Skip to main content

Origins of Mitochondria and Plastids

  • Chapter
  • First Online:
Genomics of Chloroplasts and Mitochondria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 35))

Summary

The evolution of mitochondria and plastids (chloroplasts) by endosymbiosis is a central tenet of modern eukaryotic cell biology. Evidence in support of a prokaryotic ancestry for these textbook organelles is now stronger than ever, but despite decades of genomics-enabled research, fundamental questions about the earliest events leading to their establishment remain unanswered. Foremost among them is the precise nature of the cells involved in these endosymbiotic mergers. Mitochondria and plastids are traditionally considered to be the products of independent, but fundamentally similar, endosymbioses involving eukaryotic hosts and bacterial endosymbionts. Such a model still holds true for plastids, but increasingly it appears that mitochondria could have evolved in a fashion quite different from this ‘classical’ scenario. In this introductory chapter we provide an overview of the primary endosymbiotic origins of mitochondria and plastids, focusing on advances coming from the latest comparative genomic and proteomic investigations. In the case of plastids, the recently evolved photosynthetic ‘organelles’ of the testate amoeba Paulinella provide a possible window on the ancient origin of canonical plastids and are thus also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CSS –:

Cellular signature structure;

ER –:

Endoplasmic reticulum;

ESP –:

Eukaryotic signature protein;

EST –:

Expressed sequence tag;

GTA –:

Gene transfer agent;

HGT –:

Horizontal gene transfer;

ISC –:

Iron–sulfur cluster;

LECA –:

Last eukaryotic common ancestor;

MRO –:

Mitochondrion-related organelle;

MS –:

Mass spectrometry;

PFO –:

Pyruvate: ferredoxin oxidoreductase;

PGK –:

Phosphoglycerate kinase;

TCA –:

Tricarboxylic acid;

Tic –:

Translocater of the inner chloroplast membrane;

Toc –:

Translocater of the outer chloroplast membrane

References

  • Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup Ø, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    Article  PubMed  Google Scholar 

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  PubMed  CAS  Google Scholar 

  • Andersson JO (2005) Lateral gene transfer in eukaryotes. Cell Mol Life Sci 62:1182–1197

    Article  PubMed  CAS  Google Scholar 

  • Andersson SGE, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UCM, Podowski RM, Näslund AK, Eriksson A-S, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140

    Article  PubMed  CAS  Google Scholar 

  • Archibald JM (2005) Jumping genes and shrinking genomes – probing the evolution of eukaryotic photosynthesis using genomics. IUBMB Life 57:539–547

    Article  PubMed  CAS  Google Scholar 

  • Archibald JM (2006a) Endosymbiosis: double-take on plastid origins. Curr Biol 16:R690–R692

    Article  PubMed  CAS  Google Scholar 

  • Archibald JM (2006b) Algal genomics: exploring the imprint of endosymbiosis. Curr Biol 16:R1033–R1035

    Article  PubMed  CAS  Google Scholar 

  • Archibald JM (2008) The eocyte hypothesis and the origin of eukaryotic cells. Proc Natl Acad Sci USA 105:20049–20050

    Article  PubMed  CAS  Google Scholar 

  • Archibald JM, Rogers MB, Toop M, Ishida K, Keeling PJ (2003) Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci USA 100:7678–7683

    Article  PubMed  CAS  Google Scholar 

  • Besendahl A, Qiu Y-L, Lee J, Palmer JD, Bhattacharya D (2000) The cyanobacterial origin and vertical transmission of the plastid tRNALeu group-I intron. Curr Genet 37:12–23

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya D, Yoon HS, Hackett JD (2003) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. Bioessays 26:50–60

    Article  Google Scholar 

  • Bininda-Emonds ORP (2004) The evolution of supertrees. Trends Ecol Evol 19:315–322

    Article  PubMed  Google Scholar 

  • Bodyl A, Mackiewicz P, Stiller JW (2010) Comparative genomic studies suggest that the cyanobacterial endosymbionts of the amoeba Paulinella chromatophora possess an import apparatus for nuclear-encoded proteins. Plant Biol (Stuttg) 12:639–649

    CAS  Google Scholar 

  • Borza T, Popescu CE, Lee RW (2005) Multiple metabolic roles for the nonphotosynthetic plastid of the green alga Prototheca wickerhamii. Eukaryot Cell 4:253–261

    Article  PubMed  CAS  Google Scholar 

  • Boussau B, Karlberg EO, Frank AC, Legault B-A, Andersson SGE (2004) Computational inference of scenarios for α-proteobacterial genome evolution. Proc Natl Acad Sci USA 101:9722–9727

    Article  PubMed  CAS  Google Scholar 

  • Boxma B, de Graaf RM, van der Staay GWM, van Alen TA, Ricard G, Gabaldόn T, van Hoek AHAM, Moon-van der Staay SY, Koopman WJH, van Hellemond JJ, Tielens AGM, Friedrich T, Veenhuis M, Huynen MA, Hackstein JHP (2005) An anaerobic mitochondrion that produces hydrogen. Nature 434:74–79

    Article  PubMed  CAS  Google Scholar 

  • Brandt U (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 75:69–92

    Article  PubMed  CAS  Google Scholar 

  • Brinkman FSL, Blanchard JL, Cherkasov A, Av-Gay Y, Brunham RC, Fernandez RC, Finlay BB, Otto SP, Ouellette BFF, Keeling PJ, Rose AM, Hancock REW, Jones SJM, Greberg H (2002) Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae, cyanobacteria, and the chloroplast. Genome Res 12:1159–1167

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann H, Martin W (1996) Higher-plant chloroplast and cytosolic 3-phosphoglycerate kinases: a case of endosymbiotic gene replacement. Plant Mol Biol 30:65–75

    Article  PubMed  CAS  Google Scholar 

  • Bui ET, Bradley PJ, Johnson PJ (1996) A common evolutionary origin for mitochondria and hydrogenosomes. Proc Natl Acad Sci USA 93:9651–9656

    Article  PubMed  CAS  Google Scholar 

  • Burger G, Lang BF, Reith M, Gray MW (1996) Genes encoding the same three subunits of respiratory complex II are present in the mitochondrial DNA of two phylogenetically distant eukaryotes. Proc Natl Acad Sci USA 93:2328–2332

    Article  PubMed  CAS  Google Scholar 

  • Burger G, Saint-Louis D, Gray MW, Lang BF (1999) Complete sequence of the mitochondrial DNA of the red alga Porphyra purpurea. Cyanobacterial introns and shared ancestry of red and green algae. Plant Cell 11:1675–1694

    PubMed  CAS  Google Scholar 

  • Burki F, Pawlowski J (2006) Monophyly of Rhizaria and multigene phylogeny of unicellular bikonts. Mol Biol Evol 23:1922–1930

    Article  PubMed  CAS  Google Scholar 

  • Cardol P, Vanrobaeys F, Devreese B, Van Beeumen J, Matagne RF, Remacle C (2004) Higher plant-like subunit composition of mitochondrial complex I from Chlamydomonas reinhardtii: 31 conserved components among eukaryotes. Biochim Biophys Acta 1658:212–224

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2007) The chimaeric origin of mitochondria: photosynthetic cell enslavement, gene-transfer pressure, and compartmentation efficiency. In: Martin WF, Müller M (eds) Origin of mitochondria and hydrogenosomes. Springer, Berlin, pp 161–199

    Chapter  Google Scholar 

  • Cavalier-Smith T, Lee JJ (1985) Protozoa as hosts for endosymbioses and the conversion of symbionts into organelles. J Protozool 32:376–379

    Google Scholar 

  • Ciniglia C, Yoon HS, Pollio A, Pinto G, Bhattacharya D (2004) Hidden biodiversity of the extremophilic Cyanidiales red algae. Mol Ecol 13:1827–1838

    Article  PubMed  CAS  Google Scholar 

  • Clark CG, Roger AJ (1995) Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc Natl Acad Sci USA 92:6518–6521

    Article  PubMed  CAS  Google Scholar 

  • Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786

    Article  PubMed  CAS  Google Scholar 

  • Cox CJ, Foster PG, Hirt RP, Harris SR, Embley TM (2008) The archaebacterial origin of eukaryotes. Proc Natl Acad Sci USA 105:20356–20361

    Article  PubMed  CAS  Google Scholar 

  • de Koning AP, Keeling PJ (2006) The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured. BMC Biol 4:12

    Article  PubMed  CAS  Google Scholar 

  • Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361–375

    Article  PubMed  CAS  Google Scholar 

  • Delwiche CF, Kuhsel M, Palmer JD (1995) Phylo­genetic analysis of tufA sequences indicates a cyanobacterial origin of all plastids. Mol Phylogenet Evol 4:110–128

    Article  PubMed  CAS  Google Scholar 

  • Desmond E, Brochier-Armanet C, Forterre P, Gribaldo S (2011) On the last common ancestor and early evolution of eukaryotes: reconstructing the history of mitochondrial ribosomes. Res Microbiol 162:53–70

    Article  PubMed  CAS  Google Scholar 

  • Deusch O, Landan G, Roettger M, Gruenheit N, Kowallik KV, Allen JF, Martin W, Dagan T (2008) Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Mol Biol Evol 25:748–761

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF (1980) Revolutionary concepts in evolutionary biology. Trends Biochem Sci 5:146–149

    Article  CAS  Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2129

    Article  PubMed  CAS  Google Scholar 

  • Douglas SE, Gray MW (1991) Plastid origins. Nature 352:290

    Article  PubMed  CAS  Google Scholar 

  • Dreger M (2003) Proteome analysis at the level of subcellular structures. Eur J Biochem 270:589–599

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  PubMed  CAS  Google Scholar 

  • Embley TM (2006) Multiple secondary origins of the anaerobic lifestyle in eukaryotes. Philos Trans R Soc Lond B Biol Sci 361:1055–1067

    Article  PubMed  CAS  Google Scholar 

  • Embley TM, van der Giezen M, Horner DS, Dyal PL, Bell S, Foster PG (2003) Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB Life 55:387–395

    Article  PubMed  CAS  Google Scholar 

  • Emelyanov VV (2001a) Rickettsiaceae, rickettsia-like endosymbionts, and the origin of mitochondria. Biosci Rep 21:1–17

    Article  PubMed  CAS  Google Scholar 

  • Emelyanov VV (2001b) Evolutionary relationship of Rickettsiae and mitochondria. FEBS Lett 501:11–18

    Article  PubMed  CAS  Google Scholar 

  • Emelyanov VV (2003a) Mitochondrial connection to the origin of the eukaryotic cell. Eur J Biochem 270:1599–1618

    Article  PubMed  CAS  Google Scholar 

  • Emelyanov VV (2003b) Common evolutionary origin of mitochondrial and rickettsial respiratory chains. Arch Biochem Biophys 420:130–141

    Article  PubMed  CAS  Google Scholar 

  • Esser C, Martin W (2007) Supertrees and symbiosis in eukaryote genome evolution. Trends Microbiol 15:435–437

    Article  PubMed  CAS  Google Scholar 

  • Esser C, Ahmadinejad N, Wiegand C, Rotte C, Sebastiani F, Gelius-Dietrich G, Henze K, Kretschmann E, Richly E, Leister D, Bryant D, Steel MA, Lockhart PJ, Penny D, Martin W (2004) A genome phylogeny for mitochondria among α-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol Biol Evol 21:1643–1660

    Article  PubMed  CAS  Google Scholar 

  • Esser C, Martin W, Dagan T (2007) The origin of mitochondria in light of a fluid prokaryotic chromosome model. Biol Lett 3:180–184

    Article  PubMed  CAS  Google Scholar 

  • Falcόn LI, Magallόn S, Castillo A (2010) Dating the cyanobacterial ancestor of the chloroplast. ISME J 4:777–783

    Article  CAS  Google Scholar 

  • Fast NM, Kissinger JC, Roos DS, Keeling PJ (2001) Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol 18:418–426

    Article  PubMed  CAS  Google Scholar 

  • Finet C, Timme RE, Delwiche CF, Marlétaz F (2010) Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. Curr Biol 20:2217–2222

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick DA, Creevey CJ, McInerney JO (2006) Genome phylogenies indicate a meaningful α-proteobacterial phylogeny and support a grouping of the mitochondria with the Rickettsiales. Mol Biol Evol 23:74–85

    Article  PubMed  CAS  Google Scholar 

  • Gabaldón T, Huynen MA (2003) Reconstruction of the proto-mitochondrial metabolism. Science 302:609

    Article  Google Scholar 

  • Gabaldón T, Huynen MA (2004) Shaping the mitochondrial proteome. FEBS Lett 1659:212–220

    Google Scholar 

  • Gabaldón T, Huynen MA (2007) From endosymbiont to host-controlled organelle: the hijacking of mitochondrial protein synthesis and metabolism. PLoS Comput Biol 3:2209–2218

    Article  CAS  Google Scholar 

  • Gabaldón T, Rainey D, Huynen MA (2005) Tracing the evolution of a large protein complex in the eukaryotes, NADH: ubiquinone oxidoreductase (complex I). J Mol Biol 348:857–870

    Article  PubMed  CAS  Google Scholar 

  • Gawryluk RMR, Gray MW (2010) Evidence for an early evolutionary emergence of γ-type carbonic anhydrases as components of mitochondrial respiratory complex I. BMC Evol Biol 10:176

    Article  PubMed  CAS  Google Scholar 

  • Geitler L (1977) On the life history of the Epithemi­aceae Epithemia, Rhopalodia and Denticula (Diato­mophyceae) and their presumably symbiotic spheroid bodies. Plant Syst Evol 128:259–275

    Article  Google Scholar 

  • Gill EE, Diaz-Triviño S, Barberà MJ, Silberman JD, Stechmann A, Gaston D, Tamas I, Roger AJ (2007) Novel mitochondrion-related organelles in the anaerobic amoeba Mastigamoeba balamuthi. Mol Microbiol 66:1306–1320

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M, Rappé MS, Short JM, Carrington JC, Mathur EJ (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242–1245

    Article  PubMed  CAS  Google Scholar 

  • Gogarten JP, Kibak H, Dittrich P, Taiz L, Bowman EJ, Bowman BJ, Manolson MF, Poole RJ, Date T, Oshima T, Konishi J, Denda K, Yoshida M (1989) Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci USA 86:6661–6665

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AV, Molik S, Tsaousis AD, Neumann K, Kuhnke G, Delbac F, Vivares CP, Hirt RP, Lill R, Embley TM (2008) Localization and functionality of microsporidian iron-sulphur cluster assembly proteins. Nature 452:624–629

    Article  PubMed  CAS  Google Scholar 

  • Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517

    Article  PubMed  CAS  Google Scholar 

  • Graham LE, Wilcox LW (2000) Algae. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Gray MW (1989) The evolutionary origins of organelles. Trends Genet 5:294–299

    Article  PubMed  CAS  Google Scholar 

  • Gray MW (1992) The endosymbiont hypothesis revisited. Int Rev Cytol 141:233–357

    Article  PubMed  CAS  Google Scholar 

  • Gray MW (1993) Origin and evolution of organelle genomes. Curr Opin Genet Dev 3:884–890

    Article  PubMed  CAS  Google Scholar 

  • Gray MW (1998) Rickettsia, typhus and the mitochondrial connection. Nature 396:109–110

    Article  PubMed  CAS  Google Scholar 

  • Gray MW (1999) Evolution of organellar genomes. Curr Opin Genet Dev 9:678–687

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Doolittle WF (1982) Has the endosymbiont hypothesis been proven? Microbiol Rev 46:1–42

    PubMed  CAS  Google Scholar 

  • Gray MW, Spencer DF (1996) Organellar evolution. In: Roberts DM, Sharp P, Alderson G, Collins MA (eds) Evolution of microbial life. Cambridge University Press, Cambridge, pp 109–126

    Google Scholar 

  • Gray MW, Lang BF, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Brossard N, Delage E, Littlejohn TG, Plante I, Rioux P, Saint-Louis D, Zhu Y, Burger G (1998) Genome structure and gene content in protist mitochondrial DNAs. Nucleic Acids Res 26:865–878

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Burger G, Lang BF (2001) The origin and early evolution of mitochondria. Genome Biol 2:Reviews 1018.1011–1018.1015

    Article  Google Scholar 

  • Gupta RS (1995) Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol 15:1–11

    Article  PubMed  CAS  Google Scholar 

  • Gutensohn M, Fan E, Frielingsdorf S, Hanner P, Hou B, Hust B, Klösgen RB (2006) Toc, Tic, Tat et al.: structure and function of protein transport machineries in chloroplasts. J Plant Physiol 163:333–347

    Article  PubMed  CAS  Google Scholar 

  • Hagopian JC, Reis M, Kitajima JP, Bhattacharya D, de Oliveira MC (2004) Comparative analysis of the complete plastid genome sequence of the red alga Gracilaria tenuistipitata var. liui provides insights into the evolution of rhodoplasts and their relationship to other plastids. J Mol Evol 59:464–477

    Article  PubMed  CAS  Google Scholar 

  • Heazlewood JL, Howell KA, Millar AH (2003) Mitochondrial complex I from Arabidopsis and rice: orthologs of mammalian and fungal components coupled with plant-specific subunits. Biochim Biophys Acta 1604:159–169

    Article  PubMed  CAS  Google Scholar 

  • Hirt RP, Logsdon JM Jr, Healy B, Dorey MW, Doolittle WF, Embley TM (1999) Microsporidia are related to fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc Natl Acad Sci USA 96:580–585

    Article  PubMed  CAS  Google Scholar 

  • Hjort K, Goldberg AV, Tsaousis AD, Hirt RP, Embley TM (2010) Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos Trans R Soc Lond B Bio Sci 365:713–727

    Article  CAS  Google Scholar 

  • Hoogenraad HR (1927) Zur Kenntnis der Fortpflanzung von Paulinella chromatophora Lauterb. Zool Anz 72:140–150

    Google Scholar 

  • Howe CJ, Barbrook AC, Koumandou VL, Nisbet ER, Symington HA, Wightman TF (2003) Evolution of the chloroplast genome. Philos Trans R Soc Lond B Biol Sci 358:99–107

    Article  PubMed  CAS  Google Scholar 

  • Howe CJ, Barbrook AC, Nisbet RE, Lockhart PJ, Larkum AW (2008) The origin of plastids. Philos Trans R Soc Lond B Biol Sci 363:2675–2685

    Article  PubMed  CAS  Google Scholar 

  • Hrdy I, Hirt RP, Dolezal P, Bardonová L, Foster PG, Tachezy J, Embley TM (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432:618–622

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Gogarten JP (2007) Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol 8:R99

    Article  PubMed  CAS  Google Scholar 

  • Hug LA, Stechmann A, Roger AJ (2010) Phylogenetic distributions and histories of proteins involved in anaerobic pyruvate metabolism in eukaryotes. Mol Biol Evol 27:311–324

    Article  PubMed  CAS  Google Scholar 

  • Inagaki Y, Susko E, Fast NM, Roger AJ (2004) Covarion shifts cause a long-branch attraction artifact that unites microsporidia and archaebacteria in EF-1α phylogenies. Mol Biol Evol 21:1340–1349

    Article  PubMed  CAS  Google Scholar 

  • Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86:9355–9359

    Article  PubMed  CAS  Google Scholar 

  • Jain R, Rivera MC, Lake JA (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA 96:3801–3806

    Article  PubMed  CAS  Google Scholar 

  • John P, Whatley FR (1975) Paracoccus denitrificans and the evolutionary origin of the mitochondrion. Nature 254:495–498

    Article  PubMed  CAS  Google Scholar 

  • Johnson PW, Hargraves PE, Sieburth JM (1988) Ultrastructure and ecology of Calycomonas ovalis Wulff, 1919, (Chrysophyceae) and its redescription as a testate rhizopod, Paulinella ovalis n. comb. (Filosea: Euglyphina). J Protozool 35:618–626

    Google Scholar 

  • Kalanon M, McFadden GI (2008) The chloroplast protein translocation complexes of Chlamydomonas reinhardtii: a bioinformatic comparison of Toc and Tic components in plants, green algae and red algae. Genetics 179:95–112

    Article  PubMed  CAS  Google Scholar 

  • Karlberg O, Canbäck B, Kurland CG, Andersson SGE (2000) The dual origin of the yeast mitochondrial proteome. Yeast 17:170–187

    Article  PubMed  CAS  Google Scholar 

  • Karlin S, Brocchieri L (2000) Heat shock protein 60 sequence comparisons: duplications, lateral transfer, and mitochondrial evolution. Proc Natl Acad Sci USA 97:11348–11353

    Article  PubMed  CAS  Google Scholar 

  • Karol KG, McCourt RM, Cimino MT, Delwiche CF (2001) The closest living relatives of land plants. Science 294:2351–2353

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 365:729–748

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Archibald JM (2008) Organelle evolution: what’s in a name? Curr Biol 18:R345–R347

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Luker MA, Palmer JD (2000) Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi. Mol Biol Evol 17:23–31

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ, Gray MW (2005) The tree of eukaryotes. Trends Ecol Evol 20:670–676

    Article  PubMed  Google Scholar 

  • Kies L (1974) Electron microscopical investigations on Paulinella chromatophora Lauterborn, a thecamoeba containing blue-green endosymbionts (Cyanelles) (author’s transl). Protoplasma 80:69–89

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Archibald JM (2009) Diversity and evolution of plastids and their genomes. In: Aronsson H, Sandelius AS (eds) The chloroplast – interactions with the environment. Springer, Berlin, pp 1–39

    Google Scholar 

  • Kim E, Graham LE (2008) EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveo­lata. PLoS One 3:e2621

    Article  PubMed  CAS  Google Scholar 

  • Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjölander K, Gruissem W, Baginsky S (2004) The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 14:354–362

    Article  PubMed  CAS  Google Scholar 

  • Kleine T, Maier UG, Leister D (2009) DNA transfer from organelles to the nucleus: he idiosyncratic genetics of endosymbiosis. Annu Rev Plant Biol 60:115–138

    Article  PubMed  CAS  Google Scholar 

  • Kneip C, Voss C, Lockhart PJ, Maier UG (2008) The cyanobacterial endosymbiont of the unicellular algae Rhopalodia gibba shows reductive genome evolution. BMC Evol Biol 8:30

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV (2010) The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol 11:209

    Article  PubMed  CAS  Google Scholar 

  • Kowallik KV (1997) Origin and evolution of chloroplasts: current status and future perspectives. In: Schenk HE, Herrmann RG, Jeon KW, Müller NE, Schwemmler W (eds) Eukaryotism and symbiosis: intertaxonic combination versus symbiotic adaptation. Springer, Berlin, pp 3–23

    Google Scholar 

  • Krause K (2008) From chloroplasts to “cryptic” ­plastids: evolution of plastid genomes in parasitic plants. Curr Genet 54:111–121

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, Piccirillo S, Umansky L, Drawid A, Jansen R, Liu Y, Cheung K-H, Miller P, Gerstein M, Roeder GS, Snyder M (2002) Subcellular localization of the yeast proteome. Genes Dev 16:707–719

    Article  PubMed  CAS  Google Scholar 

  • Kurland CG, Andersson SGE (2000) Origin and evolution of the mitochondrial proteome. Microbiol Mol Biol Rev 64:786–820

    Article  PubMed  CAS  Google Scholar 

  • Kurland CG, Collins LJ, Penny D (2006) Genomics and the irreducible nature of eukaryotic cells. Science 312:1011–1014

    Article  PubMed  CAS  Google Scholar 

  • Kurland CG, Collins LJ, Penny D (2007) The evolution of eukaryotes: response. Science 316:543

    Article  CAS  Google Scholar 

  • Lake JA, Henderson E, Oakes M, Clark MW (1984) Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc Natl Acad Sci USA 81:3786–3790

    Article  PubMed  CAS  Google Scholar 

  • Lane N, Martin W (2010) The energetics of genome complexity. Nature 467:929–934

    Article  PubMed  CAS  Google Scholar 

  • Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497

    Article  PubMed  CAS  Google Scholar 

  • Lang BF, Gray MW, Burger G (1999a) Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet 33:351–397

    Article  PubMed  CAS  Google Scholar 

  • Lang BF, Seif E, Gray MW, O’Kelly CJ, Burger G (1999b) A comparative genomics approach to the evolution of eukaryotes and their mitochondria. J Eukaryot Microbiol 46:320–326

    Article  PubMed  CAS  Google Scholar 

  • Lapaille M, Escobar-Ramírez A, Degand H, Baurain D, Rodríguez-Salinas E, Coosemans N, Boutry M, Gonzalez-Halphen D, Remacle C, Cardol P (2010) Atypical subunit composition of the chlorophycean mitochondrial F1FO-ATP synthase and role of Asa7 protein in stability and oligomycin resistance of the enzyme. Mol Biol Evol 27:1630–1644

    Article  PubMed  CAS  Google Scholar 

  • Larkum AW, Lockhart PJ, Howe CJ (2007) Shopping for plastids. Trends Plant Sci 12:189–195

    Article  PubMed  CAS  Google Scholar 

  • Lauterborn R (1895) Protozoenstudien II. Paulinella chromatophora nov. gen., nov. spec., ein beschalter Rhizopode des Süßwassers mit blaugrünen chromatophorenartigen Einschlüssen. Z Wiss Zool 59:537–544

    Google Scholar 

  • Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91:1535–1556

    Article  PubMed  Google Scholar 

  • Lindmark DG, Müller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248:7724–7728

    PubMed  CAS  Google Scholar 

  • Lockhart PJ, Howe CJ, Bryant DA, Beanland TJ, Larkum AW (1992a) Substitutional bias confounds inference of cyanelle origins from sequence data. J Mol Evol 34:153–162

    Article  PubMed  CAS  Google Scholar 

  • Lockhart PJ, Penny D, Hendy MD, Howe CJ, Beanland TJ, Larkum AW (1992b) Controversy on chloroplast origins. FEBS Lett 301:127–131

    Article  PubMed  CAS  Google Scholar 

  • Löffelhardt W, Bohnert HJ, Bryant DA (1997) The complete sequence of the Cyanophora paradoxa cyanelle genome. In: Bhattacharya D (ed) Origins of algae and their plastids. Springer, Wien, pp 142–162

    Google Scholar 

  • Longet D, Archibald JM, Keeling PJ, Pawlowski J (2003) Foraminifera and Cercozoa share a common origin according to RNA polymerase II phylogenies. Int J Syst Evol Microbiol 53:1735–1739

    Article  PubMed  CAS  Google Scholar 

  • Mackiewicz P, Bodyl A (2010) A hypothesis for import of the nuclear-encoded PsaE protein of Paulinella chromatophora (Cercozoa, Rhizaria) into its cyanobacterial endosymbionts/plastids via the endomembrane system. J Phycol 46:847–859

    Article  CAS  Google Scholar 

  • Mai Z, Ghosh S, Frisardi M, Rosenthal B, Rogers R, Samuelson J (1999) Hsp60 is targeted to a cryptic mitochondrion-derived organelle (“crypton”) in the microaerophilic protozoan parasite Entamoeba histolytica. Mol Cell Biol 19:2198–2205

    PubMed  CAS  Google Scholar 

  • Marcotte EM, Xenarios I, van Der Bliek AM, Eisenberg D (2000) Localizing proteins in the cell from their phylogenetic profiles. Proc Natl Acad Sci USA 97:12115–12120

    Article  PubMed  CAS  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven

    Google Scholar 

  • Marin B, Nowack ECM, Melkonian M (2005) A plastid in the making: evidence for a second primary endosymbiosis. Protist 156:425–432

    Article  PubMed  CAS  Google Scholar 

  • Martin W (2010) Evolutionary origins of metabolic compartmentalization in eukaryotes. Philos Trans R Soc Lond B Biol Sci 365:847–855

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Cerff R (1986) Prokaryotic features of a nucleus-encoded enzyme. cDNA sequences for chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases from mustard (Sinapis alba). Eur J Biochem 159:323–331

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Herrmann RG (1998) Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol 118:9–17

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Kowallik KV (1999) Annotated English translation of Mereschkowsky’s 1905 paper ‘Über Natur und Ursprung der Chromatophoren im Pflanzenreiche’. Eur J Phycol 34:287–295

    Google Scholar 

  • Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Schnarrenberger C (1997) The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis. Curr Genet 32:1–18

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Brinkmann H, Savonna C, Cerff R (1993) Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci USA 90:8692–8696

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Mustafa AZ, Henze K, Schnarrenberger C (1996) Higher-plant chloroplast and cytosolic fructose-1,6-bisphosphatase isoenzymes: origins via duplication rather than prokaryote-eukaryote divergence. Plant Mol Biol 32:485–491

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Hoffmeister M, Rotte C, Henze K (2001) An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem 382:1521–1539

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Dagan T, Koonin EV, Dipippo JL, Gogarten JP, Lake JA (2007) The evolution of eukaryotes. Science 316:542–543

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki M, Misumi O, Shin-i T, Maruyama S, Takahara M, Miyagishima S, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    Article  PubMed  CAS  Google Scholar 

  • Mazumdar J, Wilson EH, Masek K, Hunter CA, Striepen B (2006) Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii. Proc Natl Acad Sci USA 103:13192–13197

    Article  PubMed  CAS  Google Scholar 

  • McDaniel LD, Young E, Delaney J, Ruhnau F, Ritchie KB, Paul JH (2010) High frequency of horizontal gene transfer in the oceans. Science 330:50

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI (1999) Plastids and protein targeting. J Eukaryot Microbiol 46:339–346

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI (2001) Chloroplast origin and integration. Plant Physiol 125:50–53

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI, van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14:R514–R516

    Article  PubMed  CAS  Google Scholar 

  • Melkonian M, Mollenhauer D (2005) Robert Lauterborn (1869–1952) and his Paulinella chromatophora. Protist 156:253–262

    Article  PubMed  Google Scholar 

  • Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25:593–604

    Google Scholar 

  • Moreira D, Le Guyader H, Phillippe H (2000) The origin of red algae and the evolution of chloroplasts. Nature 405:69–72

    Article  PubMed  CAS  Google Scholar 

  • Morris RM, Rappé MS, Connon SA, Vergin KL, Slebold WA, Carlson CA, Giovannoni SJ (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–810

    Article  PubMed  CAS  Google Scholar 

  • Nakayama T, Ishida K-I (2009) Another acquisition of a primary photosynthetic organelle is underway in Paulinella chromatophora. Curr Biol 19:R284–R285

    Article  PubMed  CAS  Google Scholar 

  • Nina PB, Dudkina NV, Kane LA, van Eyk JE, Boekema EJ, Mather MW, Vaidya AB (2010) Highly divergent mitochondrial ATP synthase complexes in Tetrahymena thermophila. PLoS Biol 8:1–15

    Google Scholar 

  • Nowack ECM, Melkonian M (2010) Endosymbiotic associations within protists. Philos Trans R Soc Lond B Biol Sci 365:699–712

    Article  PubMed  CAS  Google Scholar 

  • Nowack ECM, Melkonian M, Glöckner G (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol 18:410–418

    Article  PubMed  CAS  Google Scholar 

  • Nowack ECM, Vogel H, Groth M, Grossman AR, Melkonian M, Glöckner G (2011) Endosymbiotic gene transfer and transcriptional regulation of transferred genes in Paulinella chromatophora. Mol Biol Evol 28:407–422

    Article  PubMed  CAS  Google Scholar 

  • Nowitzki U, Gelius-Dietrich G, Schwieger M, Henze K, Martin W (2004) Chloroplast phosphoglycerate kinase from Euglena gracilis. Endosymbiotic gene replacement going against the tide. Eur J Biochem 271:4123–4131

    Article  PubMed  CAS  Google Scholar 

  • Nozaki H (2005) A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the “Plantae,” emended. J Plant Res 118:247–255

    Article  PubMed  Google Scholar 

  • Nozaki H, Iseki M, Hasegawa M, Misawa K, Nakada T, Sasaki N, Watanabe M (2007) Phylogeny of primary photosynthetic eukaryotes as deduced from slowly evolving nuclear genes. Mol Biol Evol 24:1592–1595

    Article  PubMed  CAS  Google Scholar 

  • Nozaki H, Maruyama S, Matsuzaki M, Nakada T, Kato S, Misawa K (2009) Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes. Mol Phylogenet Evol 53:872–880

    Article  PubMed  Google Scholar 

  • O’Brien TW (2002) Evolution of a protein-rich mitochondrial ribosome: implications for human genetic disease. Gene 286:73–79

    Article  PubMed  Google Scholar 

  • O’Brien TW (2003) Properties of human mitochondrial ribosomes. IUBMB Life 55:505–513

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  PubMed  CAS  Google Scholar 

  • Pace NR, Olsen GJ, Woese CR (1986) Ribosomal RNA phylogeny and the primary lines of evolutionary descent. Cell 45:325–326

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD (2003) The symbiotic birth and spread of plastids: how many times and whodunit? J Phycol 39:4–11

    Article  CAS  Google Scholar 

  • Parfrey LW, Grant J, Tekle YI, Lasek-Nesselquist E, Morrison HG, Sogin ML, Patterson DJ, Katz LA (2010) Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Syst Biol 59:518–533

    Article  PubMed  Google Scholar 

  • Patron NJ, Rogers MB, Keeling PJ (2004) Gene replacement of fructose-1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates. Eukaryot Cell 3:1169–1175

    Article  PubMed  CAS  Google Scholar 

  • Parisi G, Perales M, Fornasari MS, Colaneri A, González-Schain N, Gómez-Casati D, Zimmermann S, Brennicke A, Araya A, Ferry JG, Echave J, Zabaleta E (2004) Gamma carbonic anhydrases in plant mitochondria. Plant Mol Biol 55:193–207

    Google Scholar 

  • Perales M, Parisi G, Fornasari MS, Colaneri A, Villarreal F, González-Schain N, Echave J, Gόmez-Casati D, Braun HP, Araya A, Zabaleta E (2004) Gamma carbonic anhydrase like complex interact with plant mitochondrial complex I. Plant Mol Biol 56:947–957

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Brocal V, Clark AG (2008) Analysis of two genomes from the mitochondrion-like organelle of the intestinal parasite Blastocystis: complete sequences, gene content and genome organization. Mol Biol Evol 25:2475–2482

    Article  PubMed  CAS  Google Scholar 

  • Pisani D, Cotton JA, McInerney JO (2007) Supertrees disentangle the chimerical origin of eukaryotic genomes. Mol Biol Evol 24:1752–1760

    Article  PubMed  CAS  Google Scholar 

  • Prechtl J, Kneip C, Lockhart P, Wenderoth K, Maier U-G (2004) Intracellular spheroid bodies of Rhopalodia gibba have nitrogen-fixing apparatus of cyanobacterial origin. Mol Biol Evol 21:1477–1481

    Article  PubMed  CAS  Google Scholar 

  • Radhamony RN, Theg SM (2006) Evidence for an ER to Golgi to chloroplast protein transport pathway. Trends Cell Biol 16:385–387

    Article  PubMed  CAS  Google Scholar 

  • Reeb V, Bhattacharya D (2010) The thermo-acidophilic Cyanidiophyceae (Cyanidiales). In: Seckback J (ed) Red algae in the genomic age. Springer, New York, pp 409–426

    Chapter  Google Scholar 

  • Reyes-Prieto A, Hackett JD, Soares MB, Bonaldo MF, Bhattacharya D (2006) Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions. Curr Biol 16:2320–2325

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Prieto A, Weber AP, Bhattacharya D (2007) The origin and establishment of the plastid in algae and plants. Annu Rev Genet 41:147–168

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Prieto A, Yoon HS, Moustafa A, Yang EC, Andersen RA, Boo SM, Nakayama T, Ishida K, Bhattacharya D (2010) Differential gene retention in plastids of common recent origin. Mol Biol Evol 27:1530–1537

    Article  PubMed  CAS  Google Scholar 

  • Richards TA, Archibald JM (2011) Cell evolution: gene transfer agents and the evolution of mitochondria. Curr Biol 21(3):R112–R114

    Article  PubMed  CAS  Google Scholar 

  • Richly E, Chinnery PF, Leister D (2003) Evolutionary diversification of mitochondrial proteomes: implications for human disease. Trends Genet 19:356–362

    Article  PubMed  CAS  Google Scholar 

  • Rivera MC, Lake JA (1992) Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science 257:74–76

    Article  PubMed  CAS  Google Scholar 

  • Rivera MC, Lake JA (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431:152–155

    Article  PubMed  CAS  Google Scholar 

  • Rivera MC, Jain R, Moore JE, Lake JA (1998) Genomic evidence for two functionally distinct gene classes. Proc Natl Acad Sci USA 95:6239–6244

    Article  PubMed  CAS  Google Scholar 

  • Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb EA, Zinser ER, Chisholm SW (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–1047

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Löffelhardt W, Bohnert HJ, Philippe H, Lang BF (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330

    Article  PubMed  CAS  Google Scholar 

  • Rogers M, Keeling PJ (2004) Lateral transfer and recompartmentalization of Calvin cycle enzymes of plants and algae. J Mol Evol 58:367–375

    Article  PubMed  CAS  Google Scholar 

  • Sällström B, Andersson SGE (2005) Genome reduction in the α-Proteobacteria. Curr Opin Microbiol 8:579–585

    Article  PubMed  CAS  Google Scholar 

  • Sato N (2006) Origin and evolution of plastids: genomic view on the unification and diversity of plastids. In: Wise RR, Hoober JK (eds) The structure and function of plastids. Springer, Dordrecht, pp 75–102

    Chapter  Google Scholar 

  • Sharma MR, Booth TM, Simpson L, Maslov DA, Agrawal RK (2009) Structure of a mitochondrial ribosome with minimal RNA. Proc Natl Acad Sci USA 106:9637–9642

    Article  PubMed  CAS  Google Scholar 

  • Shutt TE, Gray MW (2006) Bacteriophage origins of mitochondrial replication and transcription proteins. Trends Genet 22:90–95

    Article  PubMed  CAS  Google Scholar 

  • Sicheritz-Pontén T, Kurland CG, Andersson SG (1998) A phylogenetic analysis of the cytochrome b and cytochrome c oxidase I genes supports an origin of mitochondria from within the Rickettsiaceae. Biochim Biophys Acta 1365:545–551

    Article  PubMed  Google Scholar 

  • Smith DG, Gawryluk RMR, Spencer DF, Pearlman RE, Siu KWM, Gray MW (2007) Exploring the mitochondrial proteome of the ciliate protozoon Tetrahymena thermophila: direct analysis by tandem mass spectrometry. J Mol Biol 374:837–863

    Article  PubMed  CAS  Google Scholar 

  • Smits P, Smeitink JAM, van den Heuvel LP, Huynen MA, Ettema TJG (2007) Reconstructing the evolution of the mitochondrial ribosomal proteome. Nucleic Acids Res 35:4686–4703

    Article  PubMed  CAS  Google Scholar 

  • Soll J, Schleiff E (2004) Protein import into chloroplasts. Nat Rev Mol Cell Biol 5:198–208

    Article  PubMed  CAS  Google Scholar 

  • Stechmann A, Hamblin K, Pérez-Brocal V, Gaston D, Richmond GS, van der Giezen M, Clark CG, Roger AJ (2008) Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. Curr Biol 18:580–585

    Article  PubMed  CAS  Google Scholar 

  • Steel M, Dress AW, Böcker S (2000) Simple but fundamental limitations on supertree and consensus tree methods. Syst Biol 49:363–368

    Article  PubMed  CAS  Google Scholar 

  • Stiller JW, Hall BD (1997) The origin of red algae: implications for plastid evolution. Proc Natl Acad Sci USA 94:4520–4525

    Article  PubMed  CAS  Google Scholar 

  • Stiller JW, Reel DC, Johnson JC (2003) A single origin of plastids revisited: convergent evolution in organellar genome content. J Phycol 39:95–105

    Article  CAS  Google Scholar 

  • Stoebe B, Kowallik KV (1999) Gene-cluster analysis in chloroplast genomics. Trends Genet 15:344–347

    Article  PubMed  CAS  Google Scholar 

  • Sutak R, Dolezal P, Fiumera HL, Hrdy I, Dancis A, Delgadillo-Correa M, Johnson PJ, Müller M, Tachezy J (2004) Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc Natl Acad Sci USA 101:10368–10373

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Miyagishima SY (2010) Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses. Mol Biol Evol 27:581–590

    Article  PubMed  CAS  Google Scholar 

  • Szklarczyk R, Huynen M (2010) Mosaic origin of the mitochondrial proteome. Proteomics 10:4012–4024

    Article  PubMed  CAS  Google Scholar 

  • Thao ML, Gullan PJ, Baumann P (2002) Secondary (γ-Proteobacteria) endosymbionts infect the primary (β-Proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts. Appl Environ Microbiol 68:3190–3197

    Article  PubMed  CAS  Google Scholar 

  • Theissen U, Martin W (2006) The difference between organelles and endosymbionts. Curr Biol 16:R1016–R1017, author reply R1017–8

    Article  PubMed  CAS  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135

    Article  PubMed  CAS  Google Scholar 

  • Tovar J, Fischer A, Clark CG (1999) The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 32:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Tovar J, Léon-Avila G, Sánchez LB, Sutak R, Tachezy J, van der Giezen M, Hernández M, Müller M, Lucocq JM (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426:172–176

    Article  PubMed  CAS  Google Scholar 

  • Tsaousis AD, Kunji ERS, Goldberg AV, Lucocq JM, Hirt RP, Embley TM (2008) A novel route for ATP acquisition by the remnant mitochondria of Encephalitozoon cuniculi. Nature 453:553–557

    Article  PubMed  CAS  Google Scholar 

  • Turmel M, Otis C, Lemieux C (1999) The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes. Proc Natl Acad Sci USA 96:10248–10253

    Article  PubMed  CAS  Google Scholar 

  • Turner S, Pryer KM, Miao VP, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338

    Article  PubMed  CAS  Google Scholar 

  • Tyra HM, Linka M, Weber AP, Bhattacharya D (2007) Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol 8:R212

    Article  PubMed  CAS  Google Scholar 

  • Viale AM, Arakaki AK (1994) The chaperone connection to the origins of the eukaryotic organelles. FEBS Lett 341:146–151

    Article  PubMed  CAS  Google Scholar 

  • von Dohlen CD, Kohler S, Alsop ST, McManus WR (2001) Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 412:433–436

    Article  Google Scholar 

  • Waller RF, McFadden GI (2005) The apicoplast: a review of the derived plastid of apicomplexan parasites. Curr Issues Mol Biol 7:57–79

    PubMed  Google Scholar 

  • Wawrzyniak I, Roussel M, Diogon M, Couloux A, Texier C, Tan KS, Vivarès CP, Delbac F, Wincker P, El Alaoui H (2008) Complete circular DNA in the mitochondria-like organelles of Blastocystis hominis. Int J Parasitol 38:1377–1382

    Article  PubMed  CAS  Google Scholar 

  • Weber AP, Linka M, Bhattacharya D (2006) Single, ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor. Eukaryot Cell 5:609–612

    Article  PubMed  CAS  Google Scholar 

  • Weeden NF (1981) Genetic and biochemical implications of the endosymbiotic origin of the chloroplast. J Mol Evol 17:133–139

    Article  PubMed  CAS  Google Scholar 

  • Whatley JM, John P, Whatley FR (1979) From extracellular to intracellular: the establishment of mitochondria and chloroplasts. Proc R Soc Lond B Biol Sci 204:165–187

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson M, Cotton JA, Creevey C, Eulenstein O, Harris SR, Lapointe FJ, Levasseur C, McInerney JO, Pisani D, Thorley JL (2005) The shape of supertrees to come: tree shape related properties of fourteen supertree methods. Syst Biol 54:419–431

    Article  PubMed  Google Scholar 

  • Williams BAP, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418:865–869

    Article  PubMed  CAS  Google Scholar 

  • Williams KP, Sobral BW, Dickerman AW (2007) A robust species tree for the Alphaproteobacteria. J Bacteriol 189:4578–4586

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, Ahmadinejad N, Wiegand C, Madupu R, Beanan MJ, Brinkac LM, Daugherty SC, Durkin AS, Kolonay JF, Nelson WC, Mohamoud Y, Lee P, Berry K, Young MB, Utterback T, Weidman J, Nierman WC, Paulsen IT, Nelson KE, Tettelin H, O’Neill SL, Eisen JA (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2:0327–0341

    Article  CAS  Google Scholar 

  • Yan W, Aebersold R, Raines EW (2009) Evolution of organelle-associated protein profiling. J Proteomics 72:4–11

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR (1985) Mitochondrial origins. Proc Natl Acad Sci USA 82:4443–4447

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Reyes-Prieto A, Melkonian M, Bhattacharya D (2006) Minimal plastid genome evolution in the Paulinella endosymbiont. Curr Biol 16:R670–R672

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Zuccarello G, Bhattacharya D (2010) Evolutionary history and taxonomy of red algae. In: Seckback J, Chapman DJ (eds) Red algae in the genomic age. Springer, New York, pp 25–42

    Chapter  Google Scholar 

  • Ziková A, Panigrahi AK, Dalley RA, Acestor N, Anupama A, Ogata Y, Myler PJ, Stuart K (2008) Trypanosoma brucei mitochondrial ribosomes. Affinity purification and component identification by mass spectrometry. Mol Cell Proteomics 7:1286–1296

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Canadian Institute for Advanced Research, Programs in Evolutionary Biology and Integrated Microbial Biodiversity, for long-term research support and collaborative opportunities. MWG gratefully acknow­ledges past support from the Canadian Institutes of Health Research (CIHR) and the Canada Research Chairs Program, and current support from the Tula Foundation. JMA gratefully acknowledges CIHR and the Natural Sciences and Engineering Research Council of Canada for research funding and the CIHR New Investigator Program for salary support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Gray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gray, M.W., Archibald, J.M. (2012). Origins of Mitochondria and Plastids. In: Bock, R., Knoop, V. (eds) Genomics of Chloroplasts and Mitochondria. Advances in Photosynthesis and Respiration, vol 35. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2920-9_1

Download citation

Publish with us

Policies and ethics