Skip to main content

A Review of Accelerometer-Based Physical Activity Measurement

  • Conference paper
  • First Online:
Proceedings of the International Conference on IT Convergence and Security 2011

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 120))

Abstract

Accelerometers are being increasingly used in studies of physical activity (PA) under a variety of circumstances, especially free-living environment. They can be used to assess a range of different aspects of PA, including energy expenditure, activity classification, gait, balance and fall. This paper reviews the use of accelerometers in these areas, along with the basic knowledge of accelerometers, preparatory work before data processing and the comparison of commonly-used products. The work of this review can provide a basis of accelerometer-used PA measurement and a contribution to further research and design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caspersen CJ, Powell KE, Christenson GM (1985) Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep 100(2):126–131

    Google Scholar 

  2. Bouchard C, Blair SN, Haskell W (2007) Physical activity and health, Human kinetics

    Google Scholar 

  3. Davis MG, Fox KR (2007) Physical activity patterns assessed by accelerometry in older people. Eur J Appl Physiol 100(5):581–589

    Article  Google Scholar 

  4. Schoeller DA (1988) Measurement of energy expenditure in free living humans by using doubly labeled water. J Nutr 118(11):1278–1289

    Google Scholar 

  5. Sirard JR, Pate RR (2001) Physical activity assessment in children and adolescents. Sports Med 31(6):439–454

    Article  Google Scholar 

  6. Vanhees L et al (2005) How to assess physical activity? How to assess physical fitness. Eur. J. Cardiovasc Prev Rehabil 12(2):102–114

    Article  Google Scholar 

  7. Haskell WL, Kiernan M (2000) Methodologic issues in measuring physical activity and physical fitness when evaluating the role of dietary supplements for physically active people. Am J Clin Nutr 72(2):541–550

    Google Scholar 

  8. Yang CC, Hsu YL (2010) A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 10(8):7772–7788

    Article  Google Scholar 

  9. Plasqui G, Westerterp KR (2007) Physical activity assessment with accelerometers: an evaluation against doubly labeled water. Obesity 15(10):2371–2379

    Article  Google Scholar 

  10. Murphy SL (2009) Review of physical activity measurement using accelerometers in older adults: consideration for research design and conduct. Prev Med 48(2):108–114

    Article  Google Scholar 

  11. Mathie MJ, Coster AC, Lovell NH, Celler BG (2004) Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol Meas 25(2):R1–R20

    Article  Google Scholar 

  12. Chen KY, Bassett DR (2005) The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc 37(11):S490–S500

    Article  Google Scholar 

  13. Welk GJ (2005) Principles of design and analysis for the calibration of accelerometry-based activity monitors. Med Sci Sports Exerc 37(11):S501–S511

    Article  Google Scholar 

  14. Actigraph LEM (2008) ActiLife users manual. Pensacola, FL

    Google Scholar 

  15. Sunnd M, Hill JO (1993) A method for measuring mechanical work and work efficiency during human activities. J Biomech 26(3):229–241

    Article  Google Scholar 

  16. Bouten CV et al (1997) A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans Biomed Eng 44(3):136–147

    Article  Google Scholar 

  17. Oppenheim AV et al (1983) Signals and systems. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  18. Bouten CV et al (1997) Effects of placement and orientation of body-fixed accelerometers on the assessment of energy expenditure during walking. Med Biol Eng Comput 35(1):50–56

    Article  Google Scholar 

  19. Mathie MJ, Basilakis J (2001) A system for monitoring posture and physical activity using accelerometers, Proceedings 23rd International Conference of the IEEE, 25 Oct 2001

    Google Scholar 

  20. Foerster F, Fahrenberg J (2000) Motion pattern and posture: correctly assessed by calibrated accelerometers. Behav Res Methods 32(3):450–457

    Article  Google Scholar 

  21. Chang M (2006) Review of clinical applications with human accelerometry, ISSN: 0107-8283

    Google Scholar 

  22. Mathie MJ et al. (2002) Determining Activity using a Triaxial Accelerometer, Second Joint EMBS/BMES Conference, 23–26 Oct 2002

    Google Scholar 

  23. Bouten CV et al (1994) Assessment of energy expenditure for physical activity using a triaxial accelerometer. Med Sci Sports Exerc 26(12):1516–1523

    Article  Google Scholar 

  24. Lyden K et al (2011) A comprehensive evaluation of commonly used accelerometer energy expenditure and met prediction equations. Eur J Appl Physiol 111(2):187–201

    Article  Google Scholar 

  25. Rothney MP et al (2008) Validity of physical activity intensity predictions by actigraph, actical, and RT3 accelerometers. Obesity 16(8):1946–1952

    Article  Google Scholar 

  26. Freedson PS, Melanson E, Sirard J (1998) Calibration of the computer science and applications, Inc. Accelerometer. Med Sci Sports Exerc 30(5):777–781

    Article  Google Scholar 

  27. Hendelman D et al (2000) Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Med Sci Sports Exerc 32(9):S442–S449

    Article  Google Scholar 

  28. Leenders NY, Nelson TE, Sherman WM (2003) Ability of different physical activity monitors to detect movement during treadmill walking. Int J Sports Med 24(1):43–50

    Article  Google Scholar 

  29. Brooks AG et al (2005) Predicting walking mets and energy expenditure from speed or accelerometry. Med Sci Sports Exerc 37(7):1216–1223

    Article  Google Scholar 

  30. Swartz AM et al (2000) Estimation of energy expenditure using CSA accelerometers at hip and wrist sites. Med Sci Sports Exerc 32(9):S450–S456

    Article  Google Scholar 

  31. Heil DP (2006) Predicting activity energy expenditure using the actical activity monitor. Res Q Exerc Sport 77(1):64–80

    Article  Google Scholar 

  32. Klippel NJ, Heil DP (2003) Validation of energy expenditure prediction algorithms in adults using the actical electronic activity monitor. Med Sci Sports Exerc 35(5):S284

    Article  Google Scholar 

  33. Crouter SE, Clowers KG, Bassett DR Jr (2006) A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol 100(4):1324–1331

    Article  Google Scholar 

  34. Crouter SE, Bassett DR Jr (2008) A new two-regression model for the actical accelerometer. Br J Sports Med 42(3):217–224

    Article  Google Scholar 

  35. Crouter SE et al (2010) Refined two-regression model for the actical accelerometer. Med Sci Sports Exerc 42(5):1029–1037

    Article  Google Scholar 

  36. Brage S et al (2004) Branched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditure. J Appl Physiol 96(1):343–351

    Article  Google Scholar 

  37. Zakeri I et al (2008) Application of cross-sectional time series modeling for the prediction of energy expenditure from heart rate and accelerometry. J Appl Physiol 104(6):1665–1673

    Article  Google Scholar 

  38. Staudenmayer J et al (2009) An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. J Appl Physiol 107(4):1300–1307

    Article  Google Scholar 

  39. Bonomi AG et al (2009) Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer. J Appl Physiol 107(3):655–661

    Article  Google Scholar 

  40. van Hees VT, Ekelund U (2009) Novel daily energy expenditure estimation by using objective activity type classification: Where do we go from here? J Appl Physiol 107(3):639–640

    Article  Google Scholar 

  41. Lester J et al. (2005) A hybrid discriminative/generative approach for modeling human activities, Proceedings 19th International joint Conference on Artificial Intelligence, pp 766–772, Jul 30-Aug 5

    Google Scholar 

  42. Parkka J et al (2006) Activity classification using realistic data from wearable sensors. IEEE Trans Inf Technol Biomed 10(1):119–128

    Article  Google Scholar 

  43. Ermes M et al (2008) Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions. IEEE Trans Inf Technol Biomed 12(1):20–26

    Article  Google Scholar 

  44. Foerster F, Smeja M, Fahrenberg J (1999) Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring. Comput Human Behav 15(5):571–583

    Article  Google Scholar 

  45. Bao L, Intille SS (2004) Activity recognition from user-annotated acceleration data, Proceedings Pervasive, LNCS 3001, pp 1–17

    Google Scholar 

  46. Pober DM et al (2006) Development of novel techniques to classify physical activity mode using accelerometers. Med Sci Sports Exerc 38(9):1626–1634

    Article  Google Scholar 

  47. Mathie MJ et al (2004) Classification of basic daily movements using a triaxial accelerometer. Med Biol Eng Comput 42(5):679–687

    Article  Google Scholar 

  48. Karantonis DM et al (2006) Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans Inf Technol Biomed 10(1):156–167

    Article  Google Scholar 

  49. Veltink PH et al (1996) Detection of static and dynamic activities using uniaxial accelerometers. IEEE Trans Rehabil Eng 4(4):375–385

    Article  Google Scholar 

  50. Nishkam R et al. (2005) Activity recognition from accelerometer data,” Proceedings 17th conference on IAAI, 3:1541–1546

    Google Scholar 

  51. Long X, Yin B, Aarts RM (2009) Single-accelerometer-based daily physical activity classification, Proceedings 31st annual International Conference of the IEEE EMBS, pp 6107–6110

    Google Scholar 

  52. Lee M et al. (2009) Physical activity recognition using a single tri-axis accelerometer, Proceedings world congress on Engineering and Computer Science

    Google Scholar 

  53. Bonomi AG et al (2009) Detection of type, duration and intensity of physical activity using an accelerometer. Med Sci Sports Exerc 41(9):1770–1777

    Article  Google Scholar 

  54. Khan AM et al (2010) A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer. IEEE Trans Inf Technol Biomed 14(5):1166–1172

    Article  Google Scholar 

  55. Minnen D et al. (2005) Recognizing and discovering human actions from on-body sensor data, Proceedings IEEE International Conference on Multimedia Expo., pp 1545–1548

    Google Scholar 

  56. Mantyjarvi J, Himberg J and Seppanen T, (2001) Recognizing human motion with multiple acceleration sensors, Proceedings IEEE International Conference on System, Man, and Cybernetics, 2: 747–752

    Google Scholar 

  57. Allen F et al (2006) Classification of a known sequence of motions and postures from accelerometry data using adapted gaussian mixture models. Physiol Meas 27(10):935–951

    Article  Google Scholar 

  58. Sant’Anna A, Wickstrom N (2009) Developing a motion language: gait analysis from accelerometer sensor systems, Proceedings 3rd International Conference on Pervasive Computing Technologies for Healthcare, pp 1–8

    Google Scholar 

  59. Zijlstra W (2004) Assessment of spatio-temporal parameters during unconstrained walking. Eur J Appl Physiol 92(1–2):39–44

    Article  Google Scholar 

  60. Moe-Nilssen R, Helbostad JL (2004) Estimation of gait cycle characteristics by trunk accelerometry. J. Biomechanics 37(1):121–126

    Article  Google Scholar 

  61. Lee SW, Mase K, Kogure K (2005) Detection of spatio-temporal gait parameters by using wearable motion sensors, Proceedings 27th annual International Conference of IEEE EMBS 7: 6836–6839

    Google Scholar 

  62. Brandes M et al (2006) Accelerometry based assessment of gait parameters in children. Gait Posture 24(4):482–486

    Article  Google Scholar 

  63. Lee JA et al. (2007) Wearable accelerometer system for measuring the temporal parameters of gait, Proceedings 29th annual International Conference of IEEE EMBS, pp 483–486

    Google Scholar 

  64. Tura A et al (2010) Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations. J Neuroeng Rehabil 7:4

    Article  Google Scholar 

  65. Bishop E, Li Q (2010) Walking speed estimation using shank-mounted accelerometers, IEEE International Conference on Robotics and Automation, pp 5096–5101

    Google Scholar 

  66. Sekine M et al (2000) Classification of waist-acceleration signals in a continuous walking record. Med Eng Phys 22(4):285–291

    Article  Google Scholar 

  67. Sekine M et al. (2000) Classification of walking pattern using acceleration waveform in elderly people, Proceedings 22nd Annual International Conference of IEEE EMBS, 2: 1356–1359

    Google Scholar 

  68. Ibrahim RK et al. (2007) Time-frequency based features for classification of walking patterns, Proceedings 15th International Conference on Digital Signal Processing, pp 187–190

    Google Scholar 

  69. Giansanti D et al (2003) Is it feasible to reconstruct body segment 3-D position and orientation using accelerometric data? IEEE Trans Biomed Eng 50(4):476–483

    Article  Google Scholar 

  70. Liu K et al. (2008) novel approach for lower limb segment orientation in gait analysis using triaxial accelerometers, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp 488–492

    Google Scholar 

  71. O’Sullivan M et al (2009) Correlation of accelerometry with clinical balance tests in older fallers and non-fallers. Age Ageing 38(3):308–313

    Article  Google Scholar 

  72. Kamen G et al (1998) An accelerometry based system for the assessment of balance and postural sway. Gerontology 44(1):40–45

    Article  Google Scholar 

  73. Hahn ME et al (2005) Neural network estimation of balance control during locomotion. J Biomech 38(4):717–724

    Article  Google Scholar 

  74. Betker AL, Moussavi ZM, Szturm T (2006) Center of mass approximation and prediction as a function of body acceleration. IEEE Trans Biomed Eng 53(4):686–693

    Article  Google Scholar 

  75. Betker AL, Szturm T, Moussavi ZM (2009) Estimation of 2-D center of mass movement during trunk flexion-extension movements using body accelerations. IEEE Trans Neural Syst Rehabil Eng 17(6):553–559

    Article  Google Scholar 

  76. Giansanti D (2006) Investigation of fall-risk using a wearable device with accelerometers and rate gyroscopes. Physiol Meas 27(11):1081–1090

    Article  Google Scholar 

  77. Giansanti D et al (2008) Assessment of fall-risk by means of a neural network based on parameters assessed by a wearable device during posturography. Med Eng Phys 30(3):367–372

    Article  Google Scholar 

  78. Gietzelt M et al (2009) A clinical study to assess fall risk using a single waist accelerometer. Inform Health Soc Care 34(4):181–188

    Article  Google Scholar 

  79. Marschollek M et al. (2008) Assessing elderly persons’ fall risk using spectral analysis on accelerometric data-a clinical evaluation study, Proceedings 30th annual International Conference of IEEE EMBS, pp 3682–3685

    Google Scholar 

  80. Williams G et al. (1998) A smart fall and activity monitor for telecare applications, Proceedings 20th annual International Conference of IEEE EMB 3: 1151–1154

    Google Scholar 

  81. Doughty K, Lewis R, McIntosh A (2000) The design of a practical and reliable fall detector for community and institutional telecare. J Telemed Telecare 6(1):S150–S154

    Article  Google Scholar 

  82. Degen T et al. (2003) SPEEDY: A fall detector in a wrist watch, Proceedings 17th IEEE Int. Symposium on Wearable Computing, pp 184–187

    Google Scholar 

  83. Kangas M et al (2008) Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait Posture 28(2):285–291

    Article  Google Scholar 

  84. Meng Y, Kim HC (2011) Heuristics for designing and evaluation wearable healthcare systems from user perspectives, CEIS 2011 (in press)

    Google Scholar 

  85. de Vries SI et al (2006) Clinimetric review of motion sensors in children and adolescents. J Clin Epidemiol 59(7):670–680

    Article  Google Scholar 

  86. Bonomi AG et al (2010) Estimation of free-living energy expenditure using a novel activity monitor designed to minimize obtrusiveness. Obesity 18(9):1845–1851

    Article  Google Scholar 

  87. Lemoyne R et al., (2010) Implementation of an iPhone as a wireless accelerometer for quantifying gait characteristics, Proceedings 32nd annual International Conference of IEEE EMBS, 1: 3847–3851

    Google Scholar 

  88. Liu J et al (2008) Local dynamic stability assessment of motion impaired elderly using electronic textile pants. IEEE Trans Autom Sci Eng 5(4):696–702

    Article  Google Scholar 

  89. Ni Scanaill C et al (2006) A review of approaches to mobility telemonitoring of the elderly in their living environment. Ann Biomed Eng 34(4):547–563

    Article  Google Scholar 

Download references

Acknowledgments

This work is funded by the Korean Ministry of Knowledge Economy (#10033321).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Cheol Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Meng, Y., Kim, HC. (2012). A Review of Accelerometer-Based Physical Activity Measurement. In: Kim, K., Ahn, S. (eds) Proceedings of the International Conference on IT Convergence and Security 2011. Lecture Notes in Electrical Engineering, vol 120. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2911-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2911-7_20

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2910-0

  • Online ISBN: 978-94-007-2911-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics