  • Moffatt, H. K. (1967) The interaction of turbulence with strong wind shear, In: A.M. Yaglom and V.I. Tatarsky, (eds.)Atmospheric Turbulence and Radio Wave Propagation, (pp. 139–156), Moscow: Nauka.

    Google Scholar 

  • Monin, A. S. & Yaglom, A.M. (1971) Statistical Fluid Mechanics, the Mechanics of Turbulence, Vol. 1, MIT Press, Cambridge, Mass.

    Google Scholar 

  • Morkovin, M. V. (1969) On the many faces of transition. In: C.S. Wells (ed.)Viscous Drag Reduction (pp. 1–31). London: Plenum.

    Google Scholar 

  • Orr, W. M . F. (1907) The stability of instability of the steady motions of a perfect liquid and of a viscous liquid, Parts I and II. Proceedings of the Royal Irish Academy, A27, 9–68 and 69–138.

    Google Scholar 

  • O’Sullivan, P. L. & Breuer, K.S. (1994) Transient growth in circular pipe flow. I. Linear disturbances. Physics of Fluids, 6, 3643–3651.

    MATH  Google Scholar 

  • Panton, R. L. (1996) Incompressible Flow, 2nd edition New York: Wiley.

    Google Scholar 

  • Pazy, A. (1983) Semigroups of Linear Operators and Applications to Partial Differential Equations, Berlin: Springer.

    MATH  Google Scholar 

  • Pedlosky, J. (1964) An initial value problem in the theory of baroclinic instability. Tellus, 16, 12–17.

    Google Scholar 

  • Phillips, O. M. (1966) The Dynamics of the Upper Ocean, 1st edition. Cambridge: Cambr. Univ. Press.

    MATH  Google Scholar 

  • Prandtl, L. (1925) Bericht über Untersuchungen zur ausgebildeten Turbulenz. Zeitschrift fur Angewandte Mathematik und Mechanik, 5, 136–139.

    MATH  Google Scholar 

  • Rayleigh, Lord (1880) On the stability, or instability, of certain fluid motions, Parts I–III. Proceedings of the London Mathematics Society, 11, 57–70.

    MathSciNet  MATH  Google Scholar 

  • Rayleigh, Lord (1887) On the stability, or instability, of certain fluid motions, Parts I–III. Proceedings of the London Mathematics Society, 19, 67–74.

    MathSciNet  Google Scholar 

  • Rayleigh, Lord (1895) On the stability, or instability, of certain fluid motions, Parts I–III. Proceedings of the London Mathematics Society, 27, 5–12.

    MathSciNet  Google Scholar 

  • Rayleigh, Lord (1892) On the question of the stability of the flow of fluids. Philosophical Magazine, (5) 34, 59–70 (also in Scientific Papers, Vols. I–VI, Cambr. Univ. Press, 1899–1920).

    Google Scholar 

  • Rayleigh, Lord (1894) The Theory of Sound, Vols. I–II, 2nd ed. London: Macmillan.

    MATH  Google Scholar 

  • Reddy, S. C. & Henningson, D. S. (1993) Energy growth in viscous channel flows. Journal of Fluid Mechanics, 252, 209–238.

    MathSciNet  MATH  Google Scholar 

  • Reddy, S. C, Schmid, P.J. & Henningson, D. S. (1993) Pseudospectra of the Orr-Sommerfeld operator. SIAM Journal on Applied Mathematics, 53, 15–47.

    MathSciNet  MATH  Google Scholar 

  • Reynolds, O. (1883) An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and the law of resistance in parallel channels. Philosophical Transactions of the Royal Society, 174, 935–982 (also in Scientific Papers, Vol. II, pp. 51–105, Cambr. Univ. Press, 1901).

    MATH  Google Scholar 

  • Reynolds, O. (1894) On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical Transactions of the Royal Society, 186, 123–161 (also Scientific Papers, Vol. II, pp. 535–577).

    Google Scholar 

  • Rosen, G. (1971) General solution for perturbed plane Couette flow. Physics of Fluids, 14, 2767–2769.

    MATH  Google Scholar 

  • Rudin, W. (1973) Functional Analysis, New York: McGraw-Hill.

    MATH  Google Scholar 

  • Russell, J. M. & Landahl, M. T. (1984) The evolution of a flat eddy near a wall in an inviscid shear flow. Physics of Fluids, 27, 557–570.

    MATH  Google Scholar 

  • Schensted, I. V. (1960) Contribution to the Theory of Hydrodynamic Stability, Ph.D. Thesis, University of Michigan, Ann Arbor.

    Google Scholar 

  • Schmid, P. J. & Henningson, D. S. (1994) Optimal energy growth in Hagen-Poiseuille flow. Journal of Fluid Mechanics, 271, 197–225.

    MathSciNet  Google Scholar 

  • Schmid, P. J. & Henningson, D. S. (2001) Stability and Transition in Shear Flows. Series Applied Mathematical Sciences, vol. 142. Springer.

    Google Scholar 

  • Schmid, P. J., Lundbladh, A. & Henningson, D. S. (1994) Spatial evolution of disturbances in plane Poiseuille flow. In: M. Y. Hussaini, T. B. Gatski & T. L. Jackson, (eds.)Transition, Turbulence and Combustion, Vol. I (pp. 287–297). Dordrecht: Kluwer.

    Google Scholar 

  • Shanthini, R. (1989) Degeneracies of the temporal Orr-Sommerfeld eigenmodes in plane Poiseuille flow. Journal of Fluid Mechanics, 201, 13–34.

    MathSciNet  MATH  Google Scholar 

  • Shepherd, T. G. (1985) Time development of small disturbances to plane Couette flow. Journal of Atmospheric Sciences, 42, 1868–1871.

    Google Scholar 

  • Tam, K. W. (1967) A note on disturbances in slightly supercritical plane Poiseuille flow. Journal of Fluid Mechanics, 30, 17–20.

    MATH  Google Scholar 

  • Taylor, G. I. (1931) Effect of variation in density on the stability of superposed streams of fluid, Proceedings of the Royal Society of London Series A, 132, 499–523 (also in Scientific Papers, Vol. II, 219–239, Cambr. Univ. Press, 1960).

    Google Scholar 

  • Trefethen, A. E., Trefethen, L. N. & Schmid, P. J. (1994) Spectra and pseudospectra for pipe Poiseuille flow, Rep. No. 94–16, Interdisciplinary Project Center for Supercomputing, ETH, Zürich.

    Google Scholar 

  • Trefethen, L. N. (1992) Pseudospectra of matrices. In: D.F. Griffiths & G.A. Watson, (eds.) Numerical Analysis 1991, (pp. 234–266) Harlow: Longman (Essex, UK).

    Google Scholar 

  • Trefethen, L. N. (1996) Pseudospectra of linear operators. In: K. Kirchgässner, O. Mahrenholtz & R. Mennicken, (eds.) ICIAM 95 (Proc. 3rd. Int. Congr. Industr. Appl. Math.,) pp. 401–434, Berlin: Akademie Verlag.

    Google Scholar 

  • Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. (1993) Hydrodynamic stability without eigenvalues. Science, 261, 578–584.

    MathSciNet  MATH  Google Scholar 

  • Tung, K. K. (1983) Initial-value problems for Rossby waves in a shear flow with critical level. Journal of Fluid Mechanics, 133, 443–469.

    MathSciNet  MATH  Google Scholar 

  • Watson, J. (1960) Three-dimensional disturbances in flow between parallel planes. Proceedings of the Royal Society of London Series A, 254, 562–569.

    Google Scholar 

  • Whitham, G. B. (1965) A general approach to linear and non-linear dispersive waves using a Lagrangian. Journal of Fluid Mechanics, 22, 273–283

    MathSciNet  Google Scholar 

  • Whitham, G. B. (1974) Linear and Nonlinear Waves, New York: Wiley-Interscience.

    MATH  Google Scholar 

  • Willke, H. L. (1972) A distribution-theoretic approach to a stability problem of Orr. Studies in Applied Mathematics, 51, 85–98.

    MathSciNet  MATH  Google Scholar 

  • Yamagata, T. (1976a) On the propagation of Rossby waves in a weak shear flow. Journal of Meteoritics Society Japan, 54, 126–128.

    Google Scholar 

  • Yamagata, T. (1976b) On trajectories of Rossby wave-packets released in a lateral shear flow. Journal of the Oceanographical Society of Japan, 32, 162–168.

    Google Scholar 

  • Yudovich, V. I. (1965) Stability of steady flows of viscous incompressible fluids. Doklady Akademii Nauk SSSR, 161, 1037–1040 (Trans. in Soviet Phys. Doklady. 10, 293–295).

    MathSciNet  Google Scholar 

  • Yudovich, V. I. (1984) The Linearization Method in Hydrodynamic Stability Theory, Izd. Rostov Gosud. Univ., Rostov-on-Don (Trans. publ. by Amer. Math. Soc., Providence, R.I., 1989).

    Google Scholar 

Download references

Acknowledgments

This work could not have been accomplished without much help from a number of individuals and institutions. Therefore I am happy to have the possibility to express here my deep gratitude to Massachusetts Institute of Technology (MIT) which gave me an office for everyday work at its Department of Aeronautics and Astronautics (Dept. Head Prof. E.F. Crawley) and to the Center for Turbulence Research (CTR) at Stanford University and NASA Ames Research Center (Director Prof. P. Moin) which provided the main part of the financial support for the work on the series and arranged the publication of its separate chapters as CTR Monographs. Substantial support for my work was also given by the U.S. Army Research Laboratory (Dr. R.E. Meyers); Cambridge Hydrodynamics, Inc.; and by Dr. J.W. Poduska, Sr.

I am particularly indebted to Prof. P. Bradshaw of Stanford University, who read the whole manuscript with great care, corrected many defects of my English and made a number of suggestions leading to the improvement of the text, and to Prof. M.T. Landahl (MIT), who also read the manuscript and made some valuable suggestions. (Of course, for thau remaining deficiencies of language, style and scientific content I take full responsibility.) Many important remarks and useful written material related to the contents of Chap. 3 were received from K.S. Breuer, F.H. Busse, W.O. Criminale, L.A. Dikii, B.F.Farrell, S. Grossmann, F. Hussain, M.V. Morkovin, S.C. Reddy, and L.N. Trefethen. Moreover, K.S. Breuer, B.F. Farrell, and S.C. Reddy also helped me in preparing figures for this chapter. Debra Spinks of CTR regularly helped me with many administrative matters and problems arising in the preparation of the written material for publication, and (Ms.) Ditter Peschcke-Koedt made many improvements to my typing. To all the persons and organizations mentioned I express my sincere thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uriel Frisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yaglom, A., Frisch, U. (2012). More About Linear Stability Theory: Studies of The Initial-Value Problem. In: Frisch, U. (eds) Hydrodynamic Instability and Transition to Turbulence. Fluid Mechanics and Its Applications, vol 100. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4237-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4237-6_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4236-9

  • Online ISBN: 978-94-007-4237-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics