Skip to main content

Phosphoinositides in Chemotaxis

  • Chapter
  • First Online:
Phosphoinositides II: The Diverse Biological Functions

Part of the book series: Subcellular Biochemistry ((SCBI,volume 59))

Abstract

Phosphatidylinositol lipids generated through the action of phosphinositide 3-kinase (PI3K) are key mediators of a wide array of biological responses. In particular, their role in the regulation of cell migration has been extensively studied and extends to amoeboid as well as mesenchymal migration. Through the emergence of fluorescent probes that target PI3K products as well as the use of specific inhibitors and knockout technologies, the spatio-temporal distribution of PI3K products in chemotaxing cells has been shown to represent a key anterior polarity signal that targets downstream effectors to actin polymerization. In addition, through intricate cross-talk networks PI3K products have been shown to regulate signals that control posterior effectors. Yet, in more complex environments or in conditions where chemoattractant gradients are steep, a variety of cell types can still chemotax in the absence of PI3K signals. Indeed, parallel signal transduction pathways have been shown to coordinately regulate cell polarity and directed movement. In this chapter, we will review the current role PI3K products play in the regulation of directed cell migration in various cell types, highlight the importance of mathematical modeling in the study of chemotaxis, and end with a brief overview of other signaling cascades known to also regulate chemotaxis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abercrombie M (1978) Fibroblasts. J Clin Pathol Suppl (R Coll Pathol) 12:1–6

    Article  CAS  Google Scholar 

  • Abercrombie M, Heaysman JE (1953) Observations on the social behaviour of cells in tissue culture. I. Speed of movement of chick heart fibroblasts in relation to their mutual contacts. Exp Cell Res 5:111–131

    Article  PubMed  CAS  Google Scholar 

  • Abercrombie M, Heaysman JE, Pegrum SM (1970) The locomotion of fibroblasts in culture. I. Movements of the leading edge. Exp Cell Res 59:393–398

    CAS  Google Scholar 

  • Aizawa H, Sutoh K, Tsubuki S, Kawashima S, Ishii A, Yahara I (1995) Identification, characterization, and intracellular distribution of cofilin in Dictyostelium discoideum. J Biol Chem 270:10923–10932

    Article  PubMed  CAS  Google Scholar 

  • Aizawa H, Fukui Y, Yahara I (1997) Live dynamics of Dictyostelium cofilin suggests a role in remodeling actin latticework into bundles. J Cell Sci 110(Pt 19):2333–2344

    PubMed  CAS  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland Science, New York

    Google Scholar 

  • Albrecht-Buehler G (1979) The angular distribution of directional changes of guided 3T3 cells. J Cell Biol 80:53–60

    Article  PubMed  CAS  Google Scholar 

  • Alexander S, Koehl GE, Hirschberg M, Geissler EK, Friedl P (2008) Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem Cell Biol 130:1147–1154

    Article  PubMed  CAS  Google Scholar 

  • Ali K, Bilancio A, Thomas M, Pearce W, Gilfillan AM, Tkaczyk C, Kuehn N, Gray A, Giddings J, Peskett E, Fox R, Bruce I, Walker C, Sawyer C, Okkenhaug K, Finan P, Vanhaesebroeck B (2004) Essential role for the p110delta phosphoinositide 3-kinase in the allergic response. Nature 431:1007–1011

    Article  PubMed  CAS  Google Scholar 

  • Anand-Apte B, Zetter B (1997) Signaling mechanisms in growth factor-stimulated cell motility. Stem Cells 15:259–267

    Article  PubMed  CAS  Google Scholar 

  • Aoki K, Nakamura T, Fujikawa K, Matsuda M (2005) Local phosphatidylinositol 3,4,5-trisphosphate accumulation recruits Vav2 and Vav3 to activate Rac1/Cdc42 and initiate neurite outgrowth in nerve growth factor-stimulated PC12 cells. Mol Biol Cell 16:2207–2217

    Article  PubMed  CAS  Google Scholar 

  • Arcaro A, Wymann MP (1993) Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem J 296(Pt 2):297–301

    PubMed  CAS  Google Scholar 

  • Arrieumerlou C, Meyer T (2005) A local coupling model and compass parameter for eukaryotic chemotaxis. Dev Cell 8:215–227

    Article  PubMed  CAS  Google Scholar 

  • Attoub S, De Wever O, Bruyneel E, Mareel M, Gespach C (2008) The transforming functions of PI3-kinase-gamma are linked to disruption of intercellular adhesion and promotion of cancer cell invasion. Ann N Y Acad Sci 1138:204–213

    Article  PubMed  CAS  Google Scholar 

  • Aubry L, Firtel R (1999) Integration of signaling networks that regulate Dictyostelium differentiation. Annu Rev Cell Dev Biol 15:469–517

    Article  PubMed  CAS  Google Scholar 

  • Backer JM (2008) The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J 410:1–17

    Article  PubMed  CAS  Google Scholar 

  • Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, Ziv Y (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281:1674–1677

    Article  PubMed  CAS  Google Scholar 

  • Bi L, Okabe I, Bernard DJ, Wynshaw-Boris A, Nussbaum RL (1999) Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110alpha subunit of phosphoinositide 3-kinase. J Biol Chem 274:10963–10968

    Article  PubMed  CAS  Google Scholar 

  • Bi L, Okabe I, Bernard DJ, Nussbaum RL (2002) Early embryonic lethality in mice deficient in the p110beta catalytic subunit of PI 3-kinase. Mamm Genome 13:169–172

    PubMed  CAS  Google Scholar 

  • Bilancio A, Okkenhaug K, Camps M, Emery JL, Ruckle T, Rommel C, Vanhaesebroeck B (2006) Key role of the p110delta isoform of PI3K in B-cell antigen and IL-4 receptor signaling: comparative analysis of genetic and pharmacologic interference with p110delta function in B cells. Blood 107:642–650

    Article  PubMed  CAS  Google Scholar 

  • Bosgraaf L, Keizer-Gunnink I, Van Haastert PJ (2008) PI3-kinase signaling contributes to orientation in shallow gradients and enhances speed in steep chemoattractant gradients. J Cell Sci 121:3589–3597

    Article  PubMed  CAS  Google Scholar 

  • Boulven I, Levasseur S, Marois S, Pare G, Rollet-Labelle E, Naccache PH (2006) Class IA phosphatidylinositide 3-kinases, rather than p110 gamma, regulate formyl-methionyl-leucyl-phenylalanine-stimulated chemotaxis and superoxide production in differentiated neutrophil-like PLB-985 cells. J Immunol 176:7621–7627

    PubMed  CAS  Google Scholar 

  • Brock C, Schaefer M, Reusch HP, Czupalla C, Michalke M, Spicher K, Schultz G, Nurnberg B (2003) Roles of G beta gamma in membrane recruitment and activation of p110 gamma/p101 phosphoinositide 3-kinase gamma. J Cell Biol 160:89–99

    Article  PubMed  CAS  Google Scholar 

  • Brundage RA, Fogarty KE, Tuft RA, Fay FS (1991) Calcium gradients underlying polarization and chemotaxis of eosinophils. Science 254:703–706

    Article  PubMed  CAS  Google Scholar 

  • Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence JC Jr, Abraham RT (1996) Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J 15:5256–5267

    PubMed  CAS  Google Scholar 

  • Buchanan FG, Elliot CM, Gibbs M, Exton JH (2000) Translocation of the Rac1 guanine nucleotide exchange factor Tiam1 induced by platelet-derived growth factor and lysophosphatidic acid. J Biol Chem 275:9742–9748

    Article  PubMed  CAS  Google Scholar 

  • Cain RJ, Ridley AJ (2009) Phosphoinositide 3-kinases in cell migration. Biol Cell 101:13–29

    Article  PubMed  CAS  Google Scholar 

  • Carpenter CL, Cantley LC (1990) Phosphoinositide kinases. Biochemistry 29:11147–11156

    Article  PubMed  CAS  Google Scholar 

  • Cenni V, Sirri A, Riccio M, Lattanzi G, Santi S, De Pol A, Maraldi NM, Marmiroli S (2003) Targeting of the Akt/PKB kinase to the actin skeleton. Cell Mol Life Sci 60:2710–2720

    Article  PubMed  CAS  Google Scholar 

  • Chan AY, Raft S, Bailly M, Wyckoff JB, Segall JE, Condeelis JS (1998) EGF stimulates an increase in actin nucleation and filament number at the leading edge of the lamellipod in mammary adenocarcinoma cells. J Cell Sci 111(Pt 2):199–211

    PubMed  CAS  Google Scholar 

  • Chan AY, Bailly M, Zebda N, Segall JE, Condeelis JS (2000) Role of cofilin in epidermal growth factor-stimulated actin polymerization and lamellipod protrusion. J Cell Biol 148:531–542

    Article  PubMed  CAS  Google Scholar 

  • Charest PG, Firtel RA (2006) Feedback signaling controls leading-edge formation during chemotaxis. Curr Opin Genet Dev 16:339–347

    Article  PubMed  CAS  Google Scholar 

  • Chen WT (1979) Induction of spreading during fibroblast movement. J Cell Biol 81:684–691

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Janetopoulos C, Huang YE, Iijima M, Borleis J, Devreotes PN (2003) Two phases of actin polymerization display different dependencies on PI(3,4,5)P3 accumulation and have unique roles during chemotaxis. Mol Biol Cell 14:5028–5037

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Iijima M, Tang M, Landree MA, Huang YE, Xiong Y, Iglesias PA, Devreotes PN (2007) PLA2 and PI3K/PTEN pathways act in parallel to mediate chemotaxis. Dev Cell 12:603–614

    Article  PubMed  CAS  Google Scholar 

  • Clayton E, Bardi G, Bell SE, Chantry D, Downes CP, Gray A, Humphries LA, Rawlings D, Reynolds H, Vigorito E, Turner M (2002) A crucial role for the p110delta subunit of phosphatidylinositol 3-kinase in B cell development and activation. J Exp Med 196:753–763

    Article  PubMed  CAS  Google Scholar 

  • Comer FI, Parent CA (2006) Phosphoinositide 3-kinase activity controls the chemoattractant-mediated activation and adaptation of adenylyl cyclase. Mol Biol Cell 17:357–366

    Article  PubMed  CAS  Google Scholar 

  • Comer FI, Lippincott CK, Masbad JJ, Parent CA (2005) The PI3K-mediated activation of CRAC independently regulates adenylyl cyclase activation and chemotaxis. Curr Biol 15:134–139

    Article  PubMed  CAS  Google Scholar 

  • Condeelis J (2001) How is actin polymerization nucleated in vivo? Trends Cell Biol 11:288–293

    Article  PubMed  CAS  Google Scholar 

  • Condeelis J, Singer RH, Segall JE (2005) The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu Rev Cell Dev Biol 21:695–718

    Article  PubMed  CAS  Google Scholar 

  • Condliffe AM, Davidson K, Anderson KE, Ellson CD, Crabbe T, Okkenhaug K, Vanhaesebroeck B, Turner M, Webb L, Wymann MP, Hirsch E, Ruckle T, Camps M, Rommel C, Jackson SP, Chilvers ER, Stephens LR, Hawkins PT (2005) Sequential activation of class IB and class IA PI3K is important for the primed respiratory burst of human but not murine neutrophils. Blood 106:1432–1440

    Article  PubMed  CAS  Google Scholar 

  • Costa C, Barberis L, Ambrogio C, Manazza AD, Patrucco E, Azzolino O, Neilsen PO, Ciraolo E, Altruda F, Prestwich GD, Chiarle R, Wymann M, Ridley A, Hirsch E (2007) Negative feedback regulation of Rac in leukocytes from mice expressing a constitutively active phosphatidylinositol 3-kinase gamma. Proc Natl Acad Sci U S A 104:14354–14359

    Article  PubMed  CAS  Google Scholar 

  • Cote JF, Vuori K (2007) GEF what? Dock180 and related proteins help Rac to polarize cells in new ways. Trends Cell Biol 17:383–393

    Article  PubMed  CAS  Google Scholar 

  • Daunderer C, Schliwa M, Graf R (1999) Dictyostelium discoideum: a promising centrosome model system. Biol Cell 91:313–320

    Article  PubMed  CAS  Google Scholar 

  • Davidson LA, Keller RE (1999) Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension. Development 126:4547–4556

    PubMed  CAS  Google Scholar 

  • Dawes AT, Edelstein-Keshet L (2007) Phosphoinositides and Rho proteins spatially regulate actin polymerization to initiate and maintain directed movement in a one-dimensional model of a motile cell. Biophys J 92:744–768

    Article  PubMed  CAS  Google Scholar 

  • Dekker LV, Segal AW (2000) Perspectives: signal transduction. Signals to move cells. Science 287:982–983, 985

    Article  PubMed  CAS  Google Scholar 

  • Demoulin JB, Seo JK, Ekman S, Grapengiesser E, Hellman U, Ronnstrand L, Heldin CH (2003) Ligand-induced recruitment of Na+/H+-exchanger regulatory factor to the PDGF (platelet-derived growth factor) receptor regulates actin cytoskeleton reorganization by PDGF. Biochem J 376:505–510

    Article  PubMed  CAS  Google Scholar 

  • Derman MP, Toker A, Hartwig JH, Spokes K, Falck JR, Chen CS, Cantley LC, Cantley LG (1997) The lipid products of phosphoinositide 3-kinase increase cell motility through protein kinase C. J Biol Chem 272:6465–6470

    Article  PubMed  CAS  Google Scholar 

  • Desmarais V, Ghosh M, Eddy R, Condeelis J (2005) Cofilin takes the lead. J Cell Sci 118:19–26

    Article  PubMed  CAS  Google Scholar 

  • Deuel TF, Kawahara RS, Mustoe TA, Pierce AF (1991) Growth factors and wound healing: platelet-derived growth factor as a model cytokine. Annu Rev Med 42:567–584

    Article  PubMed  CAS  Google Scholar 

  • Devreotes PN, Zigmond SH (1988) Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu Rev Cell Biol 4:649–686

    Article  PubMed  CAS  Google Scholar 

  • Dhand R, Hara K, Hiles I, Bax B, Gout I, Panayotou G, Fry MJ, Yonezawa K, Kasuga M, Waterfield MD (1994) PI 3-kinase: structural and functional analysis of intersubunit interactions. EMBO J 13:511–521

    PubMed  CAS  Google Scholar 

  • Domin J, Pages F, Volinia S, Rittenhouse SE, Zvelebil MJ, Stein RC, Waterfield MD (1997) Cloning of a human phosphoinositide 3-kinase with a C2 domain that displays reduced sensitivity to the inhibitor wortmannin. Biochem J 326(Pt 1):139–147

    PubMed  CAS  Google Scholar 

  • Domin J, Harper L, Aubyn D, Wheeler M, Florey O, Haskard D, Yuan M, Zicha D (2005) The class II phosphoinositide 3-kinase PI3K-C2beta regulates cell migration by a PtdIns3P dependent mechanism. J Cell Physiol 205:452–462

    Article  CAS  Google Scholar 

  • Dong X, Mo Z, Bokoch G, Guo C, Li Z, Wu D (2005) P-Rex1 is a primary Rac2 guanine nucleotide exchange factor in mouse neutrophils. Curr Biol 15:1874–1879

    Article  PubMed  CAS  Google Scholar 

  • Dormann D, Weijer G, Parent CA, Devreotes PN, Weijer CJ (2002) Visualizing PI3 kinase-mediated cell-cell signaling during Dictyostelium development. Curr Biol 12:1178–1188

    Article  PubMed  CAS  Google Scholar 

  • Dunn GA (1980) The locomotory machinery of fibroblasts. Eur J Cancer 16:6–8

    Article  PubMed  CAS  Google Scholar 

  • Egelhoff TT, Titus MA, Manstein DJ, Ruppel KM, Spudich JA (1991) Molecular genetic tools for study of the cytoskeleton in Dictyostelium. Methods Enzymol 196:319–334

    Article  PubMed  CAS  Google Scholar 

  • Eichinger L, Noegel AA (2003) Crawling into a new era-the Dictyostelium genome project. EMBO J 22:1941–1946

    Article  PubMed  CAS  Google Scholar 

  • Eichinger L, Lee SS, Schleicher M (1999) Dictyostelium as model system for studies of the actin cytoskeleton by molecular genetics. Microsc Res Tech 47:124–134

    Article  PubMed  CAS  Google Scholar 

  • Eichinger L, Pachebat JA, Glockner G, Rajandream MA, Sucgang R, Berriman M, Song J, Olsen R, Szafranski K, Xu Q, Tunggal B, Kummerfeld S, Madera M, Konfortov BA, Rivero F, Bankier AT, Lehmann R, Hamlin N, Davies R, Gaudet P, Fey P, Pilcher K, Chen G, Saunders D, Sodergren E, Davis P, Kerhornou A, Nie X, Hall N, Anjard C, Hemphill L, Bason N, Farbrother P, Desany B, Just E, Morio T, Rost R, Churcher C, Cooper J, Haydock S, Van Driessche N, Cronin A, Goodhead I, Muzny D, Mourier T, Pain A, Lu M, Harper D, Lindsay R, Hauser H, James K, Quiles M, Madan Babu M, Saito T, Buchrieser C, Wardroper A, Felder M, Thangavelu M, Johnson D, Knights A, Loulseged H, Mungall K, Oliver K, Price C, Quail MA, Urushihara H, Hernandez J, Rabbinowitsch E, Steffen D, Sanders M, Ma J, Kohara Y, Sharp S, Simmonds M, Spiegler S, Tivey A, Sugano S, White B, Walker D, Woodward J, Winckler T, Tanaka Y, Shaulsky G, Schleicher M, Weinstock G, Rosenthal A, Cox EC, Chisholm RL, Gibbs R, Loomis WF, Platzer M, Kay RR, Williams J, Dear PH, Noegel AA, Barrell B, Kuspa A (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435:43–57

    Article  PubMed  CAS  Google Scholar 

  • El Fahime E, Torrente Y, Caron NJ, Bresolin MD, Tremblay JP (2000) In vivo migration of transplanted myoblasts requires matrix metalloproteinase activity. Exp Cell Res 258:279–287

    Article  PubMed  CAS  Google Scholar 

  • Enomoto A, Murakami H, Asai N, Morone N, Watanabe T, Kawai K, Murakumo Y, Usukura J, Kaibuchi K, Takahashi M (2005) Akt/PKB regulates actin organization and cell motility via Girdin/APE. Dev Cell 9:389–402

    Article  PubMed  CAS  Google Scholar 

  • Evans JH, Falke JJ (2007) Ca2+ influx is an essential component of the positive-feedback loop that maintains leading-edge structure and activity in macrophages. Proc Natl Acad Sci U S A 104:16176–16181

    Article  PubMed  CAS  Google Scholar 

  • Farina KL, Wyckoff JB, Rivera J, Lee H, Segall JE, Condeelis JS, Jones JG (1998) Cell motility of tumor cells visualized in living intact primary tumors using green fluorescent protein. Cancer Res 58:2528–2532

    PubMed  CAS  Google Scholar 

  • Farquhar MJ, Powner DJ, Levine BA, Wright MH, Ladds G, Hodgkin MN (2007) Interaction of PLD1b with actin in antigen-stimulated mast cells. Cell Signal 19:349–358

    Article  PubMed  CAS  Google Scholar 

  • Fedorov O, Marsden B, Pogacic V, Rellos P, Muller S, Bullock AN, Schwaller J, Sundstrom M, Knapp S (2007) A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proc Natl Acad Sci U S A 104:20523–20528

    Article  PubMed  CAS  Google Scholar 

  • Ferguson GJ, Milne L, Kulkarni S, Sasaki T, Walker S, Andrews S, Crabbe T, Finan P, Jones G, Jackson S, Camps M, Rommel C, Wymann M, Hirsch E, Hawkins P, Stephens L (2007) PI(3)Kgamma has an important context-dependent role in neutrophil chemokinesis. Nat Cell Biol 9:86–91

    Article  PubMed  CAS  Google Scholar 

  • Fey P, Stephens S, Titus MA, Chisholm RL (2002) SadA, a novel adhesion receptor in Dictyostelium. J Cell Biol 159:1109–1119

    Article  PubMed  CAS  Google Scholar 

  • Firtel RA, Van Haastert PJ, Kimmel AR, Devreotes PN (1989) G protein linked signal transduction pathways in development: Dictyostelium as an experimental system. Cell 58:235–239

    Article  PubMed  CAS  Google Scholar 

  • Frank SR, Hansen SH (2008) The PIX-GIT complex: a G protein signaling cassette in control of cell shape. Semin Cell Dev Biol 19:234–244

    Article  PubMed  CAS  Google Scholar 

  • Frantz C, Karydis A, Nalbant P, Hahn KM, Barber DL (2007) Positive feedback between Cdc42 activity and H+ efflux by the Na-H exchanger NHE1 for polarity of migrating cells. J Cell Biol 179:403–410

    Article  PubMed  CAS  Google Scholar 

  • Frantz C, Barreiro G, Dominguez L, Chen X, Eddy R, Condeelis J, Kelly MJ, Jacobson MP, Barber DL (2008) Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding. J Cell Biol 183:865–879

    Article  PubMed  CAS  Google Scholar 

  • Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445–457

    Article  PubMed  CAS  Google Scholar 

  • Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374

    Article  PubMed  CAS  Google Scholar 

  • Friedl P, Maaser K, Klein CE, Niggemann B, Krohne G, Zanker KS (1997) Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of alpha2 and beta1 integrins and CD44. Cancer Res 57:2061–2070

    PubMed  CAS  Google Scholar 

  • Friedl P, Zanker KS, Brocker EB (1998) Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microsc Res Tech 43:369–378

    Article  PubMed  CAS  Google Scholar 

  • Fruman DA, Cantley LC (2002) Phosphoinositide 3-kinase in immunological systems. Semin Immunol 14:7–18

    Article  PubMed  CAS  Google Scholar 

  • Funamoto S, Milan K, Meili R, Firtel RA (2001) Role of phosphatidylinositol 3’ kinase and a downstream pleckstrin homology domain-containing protein in controlling chemotaxis in Dictyostelium. J Cell Biol 153:795–810

    Article  PubMed  CAS  Google Scholar 

  • Funamoto S, Meili R, Lee S, Parry L, Firtel RA (2002) Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109:611–623

    Article  PubMed  CAS  Google Scholar 

  • Gail MH, Boone CW (1970) The locomotion of mouse fibroblasts in tissue culture. Biophys J 10:980–993

    Article  PubMed  CAS  Google Scholar 

  • Gamba A, De Candia A, Di Talia S, Coniglio A, Bussolino F, Serini G (2005) Diffusion-limited phase separation in eukaryotic chemotaxis. Proc Natl Acad Sci U S A 102:16927–16932

    Article  PubMed  CAS  Google Scholar 

  • Gan X, Wang J, Su B, Wu D (2011) Evidence for direct activation of mTORC2 kinase activity by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 286:10998–11002

    Google Scholar 

  • Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS (2004) Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304:743–746

    Article  PubMed  CAS  Google Scholar 

  • Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12:30–39

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg MH, Partridge A, Shattil SJ (2005) Integrin regulation. Curr Opin Cell Biol 17:509–516

    Article  PubMed  CAS  Google Scholar 

  • Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, Stanley ER, Segall JE, Condeelis JS (2005) Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 65:5278–5283

    Article  PubMed  CAS  Google Scholar 

  • Graupera M, Guillermet-Guibert J, Foukas LC, Phng LK, Cain RJ, Salpekar A, Pearce W, Meek S, Millan J, Cutillas PR, Smith AJ, Ridley AJ, Ruhrberg C, Gerhardt H, Vanhaesebroeck B (2008) Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature 453:662–666

    Article  PubMed  CAS  Google Scholar 

  • Gruver JS, Wikswo JP, Chung CY (2008) 3’-phosphoinositides regulate the coordination of speed and accuracy during chemotaxis. Biophys J 95:4057–4067

    Article  PubMed  CAS  Google Scholar 

  • Han J, Luby-Phelps K, Das B, Shu X, Xia Y, Mosteller RD, Krishna UM, Falck JR, White MA, Broek D (1998) Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 279:558–560

    Article  PubMed  CAS  Google Scholar 

  • Hannigan M, Zhan L, Li Z, Ai Y, Wu D, Huang CK (2002) Neutrophils lacking phosphoinositide 3-kinase gamma show loss of directionality during N-formyl-Met-Leu-Phe-induced chemotaxis. Proc Natl Acad Sci U S A 99:3603–3608

    Article  PubMed  CAS  Google Scholar 

  • Haston WS, Shields JM, Wilkinson PC (1982) Lymphocyte locomotion and attachment on two-dimensional surfaces and in three-dimensional matrices. J Cell Biol 92:747–752

    Article  PubMed  CAS  Google Scholar 

  • Haugh JM (2006) Deterministic model of dermal wound invasion incorporating receptor-mediated signal transduction and spatial gradient sensing. Biophys J 90:2297–2308

    Article  PubMed  CAS  Google Scholar 

  • Haugh JM, Schneider IC (2004) Spatial analysis of 3’ phosphoinositide signaling in living fibroblasts: I. Uniform stimulation model and bounds on dimensionless groups. Biophys J 86:589–598

    Article  PubMed  CAS  Google Scholar 

  • Haugh JM, Codazzi F, Teruel M, Meyer T (2000) Spatial sensing in fibroblasts mediated by 3’ phosphoinositides. J Cell Biol 151:1269–1280

    Article  PubMed  CAS  Google Scholar 

  • Hawkins PT, Jackson TR, Stephens LR (1992) Platelet-derived growth factor stimulates synthesis of PtdIns(3,4,5)P3 by activating a PtdIns(4,5)P2 3-OH kinase. Nature 358:157–159

    Article  PubMed  CAS  Google Scholar 

  • Hawkins PT, Eguinoa A, Qiu RG, Stokoe D, Cooke FT, Walters R, Wennstrom S, Claesson-Welsh L, Evans T, Symons M et al (1995) PDGF stimulates an increase in GTP-Rac via activation of phosphoinositide 3-kinase. Curr Biol 5:393–403

    Article  PubMed  CAS  Google Scholar 

  • Hegerfeldt Y, Tusch M, Brocker EB, Friedl P (2002) Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, beta1-integrin function, and migration strategies. Cancer Res 62:2125–2130

    PubMed  CAS  Google Scholar 

  • Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79:1283–1316

    PubMed  CAS  Google Scholar 

  • Higaki M, Sakaue H, Ogawa W, Kasuga M, Shimokado K (1996) Phosphatidylinositol 3-kinase-independent signal transduction pathway for platelet-derived growth factor-induced chemotaxis. J Biol Chem 271:29342–29346

    Article  PubMed  CAS  Google Scholar 

  • Hill K, Welti S, Yu J, Murray JT, Yip SC, Condeelis JS, Segall JE, Backer JM (2000) Specific requirement for the p85-p110alpha phosphatidylinositol 3-kinase during epidermal growth factor-stimulated actin nucleation in breast cancer cells. J Biol Chem 275:3741–3744

    Google Scholar 

  • Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L, Silengo L, Sozzani S, Mantovani A, Altruda F, Wymann MP (2000) Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 287:1049–1053

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock-Degregori SE (2006) Chemotaxis: cofilin in the driver’s seat. Curr Biol 16:R1030–R1032

    Article  PubMed  CAS  Google Scholar 

  • Hoeller O, Kay RR (2007) Chemotaxis in the absence of PIP3 gradients. Curr Biol 17:813–817

    Article  PubMed  CAS  Google Scholar 

  • Hooshmand-Rad R, Claesson-Welsh L, Wennstrom S, Yokote K, Siegbahn A, Heldin CH (1997) Involvement of phosphatidylinositide 3’-kinase and Rac in platelet-derived growth factor-induced actin reorganization and chemotaxis. Exp Cell Res 234:434–441

    Article  PubMed  CAS  Google Scholar 

  • Hou C, Kirchner T, Singer M, Matheis M, Argentieri D, Cavender D (2004) In vivo activity of a phospholipase C inhibitor 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole -2,5-dione (U73122), in acute and chronic inflammatory reactions. J Pharmacol Exp Ther 309:697–704

    Article  PubMed  CAS  Google Scholar 

  • Huang YE, Iijima M, Parent CA, Funamoto S, Firtel RA, Devreotes P (2003) Receptor-mediated regulation of PI3Ks confines PI(3,4,5)P3 to the leading edge of chemotaxing cells. Mol Biol Cell 14:1913–1922

    Article  PubMed  CAS  Google Scholar 

  • Iglesias PA, Devreotes PN (2008) Navigating through models of chemotaxis. Curr Opin Cell Biol 20:35–40

    Article  PubMed  CAS  Google Scholar 

  • Iijima M, Devreotes P (2002) Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109:599–610

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Meyer T (2008) Synthetic activation of endogenous PI3K and Rac identifies an AND-gate switch for cell polarization and migration. PLoS One 3:e3068

    Google Scholar 

  • Insall R, Kuspa A, Lilly PJ, Shaulsky G, Levin LR, Loomis WF, Devreotes P (1994) CRAC, a cytosolic protein containing a pleckstrin homology domain, is required for receptor and G protein-mediated activation of adenylyl cyclase in Dictyostelium. J Cell Biol 126:1537–1545

    Article  PubMed  CAS  Google Scholar 

  • Insall RH, Borleis J, Devreotes PN (1996) The aimless RasGEF is required for processing of chemotactic signals through G-protein-coupled receptors in Dictyostelium. Curr Biol 6:719–729

    Article  PubMed  CAS  Google Scholar 

  • Izzard RA, Jackson SP, Smith GC (1999) Competitive and noncompetitive inhibition of the DNA-dependent protein kinase. Cancer Res 59:2581–2586

    PubMed  CAS  Google Scholar 

  • Jackson TR, Stephens LR, Hawkins PT (1992) Receptor specificity of growth factor-stimulated synthesis of 3-phosphorylated inositol lipids in Swiss 3T3 cells. J Biol Chem 267:16627–16636

    PubMed  CAS  Google Scholar 

  • Jacques TS, Relvas JB, Nishimura S, Pytela R, Edwards GM, Streuli CH, Ffrench-Constant C (1998) Neural precursor cell chain migration and division are regulated through different beta1 integrins. Development 125:3167–3177

    PubMed  CAS  Google Scholar 

  • Janetopoulos C, Ma L, Devreotes PN, Iglesias PA (2004) Chemoattractant-induced phosphatidylinositol 3,4,5-trisphosphate accumulation is spatially amplified and adapts, independent of the actin cytoskeleton. Proc Natl Acad Sci U S A 101:8951–8956

    Article  PubMed  CAS  Google Scholar 

  • Jia S, Liu Z, Zhang S, Liu P, Zhang L, Lee SH, Zhang J, Signoretti S, Loda M, Roberts TM, Zhao JJ (2008) Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 454:776–779

    PubMed  CAS  Google Scholar 

  • Johnson RL, Van Haastert PJ, Kimmel AR, Saxe CL 3rd, Jastorff B, Devreotes PN (1992) The cyclic nucleotide specificity of three cAMP receptors in Dictyostelium. J Biol Chem 267:4600–4607

    PubMed  CAS  Google Scholar 

  • Jou ST, Carpino N, Takahashi Y, Piekorz R, Chao JR, Wang D, Ihle JN (2002) Essential, nonredundant role for the phosphoinositide 3-kinase p110delta in signaling by the B-cell receptor complex. Mol Cell Biol 22:8580–8591

    Article  PubMed  CAS  Google Scholar 

  • Kamimura Y, Xiong Y, Iglesias PA, Hoeller O, Bolourani P, Devreotes PN (2008) PIP3-independent activation of TorC2 and PKB at the cell’s leading edge mediates chemotaxis. Curr Biol 18:1034–1043

    Article  PubMed  CAS  Google Scholar 

  • Kaplan SS, Billiar T, Curran RD, Zdziarski UE, Simmons RL, Basford RE (1989) Inhibition of chemotaxis Ng-monomethyl-L-arginine: a role for cyclic GMP. Blood 74:1885–1887

    PubMed  CAS  Google Scholar 

  • Kavran JM, Klein DE, Lee A, Falasca M, Isakoff SJ, Skolnik EY, Lemmon MA (1998) Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains. J Biol Chem 273:30497–30508

    Article  PubMed  CAS  Google Scholar 

  • Kay RR, Williams JG (1999) The Dictyostelium genome project: an invitation to species hopping. Trends Genet 15:294–297

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Borleis JA, Devreotes PN (1998) Switching of chemoattractant receptors programs development and morphogenesis in Dictyostelium: receptor subtypes activate common responses at different agonist concentrations. Dev Biol 197:117–128

    Article  PubMed  CAS  Google Scholar 

  • Kimmel AR, Parent CA (2003) The signal to move: D. discoideum go orienteering. Science 300:1525–1527

    CAS  Google Scholar 

  • King JS, Insall RH (2009) Chemotaxis: finding the way forward with Dictyostelium. Trends Cell Biol 19:523–530

    Article  PubMed  CAS  Google Scholar 

  • Klein PS, Sun TJ, Saxe CL 3rd, Kimmel AR, Johnson RL, Devreotes PN (1988) A chemoattractant receptor controls development in Dictyostelium discoideum. Science 241:1467–1472

    Article  PubMed  CAS  Google Scholar 

  • Klinowska TC, Soriano JV, Edwards GM, Oliver JM, Valentijn AJ, Montesano R, Streuli CH (1999) Laminin and beta1 integrins are crucial for normal mammary gland development in the mouse. Dev Biol 215:13–32

    Article  PubMed  CAS  Google Scholar 

  • Klippel A, Kavanaugh WM, Pot D, Williams LT (1997) A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain. Mol Cell Biol 17:338–344

    PubMed  CAS  Google Scholar 

  • Knapek K, Frondorf K, Post J, Short S, Cox D, Gomez-Cambronero J (2010) The molecular basis of phospholipase D2-induced chemotaxis: elucidation of differential pathways in macrophages and fibroblasts. Mol Cell Biol 30:4492–4506

    Article  PubMed  CAS  Google Scholar 

  • Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B, Balla T, Weiss WA, Williams RL, Shokat KM (2006) A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125:733–747

    Article  PubMed  CAS  Google Scholar 

  • Kolsch V, Charest PG, Firtel RA (2008) The regulation of cell motility and chemotaxis by phospholipid signaling. J Cell Sci 121:551–559

    Article  PubMed  CAS  Google Scholar 

  • Kortholt A, King JS, Keizer-Gunnink I, Harwood AJ, Van Haastert PJ (2007) Phospholipase C regulation of phosphatidylinositol 3,4,5-trisphosphate-mediated chemotaxis. Mol Biol Cell 18:4772–4779

    Article  PubMed  CAS  Google Scholar 

  • Kriebel PW, Barr VA, Parent CA (2003) Adenylyl cyclase localization regulates streaming during chemotaxis. Cell 112:549–560

    Article  PubMed  CAS  Google Scholar 

  • Kumagai A, Pupillo M, Gundersen R, Miake-Lye R, Devreotes PN, Firtel RA (1989) Regulation and function of G alpha protein subunits in Dictyostelium. Cell 57:265–275

    Article  PubMed  CAS  Google Scholar 

  • Kundra V, Escobedo JA, Kazlauskas A, Kim HK, Rhee SG, Williams LT, Zetter BR (1994) Regulation of chemotaxis by the platelet-derived growth factor receptor-beta. Nature 367:474–476

    Article  PubMed  CAS  Google Scholar 

  • Kunisaki Y, Nishikimi A, Tanaka Y, Takii R, Noda M, Inayoshi A, Watanabe K, Sanematsu F, Sasazuki T, Sasaki T, Fukui Y (2006) DOCK2 is a Rac activator that regulates motility and polarity during neutrophil chemotaxis. J Cell Biol 174:647–652

    Article  PubMed  CAS  Google Scholar 

  • Kutscher B, Devreotes P, Iglesias PA (2004) Local excitation, global inhibition mechanism for gradient sensing: an interactive applet. Sci STKE 2004:pl3

    Google Scholar 

  • Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84:359–369

    Article  PubMed  CAS  Google Scholar 

  • Lauffenburger DL, Linderman JJ (1993) Receptors: models for binding, trafficking, and signaling. Oxford University Press, New York

    Google Scholar 

  • Lee J, Ishihara A, Oxford G, Johnson B, Jacobson K (1999) Regulation of cell movement is mediated by stretch-activated calcium channels. Nature 400:382–386

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Hmama Z, Mui A, Reiner NE (2004) Stable gene silencing in human monocytic cell lines using lentiviral-delivered small interference RNA. Silencing of the p110alpha isoform of phosphoinositide 3-kinase reveals differential regulation of adherence induced by 1alpha,25-dihydroxycholecalciferol and bacterial lipopolysaccharide. J Biol Chem 279:9379–9388

    Article  PubMed  CAS  Google Scholar 

  • Leevers SJ, Vanhaesebroeck B, Waterfield MD (1999) Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol 11:219–225

    Article  PubMed  CAS  Google Scholar 

  • Lehman N, Di Fulvio M, McCray N, Campos I, Tabatabaian F, Gomez-Cambronero J (2006) Phagocyte cell migration is mediated by phospholipases PLD1 and PLD2. Blood 108:3564–3572

    Article  PubMed  CAS  Google Scholar 

  • Lemmon MA (2007) Pleckstrin homology (PH) domains and phosphoinositides. Biochem Soc Symp 81–93

    Google Scholar 

  • Levchenko A, Iglesias PA (2002) Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. Biophys J 82:50–63

    Article  PubMed  CAS  Google Scholar 

  • Levine H, Kessler DA, Rappel WJ (2006) Directional sensing in eukaryotic chemotaxis: a balanced inactivation model. Proc Natl Acad Sci U S A 103:9761–9766

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Jiang H, Xie W, Zhang Z, Smrcka AV, Wu D (2000) Roles of PLC-beta2 and -beta3 and PI3Kgamma in chemoattractant-mediated signal transduction. Science 287:1046–1049

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Dong X, Wang Z, Liu W, Deng N, Ding Y, Tang L, Hla T, Zeng R, Li L, Wu D (2005) Regulation of PTEN by Rho small GTPases. Nat Cell Biol 7:399–404

    Article  PubMed  CAS  Google Scholar 

  • Lim CJ, Spiegelman GB, Weeks G (2001) RasC is required for optimal activation of adenylyl cyclase and Akt/PKB during aggregation. EMBO J 20:4490–4499

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Puri KD, Penninger JM, Kubes P (2007) Leukocyte PI3Kgamma and PI3Kdelta have temporally distinct roles for leukocyte recruitment in vivo. Blood 110:1191–1198

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Das S, Losert W, Parent CA (2010) mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion. Dev Cell 19:845–857

    Article  PubMed  CAS  Google Scholar 

  • Loew LM, Schaff JC (2001) The virtual cell: a software environment for computational cell biology. Trends Biotechnol 19:401–406

    Article  PubMed  CAS  Google Scholar 

  • Loovers HM, Veenstra K, Snippe H, Pesesse X, Erneux C, Van Haastert PJ (2003) A diverse family of inositol 5-phosphatases playing a role in growth and development in Dictyostelium discoideum. J Biol Chem 278:5652–5658

    Article  PubMed  CAS  Google Scholar 

  • Loovers HM, Postma M, Keizer-Gunnink I, Huang YE, Devreotes PN, Van Haastert PJ (2006) Distinct roles of PI(3,4,5)P3 during chemoattractant signaling in Dictyostelium: a quantitative in vivo analysis by inhibition of PI3-kinase. Mol Biol Cell 17:1503–1513

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Janetopoulos C, Yang L, Devreotes PN, Iglesias PA (2004) Two complementary, local excitation, global inhibition mechanisms acting in parallel can explain the chemoattractant-induced regulation of PI(3,4,5)P3 response in Dictyostelium cells. Biophys J 87:3764–3774

    Article  PubMed  CAS  Google Scholar 

  • Maeda M, Firtel RA (1997) Activation of the mitogen-activated protein kinase ERK2 by the chemoattractant folic acid in Dictyostelium. J Biol Chem 272:23690–23695

    Article  PubMed  CAS  Google Scholar 

  • Maffucci T, Cooke FT, Foster FM, Traer CJ, Fry MJ, Falasca M (2005) Class II phosphoinositide 3-kinase defines a novel signaling pathway in cell migration. J Cell Biol 169:789–799

    Article  PubMed  CAS  Google Scholar 

  • Martin P (1997) Wound healing–aiming for perfect skin regeneration. Science 276:75–81

    Article  PubMed  CAS  Google Scholar 

  • Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J 15:2208–2216

    PubMed  CAS  Google Scholar 

  • Meier-Schellersheim M, Xu X, Angermann B, Kunkel EJ, Jin T, Germain RN (2006) Key role of local regulation in chemosensing revealed by a new molecular interaction-based modeling method. PLoS Comput Biol 2:e82

    Google Scholar 

  • Meili R, Ellsworth C, Lee S, Reddy TB, Ma H, Firtel RA (1999) Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J 18:2092–2105

    Article  PubMed  CAS  Google Scholar 

  • Meili R, Ellsworth C, Firtel RA (2000) A novel Akt/PKB-related kinase is essential for morphogenesis in Dictyostelium. Curr Biol 10:708–717

    Article  PubMed  CAS  Google Scholar 

  • Meinhardt H (1999) Orientation of chemotactic cells and growth cones: models and mechanisms. J Cell Sci 112(Pt 17):2867–2874

    PubMed  CAS  Google Scholar 

  • Merlot S, Firtel RA (2003) Leading the way: directional sensing through phosphatidylinositol 3-kinase and other signaling pathways. J Cell Sci 116:3471–3478

    Article  PubMed  CAS  Google Scholar 

  • Meyer T, Oancea E (2000) Studies of signal transduction events using chimeras to green fluorescent protein. Methods Enzymol 327:500–513

    Article  PubMed  CAS  Google Scholar 

  • Miki H, Sasaki T, Takai Y, Takenawa T (1998) Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391:93–96

    Article  PubMed  CAS  Google Scholar 

  • Mishra RS, Carnevale KA, Cathcart MK (2008) iPLA2beta: front and center in human monocyte chemotaxis to MCP-1. J Exp Med 205:347–359

    Article  PubMed  CAS  Google Scholar 

  • Mogilner A, Wollman R, Marshall WF (2006) Quantitative modeling in cell biology: what is it good for? Dev Cell 11:279–287

    Article  PubMed  CAS  Google Scholar 

  • Monine MI, Haugh JM (2008) Cell population-based model of dermal wound invasion with heterogeneous intracellular signaling properties. Cell Adh Migr 2:137–146

    Article  PubMed  Google Scholar 

  • Mouneimne G, Soon L, Desmarais V, Sidani M, Song X, Yip SC, Ghosh M, Eddy R, Backer JM, Condeelis J (2004) Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J Cell Biol 166:697–708

    Article  PubMed  CAS  Google Scholar 

  • Mouneimne G, Desmarais V, Sidani M, Scemes E, Wang W, Song X, Eddy R, Condeelis J (2006) Spatial and temporal control of cofilin activity is required for directional sensing during chemotaxis. Curr Biol 16:2193–2205

    Article  PubMed  CAS  Google Scholar 

  • Munevar S, Wang YL, Dembo M (2001) Distinct roles of frontal and rear cell-substrate adhesions in fibroblast migration. Mol Biol Cell 12:3947–3954

    PubMed  CAS  Google Scholar 

  • Nakanishi S, Kakita S, Takahashi I, Kawahara K, Tsukuda E, Sano T, Yamada K, Yoshida M, Kase H, Matsuda Y et al (1992) Wortmannin, a microbial product inhibitor of myosin light chain kinase. J Biol Chem 267:2157–2163

    PubMed  CAS  Google Scholar 

  • Nakhaei-Nejad M, Hussain AM, Zhang QX, Murray AG (2007) Endothelial PI 3-kinase activity regulates lymphocyte diapedesis. Am J Physiol Heart Circ Physiol 293:H3608–H3616

    Article  PubMed  CAS  Google Scholar 

  • Narang A, Subramanian KK, Lauffenburger DA (2001) A mathematical model for chemoattractant gradient sensing based on receptor-regulated membrane phospholipid signaling dynamics. Ann Biomed Eng 29:677–691

    Article  PubMed  CAS  Google Scholar 

  • Narumiya S, Tanji M, Ishizaki T (2009) Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev 28:65–76

    Article  PubMed  CAS  Google Scholar 

  • Nebl T, Fisher PR (1997) Intracellular Ca2+ signals in Dictyostelium chemotaxis are mediated exclusively by Ca2+ influx. J Cell Sci 110(Pt 22):2845–2853

    PubMed  CAS  Google Scholar 

  • Niggli V (2000) A membrane-permeant ester of phosphatidylinositol 3,4:5-trisphosphate (PIP(3)) is an activator of human neutrophil migration. FEBS Lett 473:217–221

    Article  PubMed  CAS  Google Scholar 

  • Niggli V (2003) Signaling to migration in neutrophils: importance of localized pathways. Int J Biochem Cell Biol 35:1619–1638

    Article  PubMed  CAS  Google Scholar 

  • Nishio M, Watanabe K, Sasaki J, Taya C, Takasuga S, Iizuka R, Balla T, Yamazaki M, Watanabe H, Itoh R, Kuroda S, Horie Y, Forster I, Mak TW, Yonekawa H, Penninger JM, Kanaho Y, Suzuki A, Sasaki T (2007) Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nat Cell Biol 9:36–44

    Article  PubMed  CAS  Google Scholar 

  • Nombela-Arrieta C, Lacalle RA, Montoya MC, Kunisaki Y, Megias D, Marques M, Carrera AC, Manes S, Fukui Y, Martinez AC, Stein JV (2004) Differential requirements for DOCK2 and phosphoinositide-3-kinase gamma during T and B lymphocyte homing. Immunity 21:429–441

    Article  PubMed  CAS  Google Scholar 

  • Okkenhaug K, Vanhaesebroeck B (2001) New responsibilities for the PI3K regulatory subunit p85 alpha. Sci STKE 2001:pe1

    Google Scholar 

  • Okkenhaug K, Bilancio A, Farjot G, Priddle H, Sancho S, Peskett E, Pearce W, Meek SE, Salpekar A, Waterfield MD, Smith AJ, Vanhaesebroeck B (2002) Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science 297:1031–1034

    PubMed  CAS  Google Scholar 

  • Onsum M, Rao CV (2007) A mathematical model for neutrophil gradient sensing and polarization. PLoS Comput Biol 3:e36

    Google Scholar 

  • Oude Weernink PA, Lopez De Jesus M, Schmidt M (2007) Phospholipase D signaling: orchestration by PIP2 and small GTPases. Naunyn Schmiedebergs Arch Pharmacol 374:399–411

    Article  CAS  Google Scholar 

  • Page DL, Anderson TJ (1987) Diagnostic histopathology of the breast. Chruchill Livingstone, New York

    Google Scholar 

  • Papakonstanti EA, Ridley AJ, Vanhaesebroeck B (2007) The p110delta isoform of PI 3-kinase negatively controls RhoA and PTEN. EMBO J 26:3050–3061

    Article  PubMed  CAS  Google Scholar 

  • Paradiso A, Cardone RA, Bellizzi A, Bagorda A, Guerra L, Tommasino M, Casavola V, Reshkin SJ (2004) The Na+-H+exchanger-1 induces cytoskeletal changes involving reciprocal RhoA and Rac1 signaling, resulting in motility and invasion in MDA-MB-435 cells. Breast Cancer Res 6:R616–R628

    Article  PubMed  CAS  Google Scholar 

  • Parent CA, Devreotes PN (1996) Molecular genetics of signal transduction in Dictyostelium. Annu Rev Biochem 65:411–440

    Article  PubMed  CAS  Google Scholar 

  • Parent CA, Devreotes PN (1999) A cell’s sense of direction. Science 284:765–770

    Article  PubMed  CAS  Google Scholar 

  • Parent CA, Blacklock BJ, Froehlich WM, Murphy DB, Devreotes PN (1998) G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95:81–91

    Article  PubMed  CAS  Google Scholar 

  • Park CS, Schneider IC, Haugh JM (2003) Kinetic analysis of platelet-derived growth factor receptor/phosphoinositide 3-kinase/Akt signaling in fibroblasts. J Biol Chem 278:37064–37072

    Article  PubMed  CAS  Google Scholar 

  • Park KC, Rivero F, Meili R, Lee S, Apone F, Firtel RA (2004) Rac regulation of chemotaxis and morphogenesis in Dictyostelium. EMBO J 23:4177–4189

    Article  PubMed  CAS  Google Scholar 

  • Park WS, Heo WD, Whalen JH, O’Rourke NA, Bryan HM, Meyer T, Teruel MN (2008) Comprehensive identification of PIP3-regulated PH domains from C. elegans to H. sapiens by model prediction and live imaging. Mol Cell 30:381–392

    CAS  Google Scholar 

  • Patel H, Barber DL (2005) A developmentally regulated Na-H exchanger in Dictyostelium discoideum is necessary for cell polarity during chemotaxis. J Cell Biol 169:321–329

    Article  PubMed  CAS  Google Scholar 

  • Patrucco E, Notte A, Barberis L, Selvetella G, Maffei A, Brancaccio M, Marengo S, Russo G, Azzolino O, Rybalkin SD, Silengo L, Altruda F, Wetzker R, Wymann MP, Lembo G, Hirsch E (2004) PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell 118:375–387

    Article  PubMed  CAS  Google Scholar 

  • Paulus W, Baur I, Beutler AS, Reeves SA (1996) Diffuse brain invasion of glioma cells requires beta 1 integrins. Lab Invest 75:819–826

    PubMed  CAS  Google Scholar 

  • Pierce GF, Mustoe TA, Lingelbach J, Masakowski VR, Griffin GL, Senior RM, Deuel TF (1989) Platelet-derived growth factor and transforming growth factor-beta enhance tissue repair activities by unique mechanisms. J Cell Biol 109:429–440

    Article  PubMed  CAS  Google Scholar 

  • Pierce GF, Mustoe TA, Altrock BW, Deuel TF, Thomason A (1991) Role of platelet-derived growth factor in wound healing. J Cell Biochem 45:319–326

    Article  PubMed  CAS  Google Scholar 

  • Pitts WC, Rojas VA, Gaffey MJ, Rouse RV, Esteban J, Frierson HF, Kempson RL, Weiss LM (1991) Carcinomas with metaplasia and sarcomas of the breast. Am J Clin Pathol 95:623–632

    PubMed  CAS  Google Scholar 

  • Polette M, Gilles C, De Bentzmann S, Gruenert D, Tournier JM, Birembaut P (1998) Association of fibroblastoid features with the invasive phenotype in human bronchial cancer cell lines. Clin Exp Metastasis 16:105–112

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    Article  PubMed  CAS  Google Scholar 

  • Pollitt AY, Insall RH (2009) WASP and SCAR/WAVE proteins: the drivers of actin assembly. J Cell Sci 122:2575–2578

    Article  PubMed  CAS  Google Scholar 

  • Postma M, Van Haastert PJ (2001) A diffusion-translocation model for gradient sensing by chemotactic cells. Biophys J 81:1314–1323

    Article  PubMed  CAS  Google Scholar 

  • Ptasznik A, Traynor-Kaplan A, Bokoch GM (1995) G protein-coupled chemoattractant receptors regulate Lyn tyrosine kinase. Shc adapter protein signaling complexes. J Biol Chem 270:19969–19973

    CAS  Google Scholar 

  • Puri KD, Doggett TA, Douangpanya J, Hou Y, Tino WT, Wilson T, Graf T, Clayton E, Turner M, Hayflick JS, Diacovo TG (2004) Mechanisms and implications of phosphoinositide 3-kinase delta in promoting neutrophil trafficking into inflamed tissue. Blood 103:3448–3456

    Article  PubMed  CAS  Google Scholar 

  • Rahdar M, Inoue T, Meyer T, Zhang J, Vazquez F, Devreotes PN (2009) A phosphorylation-dependent intramolecular interaction regulates the membrane association and activity of the tumor suppressor PTEN. Proc Natl Acad Sci U S A 106:480–485

    Article  PubMed  CAS  Google Scholar 

  • Rameh LE, Cantley LC (1999) The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem 274:8347–8350

    Article  PubMed  CAS  Google Scholar 

  • Raper KB (1935) Dictyostelium discoideum, a new species of slime mold from decaying forest leaves. J Agric Res 50:135–147

    Google Scholar 

  • Rappel WJ, Thomas PJ, Levine H, Loomis WF (2002) Establishing direction during chemotaxis in eukaryotic cells. Biophys J 83:1361–1367

    Article  PubMed  CAS  Google Scholar 

  • Reif K, Okkenhaug K, Sasaki T, Penninger JM, Vanhaesebroeck B, Cyster JG (2004) Cutting edge: differential roles for phosphoinositide 3-kinases, p110gamma and p110delta, in lymphocyte chemotaxis and homing. J Immunol 173:2236–2240

    PubMed  CAS  Google Scholar 

  • Rickert P, Weiner OD, Wang F, Bourne HR, Servant G (2000) Leukocytes navigate by compass: roles of PI3Kgamma and its lipid products. Trends Cell Biol 10:466–473

    Article  PubMed  CAS  Google Scholar 

  • Rintoul RC, Sethi T (2001) The role of extracellular matrix in small-cell lung cancer. Lancet Oncol 2:437–442

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, Downward J (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370:527–532

    Article  PubMed  CAS  Google Scholar 

  • Roelofs J, Meima M, Schaap P, Van Haastert PJ (2001) The Dictyostelium homologue of mammalian soluble adenylyl cyclase encodes a guanylyl cyclase. EMBO J 20:4341–4348

    Article  PubMed  CAS  Google Scholar 

  • Sadhu C, Masinovsky B, Dick K, Sowell CG, Staunton DE (2003) Essential role of phosphoinositide 3-kinase delta in neutrophil directional movement. J Immunol 170:2647–2654

    PubMed  CAS  Google Scholar 

  • Sasaki T, Irie-Sasaki J, Jones RG, Oliveira-Dos-Santos AJ, Stanford WL, Bolon B, Wakeham A, Itie A, Bouchard D, Kozieradzki I, Joza N, Mak TW, Ohashi PS, Suzuki A, Penninger JM (2000) Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 287:1040–1046

    Article  PubMed  CAS  Google Scholar 

  • Sasaki AT, Chun C, Takeda K, Firtel RA (2004) Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J Cell Biol 167:505–518

    Article  PubMed  CAS  Google Scholar 

  • Sasaki AT, Janetopoulos C, Lee S, Charest PG, Takeda K, Sundheimer LW, Meili R, Devreotes PN, Firtel RA (2007) G protein-independent Ras/PI3K/F-actin circuit regulates basic cell motility. J Cell Biol 178:185–191

    Article  PubMed  CAS  Google Scholar 

  • Saudemont A, Garcon F, Yadi H, Roche-Molina M, Kim N, Segonds-Pichon A, Martin-Fontecha A, Okkenhaug K, Colucci F (2009) p110gamma and p110delta isoforms of phosphoinositide 3-kinase differentially regulate natural killer cell migration in health and disease. Proc Natl Acad Sci U S A 106:5795–5800

    Article  PubMed  CAS  Google Scholar 

  • Schneider IC, Haugh JM (2004) Spatial analysis of 3’ phosphoinositide signaling in living fibroblasts: II. Parameter estimates for individual cells from experiments. Biophys J 86:599–608

    Article  PubMed  CAS  Google Scholar 

  • Schneider IC, Haugh JM (2005) Quantitative elucidation of a distinct spatial gradient-sensing mechanism in fibroblasts. J Cell Biol 171:883–892

    Article  PubMed  CAS  Google Scholar 

  • Schneider IC, Haugh JM (2006) Mechanisms of gradient sensing and chemotaxis: conserved pathways, diverse regulation. Cell Cycle 5:1130–1134

    Article  PubMed  CAS  Google Scholar 

  • Schneider IC, Parrish EM, Haugh JM (2005) Spatial analysis of 3’ phosphoinositide signaling in living fibroblasts, III: influence of cell morphology and morphological Polarity. Biophys J 89:1420–1430

    Article  PubMed  CAS  Google Scholar 

  • Seppa H, Grotendorst G, Seppa S, Schiffmann E, Martin GR (1982) Platelet-derived growth factor in chemotactic for fibroblasts. J Cell Biol 92:584–588

    Article  PubMed  CAS  Google Scholar 

  • Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR (2000) Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287:1037–1040

    Article  PubMed  CAS  Google Scholar 

  • Sheetz MP, Felsenfeld DP, Galbraith CG (1998) Cell migration: regulation of force on extracellular-matrix-integrin complexes. Trends Cell Biol 8:51–54

    Article  PubMed  CAS  Google Scholar 

  • Shibata K, Warbington ML, Gordon BJ, Kurihara H, Van Dyke TE (2001) Nitric oxide synthase activity in neutrophils from patients with localized aggressive periodontitis. J Periodontol 72:1052–1058

    Article  PubMed  CAS  Google Scholar 

  • Shioi T, Kang PM, Douglas PS, Hampe J, Yballe CM, Lawitts J, Cantley LC, Izumo S (2000) The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J 19:2537–2548

    Article  PubMed  CAS  Google Scholar 

  • Simian M, Hirai Y, Navre M, Werb Z, Lochter A, Bissell MJ (2001) The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development 128:3117–3131

    PubMed  CAS  Google Scholar 

  • Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    Article  PubMed  CAS  Google Scholar 

  • Skupsky R, Losert W, Nossal RJ (2005) Distinguishing modes of eukaryotic gradient sensing. Biophys J 89:2806–2823

    Article  PubMed  CAS  Google Scholar 

  • Smerling C, Tang K, Hofmann W, Danker K (2007) Role of the alpha(1) integrin cytoplasmic tail in the formation of focal complexes, actin organization, and in the control of cell migration. Exp Cell Res 313:3153–3165

    Article  PubMed  CAS  Google Scholar 

  • Stauffer TP, Ahn S, Meyer T (1998) Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol 8:343–346

    Article  PubMed  CAS  Google Scholar 

  • Stephanou A, Mylona E, Chaplain M, Tracqui P (2008) A computational model of cell migration coupling the growth of focal adhesions with oscillatory cell protrusions. J Theor Biol 253:701–716

    Article  PubMed  Google Scholar 

  • Stephens L, Eguinoa A, Corey S, Jackson T, Hawkins PT (1993) Receptor stimulated accumulation of phosphatidylinositol (3,4,5)-trisphosphate by G-protein mediated pathways in human myeloid derived cells. EMBO J 12:2265–2273

    PubMed  CAS  Google Scholar 

  • Stephens LR, Eguinoa A, Erdjument-Bromage H, Lui M, Cooke F, Coadwell J, Smrcka AS, Thelen M, Cadwallader K, Tempst P, Hawkins PT (1997) The G beta gamma sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. Cell 89:105–114

    Article  PubMed  CAS  Google Scholar 

  • Stephens L, Milne L, Hawkins P (2008) Moving towards a better understanding of chemotaxis. Curr Biol 18:R485–R494

    Article  PubMed  CAS  Google Scholar 

  • Subramanian KK, Narang A (2004) A mechanistic model for eukaryotic gradient sensing: spontaneous and induced phosphoinositide polarization. J Theor Biol 231:49–67

    Article  PubMed  CAS  Google Scholar 

  • Subramanian KK, Jia Y, Zhu D, Simms BT, Jo H, Hattori H, You J, Mizgerd JP, Luo HR (2007) Tumor suppressor PTEN is a physiologic suppressor of chemoattractant-mediated neutrophil functions. Blood 109:4028–4037

    Article  PubMed  CAS  Google Scholar 

  • Suetsugu S, Yamazaki D, Kurisu S, Takenawa T (2003) Differential roles of WAVE1 and WAVE2 in dorsal and peripheral ruffle formation for fibroblast cell migration. Dev Cell 5:595–609

    Article  PubMed  CAS  Google Scholar 

  • Suire S, Coadwell J, Ferguson GJ, Davidson K, Hawkins P, Stephens L (2005) p84, a new Gbetagamma-activated regulatory subunit of the type IB phosphoinositide 3-kinase p110gamma. Curr Biol 15:566–570

    Article  PubMed  CAS  Google Scholar 

  • Suire S, Condliffe AM, Ferguson GJ, Ellson CD, Guillou H, Davidson K, Welch H, Coadwell J, Turner M, Chilvers ER, Hawkins PT, Stephens L (2006) Gbetagammas and the Ras binding domain of p110gamma are both important regulators of PI(3)Kgamma signalling in neutrophils. Nat Cell Biol 8:1303–1309

    Article  PubMed  CAS  Google Scholar 

  • Sun TJ, Devreotes PN (1991) Gene targeting of the aggregation stage cAMP receptor cAR1 in Dictyostelium. Genes Dev 5:572–582

    Article  PubMed  CAS  Google Scholar 

  • Swaney KF, Huang CH, Devreotes PN (2010) Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu Rev Biophys 39:265–289

    Article  PubMed  CAS  Google Scholar 

  • Symons M, Derry JM, Karlak B, Jiang S, Lemahieu V, McCormick F, Francke U, Abo A (1996) Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 84:723–734

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Morales FC, Kreimann EL, Georgescu MM (2006) PTEN tumor suppressor associates with NHERF proteins to attenuate PDGF receptor signaling. EMBO J 25:910–920

    Article  PubMed  CAS  Google Scholar 

  • Takeda K, Sasaki AT, Ha H, Seung HA, Firtel RA (2007) Role of phosphatidylinositol 3-kinases in chemotaxis in Dictyostelium. J Biol Chem 282:11874–11884

    Article  PubMed  CAS  Google Scholar 

  • Takenawa T, Suetsugu S (2007) The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 8:37–48

    Article  PubMed  CAS  Google Scholar 

  • Teruel MN, Meyer T (2000) Translocation and reversible localization of signaling proteins: a dynamic future for signal transduction. Cell 103:181–184

    Article  PubMed  CAS  Google Scholar 

  • Tester AM, Ruangpanit N, Anderson RL, Thompson EW (2000) MMP-9 secretion and MMP-2 activation distinguish invasive and metastatic sublines of a mouse mammary carcinoma system showing epithelial-mesenchymal transition traits. Clin Exp Metastasis 18:553–560

    Article  PubMed  CAS  Google Scholar 

  • Tranquillo RT, Lauffenburger DA, Zigmond SH (1988) A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations. J Cell Biol 106:303–309

    Article  PubMed  CAS  Google Scholar 

  • Traynor D, Milne JL, Insall RH, Kay RR (2000) Ca(2+) signalling is not required for chemotaxis in Dictyostelium. EMBO J 19:4846–4854

    Article  PubMed  CAS  Google Scholar 

  • Traynor-Kaplan AE, Thompson BL, Harris AL, Taylor P, Omann GM, Sklar LA (1989) Transient increase in phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol trisphosphate during activation of human neutrophils. J Biol Chem 264:15668–15673

    PubMed  CAS  Google Scholar 

  • Trepat X, Wasserman MR, Angelini TE, Millet E, Weitz DA, Butler JP, Fredberg JJ (2009) Physical forces during collective cell migration. Nat Phys 5:426–430

    Article  CAS  Google Scholar 

  • Van Haastert PJ, Keizer-Gunnink I, Kortholt A (2007) Essential role of PI3-kinase and phospholipase A2 in Dictyostelium discoideum chemotaxis. J Cell Biol 177:809–816

    Article  PubMed  CAS  Google Scholar 

  • Vandermoere F, El Yazidi-Belkoura I, Demont Y, Slomianny C, Antol J, Lemoine J, Hondermarck H (2007) Proteomics exploration reveals that actin is a signaling target of the kinase Akt. Mol Cell Proteomics 6:114–124

    PubMed  CAS  Google Scholar 

  • Vanhaesebroeck B, Welham MJ, Kotani K, Stein R, Warne PH, Zvelebil MJ, Higashi K, Volinia S, Downward J, Waterfield MD (1997) P110delta, a novel phosphoinositide 3-kinase in leukocytes. Proc Natl Acad Sci U S A 94:4330–4335

    Article  PubMed  CAS  Google Scholar 

  • Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD (2001) Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70:535–602

    Article  PubMed  CAS  Google Scholar 

  • Vaughan RB, Trinkaus JP (1966) Movements of epithelial cell sheets in vitro. J Cell Sci 1:407–413

    PubMed  CAS  Google Scholar 

  • Vedham V, Phee H, Coggeshall KM (2005) Vav activation and function as a rac guanine nucleotide exchange factor in macrophage colony-stimulating factor-induced macrophage chemotaxis. Mol Cell Biol 25:4211–4220

    Article  PubMed  CAS  Google Scholar 

  • Veltman DM, Van Haastert PJ (2008) The role of cGMP and the rear of the cell in Dictyostelium chemotaxis and cell streaming. J Cell Sci 121:120–127

    Article  PubMed  CAS  Google Scholar 

  • Veltman DM, Roelofs J, Engel R, Visser AJ, Van Haastert PJ (2005) Activation of soluble guanylyl cyclase at the leading edge during Dictyostelium chemotaxis. Mol Biol Cell 16:976–983

    Article  PubMed  CAS  Google Scholar 

  • Verschueren H, De Baetselier P, Bereiter-Hahn J (1991) Dynamic morphology of metastatic mouse T-lymphoma cells invading through monolayers of 10T1/2 cells. Cell Motil Cytoskeleton 20:203–214

    Article  PubMed  CAS  Google Scholar 

  • Virbasius JV, Guilherme A, Czech MP (1996) Mouse p170 is a novel phosphatidylinositol 3-kinase containing a C2 domain. J Biol Chem 271:13304–13307

    Article  PubMed  CAS  Google Scholar 

  • Vlahos CJ, Matter WF, Hui KY, Brown RF (1994) A specific inhibitor of phosphatidylinositol 3-kinase 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 269:5241–5248

    Google Scholar 

  • Wang F, Herzmark P, Weiner OD, Srinivasan S, Servant G, Bourne HR (2002) Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat Cell Biol 4:513–518

    Article  PubMed  CAS  Google Scholar 

  • Wanikiat P, Woodward DF, Armstrong RA (1997) Investigation of the role of nitric oxide and cyclic GMP in both the activation and inhibition of human neutrophils. Br J Pharmacol 122:1135–1145

    Article  PubMed  CAS  Google Scholar 

  • Wei C, Wang X, Chen M, Ouyang K, Song LS, Cheng H (2009) Calcium flickers steer cell migration. Nature 457:901–905

    Article  PubMed  CAS  Google Scholar 

  • Weiger MC, Wang CC, Krajcovic M, Melvin AT, Rhoden JJ, Haugh JM (2009) Spontaneous phosphoinositide 3-kinase signaling dynamics drive spreading and random migration of fibroblasts. J Cell Sci 122:313–323

    Article  PubMed  CAS  Google Scholar 

  • Weiger MC, Ahmed S, Welf ES, Haugh JM (2010) Directional persistence of cell migration coincides with stability of asymmetric intracellular signaling. Biophys J 98:67–75

    Article  PubMed  CAS  Google Scholar 

  • Weiner OD, Neilsen PO, Prestwich GD, Kirschner MW, Cantley LC, Bourne HR (2002) A PtdInsP(3)- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat Cell Biol 4:509–513

    Article  PubMed  CAS  Google Scholar 

  • Weingarten R, Bokoch GM (1990) GTP binding proteins and signal transduction in the human neutrophil. Immunol Lett 26:1–6

    Article  PubMed  CAS  Google Scholar 

  • Welch HC, Coadwell WJ, Ellson CD, Ferguson GJ, Andrews SR, Erdjument-Bromage H, Tempst P, Hawkins PT, Stephens LR (2002) P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated guanine-nucleotide exchange factor for Rac. Cell 108:809–821

    Article  PubMed  CAS  Google Scholar 

  • Welch HC, Condliffe AM, Milne LJ, Ferguson GJ, Hill K, Webb LM, Okkenhaug K, Coadwell WJ, Andrews SR, Thelen M, Jones GE, Hawkins PT, Stephens LR (2005) P-Rex1 regulates neutrophil function. Curr Biol 15:1867–1873

    Article  PubMed  CAS  Google Scholar 

  • Welf ES, Haugh JM (2011) Signaling pathways that control cell migration: models and analysis. Wiley Interdiscip Rev Syst Biol Med 3:231–240

    Article  PubMed  CAS  Google Scholar 

  • Wennstrom S, Hawkins P, Cooke F, Hara K, Yonezawa K, Kasuga M, Jackson T, Claesson-Welsh L, Stephens L (1994a) Activation of phosphoinositide 3-kinase is required for PDGF-stimulated membrane ruffling. Curr Biol 4:385–393

    Article  CAS  Google Scholar 

  • Wennstrom S, Siegbahn A, Yokote K, Arvidsson AK, Heldin CH, Mori S, Claesson-Welsh L (1994b) Membrane ruffling and chemotaxis transduced by the PDGF beta-receptor require the binding site for phosphatidylinositol 3’ kinase. Oncogene 9:651–660

    CAS  Google Scholar 

  • Wessels D, Lusche DF, Kuhl S, Heid P, Soll DR (2007) PTEN plays a role in the suppression of lateral pseudopod formation during Dictyostelium motility and chemotaxis. J Cell Sci 120:2517–2531

    Article  PubMed  CAS  Google Scholar 

  • Wolf K, Mazo I, Leung H, Engelke K, Von Andrian UH, Deryugina EI, Strongin AY, Brocker EB, Friedl P (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160:267–277

    Article  PubMed  CAS  Google Scholar 

  • Wood S Jr (1958) Pathogenesis of metastasis formation observed in vivo in the rabbit ear chamber. AMA Arch Pathol 66:550–568

    PubMed  Google Scholar 

  • Worth DC, Parsons M (2008) Adhesion dynamics: mechanisms and measurements. Int J Biochem Cell Biol 40:2397–2409

    Article  PubMed  CAS  Google Scholar 

  • Wu YI, Frey D, Lungu OI, Jaehrig A, Schlichting I, Kuhlman B, Hahn KM (2009) A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461:104–108

    Article  PubMed  CAS  Google Scholar 

  • Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER, Segall JE, Pollard JW, Condeelis J (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67:2649–2656

    Article  PubMed  CAS  Google Scholar 

  • Wymann M, Arcaro A (1994) Platelet-derived growth factor-induced phosphatidylinositol 3-kinase activation mediates actin rearrangements in fibroblasts. Biochem J 298(Pt 3):517–520

    PubMed  CAS  Google Scholar 

  • Wymann MP, Bulgarelli-Leva G, Zvelebil MJ, Pirola L, Vanhaesebroeck B, Waterfield MD, Panayotou G (1996) Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction. Mol Cell Biol 16:1722–1733

    PubMed  CAS  Google Scholar 

  • Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A, Kelly K, Takuwa Y, Sugimoto N, Mitchison T, Bourne HR (2003) Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114:201–214

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Meier-Schellersheim M, Jiao X, Nelson LE, Jin T (2005) Quantitative imaging of single live cells reveals spatiotemporal dynamics of multistep signaling events of chemoattractant gradient sensing in Dictyostelium. Mol Biol Cell 16:676–688

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Meier-Schellersheim M, Yan J, Jin T (2007) Locally controlled inhibitory mechanisms are involved in eukaryotic GPCR-mediated chemosensing. J Cell Biol 178:141–153

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki D, Suetsugu S, Miki H, Kataoka Y, Nishikawa S, Fujiwara T, Yoshida N, Takenawa T (2003) WAVE2 is required for directed cell migration and cardiovascular development. Nature 424:452–456

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Iglesias PA (2009) Modeling spatial and temporal dynamics of chemotactic networks. In: Hereld D and Tian J (ed) Chemotaxis: methods and protocols. Springer Protocols

    Google Scholar 

  • Yoo SK, Deng Q, Cavnar PJ, Wu YI, Hahn KM, Huttenlocher A (2010) Differential regulation of protrusion and polarity by PI3K during neutrophil motility in live zebrafish. Dev Cell 18:226–236

    Article  PubMed  CAS  Google Scholar 

  • Yoshii S, Tanaka M, Otsuki Y, Wang DY, Guo RJ, Zhu Y, Takeda R, Hanai H, Kaneko E, Sugimura H (1999) alphaPIX nucleotide exchange factor is activated by interaction with phosphatidylinositol 3-kinase. Oncogene 18:5680–5690

    Article  PubMed  CAS  Google Scholar 

  • Yumura S, Mori H, Fukui Y (1984) Localization of actin and myosin for the study of ameboid movement in Dictyostelium using improved immunofluorescence. J Cell Biol 99:894–899

    Article  PubMed  CAS  Google Scholar 

  • Yumura S, Furuya K, Takeuchi I (1996) Intracellular free calcium responses during chemotaxis of Dictyostelium cells. J Cell Sci 109(Pt 11):2673–2678

    PubMed  CAS  Google Scholar 

  • Zhang P, Wang Y, Sesaki H, Iijima M (2010) Proteomic identification of phosphatidylinositol (3,4,5) triphosphate-binding proteins in Dictyostelium discoideum. Proc Natl Acad Sci U S A 107:11829–11834

    Article  PubMed  CAS  Google Scholar 

  • Zhou K, Takegawa K, Emr SD, Firtel RA (1995) A phosphatidylinositol (PI) kinase gene family in Dictyostelium discoideum: biological roles of putative mammalian p110 and yeast Vps34p PI 3-kinase homologs during growth and development. Mol Cell Biol 15:5645–5656

    PubMed  CAS  Google Scholar 

  • Zouwail S, Pettitt TR, Dove SK, Chibalina MV, Powner DJ, Haynes L, Wakelam MJ, Insall RH (2005) Phospholipase D activity is essential for actin localization and actin-based motility in Dictyostelium. Biochem J 389:207–214

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Philippe Afonso, Satarupa Das, and Vidya Vedham for their critical input. This work was supported by the Intramural Research Program of the Center for Cancer Research, NCI, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carole A. Parent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Weiger, M.C., Parent, C.A. (2012). Phosphoinositides in Chemotaxis. In: Balla, T., Wymann, M., York, J. (eds) Phosphoinositides II: The Diverse Biological Functions. Subcellular Biochemistry, vol 59. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3015-1_7

Download citation

Publish with us

Policies and ethics